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ABSTRACT 
 
 

Time series modeling and forecasting has fundamental importance to various practical 

domains. Thus a lot of active research works is going on in this subject during several years. 

Many important models have been proposed in literature for improving the accuracy and 

effeciency of time series modeling and forecasting. The aim of this book is to present a 

concise description of some popular time series forecasting models used in practice, with their 

salient features. In this book, we have described three important classes of time series models, 

viz. the stochastic, neural networks and SVM based models, together with their inherent 

forecasting strengths and weaknesses. We have also discussed about the basic issues related to 

time series modeling, such as stationarity, parsimony, overfitting, etc. Our discussion about 

different time series models is supported by giving the experimental forecast results, performed 

on six real time series datasets. While fitting a model to a dataset, special care is taken to select 

the most parsimonious one. To evaluate forecast accuracy as well as to compare among 

different models fitted to a time series, we have used the five performance measures, viz. MSE, 

MAD, RMSE, MAPE and Theil’s U-statistics. For each of the six datasets, we have shown the 

obtained forecast diagram which graphically depicts the closeness between the original and 

forecasted observations. To have authenticity as well as clarity in our discussion about time 

series modeling and forecasting, we have taken the help of various published research works 

from reputed journals and some standard books.   
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  Chapter-1   
Introduction 
 

Time series modeling is a dynamic research area which has attracted attentions of researchers 

community over last few decades. The main aim of time series modeling is to carefully collect 

and rigorously study the past observations of a time series to develop an appropriate model 

which describes the inherent structure of the series. This model is then used to generate future 

values for the series, i.e. to make forecasts. Time series forecasting thus can be termed as the 

act of predicting the future by understanding the past [31]. Due to the indispensable importance 

of time series forecasting in numerous practical fields such as business, economics, finance, 

science and engineering, etc. [7, 8, 10], proper care should be taken to fit an adequate model to 

the underlying time series. It is obvious that a successful time series forecasting depends on an 

appropriate model fitting. A lot of efforts have been done by researchers over many years for 

the development of efficient models to improve the forecasting accuracy. As a result, various 

important time series forecasting models have been evolved in literature. 

  One of the most popular and frequently used stochastic time series models is the 

Autoregressive Integrated Moving Average (ARIMA) [6, 8, 21, 23] model. The basic 

assumption made to implement this model is that the considered time series is linear and 

follows a particular known statistical distribution, such as the normal distribution. ARIMA 

model has subclasses of other models, such as the Autoregressive (AR) [6, 12, 23], Moving 

Average (MA) [6, 23] and Autoregressive Moving Average (ARMA) [6, 21, 23] models. For 

seasonal time series forecasting, Box and Jenkins [6] had proposed a quite successful variation 

of ARIMA model, viz. the Seasonal ARIMA (SARIMA) [3, 6, 23]. The popularity of the 

ARIMA model is mainly due to its flexibility to represent several varieties of time series with 

simplicity as well as the associated Box-Jenkins methodology [3, 6, 8, 23] for optimal model 

building process. But the severe limitation of these models is the pre-assumed linear form of 

the associated time series which becomes inadequate in many practical situations. To 

overcome this drawback, various non-linear stochastic models have been proposed in literature 

[7, 8, 28]; however from implementation point of view these are not so straight-forward and 

simple as the ARIMA models. 

  Recently, artificial neural networks (ANNs) have attracted increasing attentions in the 

domain of time series forecasting [8, 13, 20]. Although initially biologically inspired, but later 

on ANNs have been successfully applied in many different areas, especially for forecasting 
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and classification purposes [13, 20]. The excellent feature of ANNs, when applied to time 

series forecasting problems is their inherent capability of non-linear modeling, without any 

presumption about the statistical distribution followed by the observations. The appropriate 

model is adaptively formed based on the given data. Due to this reason, ANNs are data-driven 

and self-adaptive by nature [5, 8, 20]. During the past few years a substantial amount of 

research works have been carried out towards the application of neural networks for time series 

modeling and forecasting. A state-of-the-art discussion about the recent works in neural 

networks for tine series forecasting has been presented by Zhang et al. in 1998 [5]. There are 

various ANN forecasting models in literature. The most common and popular among them are 

the multi-layer perceptrons (MLPs), which are characterized by a single hidden layer Feed 

Forward Network (FNN) [5,8]. Another widely used variation of FNN is the Time Lagged 

Neural Network (TLNN) [11, 13]. In 2008, C. Hamzacebi [3] had presented a new ANN model, 

viz. the Seasonal Artificial Neural Network (SANN) model for seasonal time series forecasting. 

His proposed model is surprisingly simple and also has been experimentally verified to be 

quite successful and efficient in forecasting seasonal time series. Offcourse, there are many 

other existing neural network structures in literature due to the continuous ongoing research 

works in this field. However, in the present book we shall mainly concentrate on the above 

mentioned ANN forecasting models.  

  A major breakthrough in the area of time series forecasting occurred with the 

development of Vapnik’s support vector machine (SVM) concept [18, 24, 30, 31]. Vapnik and 

his co-workers designed SVM at the AT & T Bell laboratories in 1995 [24, 29, 33]. The initial 

aim of SVM was to solve pattern classification problems but afterwards they have been widely 

applied in many other fields such as function estimation, regression, signal processing and time 

series prediction problems [24, 31, 34]. The remarkable characteristic of SVM is that it is not 

only destined for good classification but also intended for a better generalization of the training 

data. For this reason the SVM methodology has become one of the well-known techniques, 

especially for time series forecasting problems in recent years. The objective of SVM is to use 

the structural risk minimization (SRM) [24, 29, 30] principle to find a decision rule with good 

generalization capacity. In SVM, the solution to a particular problem only depends upon a 

subset of the training data points, which are termed as the support vectors [24, 29, 33]. Another 

important feature of SVM is that here the training is equivalent to solving a linearly 

constrained quadratic optimization problem. So the solution obtained by applying SVM 

method is always unique and globally optimal, unlike the other traditional stochastic or neural 

network methods [24]. Perhaps the most amazing property of SVM is that the quality and 

complexity of the solution can be independently controlled, irrespective of the dimension of 
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the input space [19, 29]. Usually in SVM applications, the input points are mapped to a high 

dimensional feature space, with the help of some special functions, known as support vector 

kernels [18, 29, 34], which often yields good generalization even in high dimensions. During 

the past few years numerous SVM forecasting models have been developed by researchers. In 

this book, we shall present an overview of the important fundamental concepts of SVM and 

then discuss about the Least-square SVM (LS-SVM) [19] and Dynamic Least-square SVM (LS-

SVM) [34] which are two popular SVM models for time series forecasting.   

 

The objective of this book is to present a comprehensive discussion about the three widely 

popular approaches for time series forecasting, viz. the stochastic, neural networks and SVM 

approaches. This book contains seven chapters, which are organized as follows: Chapter 2 

gives an introduction to the basic concepts of time series modeling, together with some 

associated ideas such as stationarity, parsimony, etc. Chapter 3 is designed to discuss about the 

various stochastic time series models. These include the Box-Jenkins or ARIMA models, the 

generalized ARFIMA models and the SARIMA model for linear time series forecasting as well 

as some non-linear models such as ARCH, NMA, etc. In Chapter 4 we have described the 

application of neural networks in time series forecasting, together with two recently developed 

models, viz. TLNN [11, 13] and SANN [3]. Chapter 5 presents a discussion about the SVM 

concepts and its usefulness in time series forecasting problems. In this chapter we have also 

briefly discussed about two newly proposed models, viz. LS-SVM [19] and DLS-SVM [34] 

which have gained immense popularities in time series forecasting applications. In Chapter 6, 

we have introduced about ten important forecast performance measures, often used in 

literature, together with their salient features. Chapter 7 presents our experimental forecasting 

results in terms of five performance measures, obtained on six real time series datasets, 

together with the associated forecast diagrams. After completion of these seven chapters, we 

have given a brief conclusion of our work as well as the prospective future aim in this field. 
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  Chapter-2   
Basic Concepts of Time Series Modeling 
 
2.1 Definition of A Time Series 

A time series is a sequential set of data points, measured typically over successive times. It 
is mathematically defined as a set of vectors ...,2,1,0),( =ttx  where t  represents the time 

elapsed [21, 23, 31]. The variable )(tx  is treated as a random variable. The measurements 

taken during an event in a time series are arranged in a proper chronological order.  
A time series containing records of a single variable is termed as univariate. But if records 

of more than one variable are considered, it is termed as multivariate. A time series can be 
continuous or discrete. In a continuous time series observations are measured at every instance 
of time, whereas a discrete time series contains observations measured at discrete points of 
time. For example temperature readings, flow of a river, concentration of a chemical process 
etc. can be recorded as a continuous time series. On the other hand population of a particular 
city, production of a company, exchange rates between two different currencies may represent 
discrete time series. Usually in a discrete time series the consecutive observations are recorded 
at equally spaced time intervals such as hourly, daily, weekly, monthly or yearly time 
separations. As mentioned in [23], the variable being observed in a discrete time series is 
assumed to be measured as a continuous variable using the real number scale. Furthermore a 
continuous time series can be easily transformed to a discrete one by merging data together 
over a specified time interval. 

 
2.2 Components of a Time Series 

A time series in general is supposed to be affected by four main components, which can be 
separated from the observed data. These components are: Trend, Cyclical, Seasonal and 
Irregular components.  A brief description of these four components is given here. 
The general tendency of a time series to increase, decrease or stagnate over a long period of 
time is termed as Secular Trend or simply Trend. Thus, it can be said that trend is a long term 
movement in a time series. For example, series relating to population growth, number of 
houses in a city etc. show upward trend, whereas downward trend can be observed in series 
relating to mortality rates, epidemics, etc. 
Seasonal variations in a time series are fluctuations within a year during the season. The 
important factors causing seasonal variations are: climate and weather conditions, customs, 
traditional habits, etc. For example sales of ice-cream increase in summer, sales of woolen 
cloths increase in winter. Seasonal variation is an important factor for businessmen, 
shopkeeper and producers for making proper future plans. 
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The cyclical variation in a time series describes the medium-term changes in the series, caused 
by circumstances, which repeat in cycles. The duration of a cycle extends over longer period of 
time, usually two or more years. Most of the economic and financial time series show some 
kind of cyclical variation. For example a business cycle consists of four phases, viz.  

i) Prosperity, ii) Decline, iii) Depression and iv) Recovery.  
Schematically a typical business cycle can be shown as below: 
 

  

Fig. 2.1: A four phase business cycle 
 

Irregular or random variations in a time series are caused by unpredictable influences, which 
are not regular and also do not repeat in a particular pattern. These variations are caused by 
incidences such as war, strike, earthquake, flood, revolution, etc. There is no defined statistical 
technique for measuring random fluctuations in a time series. 
Considering the effects of these four components, two different types of models are generally 
used for a time series viz. Multiplicative and Additive models. 
 

Multiplicative Model: ).()()()()( tItCtStTtY ×××=  

Additive Model: ).()()()()( tItCtStTtY +++=  

 
Here )(tY  is the observation and )(tT , )(tS , )(tC  and )(tI are respectively the trend, seasonal, 

cyclical and irregular variation at time .t  
Multiplicative model is based on the assumption that the four components of a time series are 
not necessarily independent and they can affect one another; whereas in the additive model it is 
assumed that the four components are independent of each other.  
 
2.3 Examples of Time Series Data 

Time series observations are frequently encountered in many domains such as business, 
economics, industry, engineering and science, etc [7, 8, 10]. Depending on the nature of 
analysis and practical need, there can be various different kinds of time series. To visualize the 
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basic pattern of the data, usually a time series is represented by a graph, where the observations 
are plotted against corresponding time. Below we show two time series plots: 

 

         
Fig. 2.2: Weekly BP/USD exchange rate series (1980-1993)  

 
 

       
Fig. 2.3: Monthly international airline passenger series (Jan. 1949-Dec. 1960) 

 
The first time series is taken from [8] and it represents the weekly exchange rate between 
British pound and US dollar from 1980 to 1933. The second one is a seasonal time series, 
considered in [3, 6, 11] and it shows the number of international airline passengers (in 
thousands) between Jan. 1949 to Dec. 1960 on a monthly basis.  
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2.4 Introduction to Time Series Analysis 
In practice a suitable model is fitted to a given time series and the corresponding 

parameters are estimated using the known data values.  The procedure of fitting a time series to 
a proper model is termed as Time Series Analysis [23]. It comprises methods that attempt to 
understand the nature of the series and is often useful for future forecasting and simulation.  

In time series forecasting, past observations are collected and analyzed to develop a suitable 
mathematical model which captures the underlying data generating process for the series [7, 8]. 
The future events are then predicted using the model. This approach is particularly useful when 
there is not much knowledge about the statistical pattern followed by the successive observations 
or when there is a lack of a satisfactory explanatory model. Time series forecasting has important 
applications in various fields. Often valuable strategic decisions and precautionary measures are 
taken based on the forecast results. Thus making a good forecast, i.e. fitting an adequate model to 
a time series is vary important. Over the past several decades many efforts have been made by 
researchers for the development and improvement of suitable time series forecasting models.  
 
2.5 Time Series and Stochastic Process 

A time series is non-deterministic in nature, i.e. we cannot predict with certainty what will 

occur in future. Generally a time series { }...,2,1,0),( =ttx  is assumed to follow certain 

probability model [21] which describes the joint distribution of the random variable .tx  The 

mathematical expression describing the probability structure of a time series is termed as a 
stochastic process [23]. Thus the sequence of observations of the series is actually a sample 
realization of the stochastic process that produced it.  

A usual assumption is that the time series variables tx  are independent and identically 

distributed (i.i.d) following the normal distribution. However as mentioned in [21], an 
interesting point is that time series are in fact not exactly i.i.d; they follow more or less some 
regular pattern in long term. For example if the temperature today of a particular city is 
extremely high, then it can be reasonably presumed that tomorrow’s temperature will also 
likely to be high. This is the reason why time series forecasting using a proper technique, 
yields result close to the actual value. 

 
2.6  Concept of Stationarity 

The concept of stationarity of a stochastic process can be visualized as a form of statistical 
equilibrium [23]. The statistical properties such as mean and variance of a stationary process 
do not depend upon time. It is a necessary condition for building a time series model that is 
useful for future forecasting. Further, the mathematical complexity of the fitted model reduces 
with this assumption. There are two types of stationary processes which are defined below: 
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A process { }...,2,1,0),( =ttx  is Strongly Stationary or Strictly Stationary if the joint 

probability distribution function of { }ststtstst xxxxx +−++−− ,,...,...,, 11  is independent of t  for all .s  

Thus for a strong stationary process the joint distribution of any possible set of random 
variables from the process is independent of time [21, 23].  
However for practical applications, the assumption of strong stationarity is not always needed 
and so a somewhat weaker form is considered. A stochastic process is said to be Weakly 
Stationary of order k  if the statistical moments of the process up to that order depend only on 
time differences and not upon the time of occurrences of the data being used to estimate the 

moments [12, 21, 23]. For example a stochastic process { }...,2,1,0),( =ttx  is second order 

stationary [12, 23] if it has time independent mean and variance and the covariance values 

),( stt xxCov −  depend only on .s  

It is important to note that neither strong nor weak stationarity implies the other. However, a 
weakly stationary process following normal distribution is also strongly stationary [21]. Some 
mathematical tests like the one given by Dickey and Fuller [21] are generally used to detect 
stationarity in a time series data. 
As mentioned in [6, 23], the concept of stationarity is a mathematical idea constructed to 
simplify the theoretical and practical development of stochastic processes. To design a proper 
model, adequate for future forecasting, the underlying time series is expected to be stationary. 
Unfortunately it is not always the case. As stated by Hipel and McLeod [23], the greater the 
time span of historical observations, the greater is the chance that the time series will exhibit 
non-stationary characteristics. However for relatively short time span, one can reasonably 
model the series using a stationary stochastic process. Usually time series, showing trend or 
seasonal patterns are non-stationary in nature. In such cases, differencing and power 
transformations are often used to remove the trend and to make the series stationary. In the 
next chapter we shall discuss about the seasonal differencing technique applied to make a 
seasonal time series stationary. 

   
2.7 Model Parsimony 

While building a proper time series model we have to consider the principle of parsimony 
[2, 7, 8, 23]. According to this principle, always the model with smallest possible number of 
parameters is to be selected so as to provide an adequate representation of the underlying time 
series data [2]. Out of a number of suitable models, one should consider the simplest one, still 
maintaining an accurate description of inherent properties of the time series. The idea of model 
parsimony is similar to the famous Occam’s razor principle [23]. As discussed by Hipel and 
McLeod [23], one aspect of this principle is that when face with a number of competing and 
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adequate explanations, pick the most simple one. The Occam’s razor provides considerable 
inherent informations, when applied to logical analysis.  

Moreover, the more complicated the model, the more possibilities will arise for departure 
from the actual model assumptions. With the increase of model parameters, the risk of 
overfitting also subsequently increases. An over fitted time series model may describe the 
training data very well, but it may not be suitable for future forecasting. As potential 
overfitting affects the ability of a model to forecast well, parsimony is often used as a guiding 
principle to overcome this issue. Thus in summary it can be said that, while making time 
series forecasts, genuine attention should be given to select the most parsimonious model 
among all other possibilities. 
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Chapter-3   
Time Series Forecasting Using Stochastic Models 
 
3.1 Introduction 

In the previous chapter we have discussed about the fundamentals of time series modeling 
and forecasting. The selection of a proper model is extremely important as it reflects the 
underlying structure of the series and this fitted model in turn is used for future forecasting. A 
time series model is said to be linear or non-linear depending on whether the current value of 
the series is a linear or non-linear function of past observations.  

In general models for time series data can have many forms and represent different 
stochastic processes. There are two widely used linear time series models in literature, viz. 
Autoregressive (AR) [6, 12, 23] and Moving Average (MA) [6, 23] models. Combining these 
two, the Autoregressive Moving Average (ARMA) [6, 12, 21, 23] and Autoregressive 
Integrated Moving Average (ARIMA) [6, 21, 23] models have been proposed in literature. The 
Autoregressive Fractionally Integrated Moving Average (ARFIMA) [9, 17] model generalizes 
ARMA and ARIMA models. For seasonal time series forecasting, a variation of ARIMA, viz. 
the Seasonal Autoregressive Integrated Moving Average (SARIMA) [3, 6, 23] model is used. 
ARIMA model and its different variations are based on the famous Box-Jenkins principle [6, 8, 
12, 23] and so these are also broadly known as the Box-Jenkins models.  

Linear models have drawn much attention due to their relative simplicity in understanding 
and implementation. However many practical time series show non-linear patterns. For 
example, as mentioned by R. Parrelli in [28], non-linear models are appropriate for predicting 
volatility changes in economic and financial time series. Considering these facts, various non-
linear models have been suggested in literature. Some of them are the famous Autoregressive 
Conditional Heteroskedasticity (ARCH) [9, 28] model and its variations like Generalized 
ARCH (GARCH) [9, 28], Exponential Generalized ARCH (EGARCH) [9] etc., the Threshold 
Autoregressive (TAR) [8, 10] model, the Non-linear Autoregressive (NAR) [7] model, the Non-
linear Moving Average (NMA) [28] model, etc.  
 
In this chapter we shall discuss about the important linear and non-linear stochastic time series 
models with their different properties. This chapter will provide a background for the 
upcoming chapters, in which we shall study other models used for time series forecasting. 
 
3.2 The Autoregressive Moving Average (ARMA) Models 

An ARMA(p, q) model is a combination of AR(p) and MA(q) models and is suitable for 
univariate time series modeling. In an AR(p) model the future value of a variable is assumed to 
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be a linear combination of p past observations and a random error together with a constant 
term. Mathematically the AR(p)  model can be expressed as [12, 23]: 

tptptt

p

i
titit yyycycy εϕϕϕεϕ +++++=++= −−−

=
−∑ ................2211

1

                        (3.1) 

Here ty  and tε  are respectively the actual value and random error (or random shock) at time 

period t , ),...,2,1( pii =ϕ  are model parameters and c  is a constant. The integer constant p is 

known as the order of the model. Sometimes the constant term is omitted for simplicity. 
Usually For estimating parameters of an AR process using the given time series, the Yule-
Walker equations [23] are used.  
Just as an AR(p)  model regress against past values of the series, an MA(q) model uses past 
errors as the  explanatory variables. The MA(q)  model is given by [12, 21, 23]: 

 tqtqtt

q

j
tjtjty εεθεθεθμεεθμ +++++=++= −−−

=
−∑ ................2211

1

                        (3.2) 

Here μ  is the mean of the series, ),...,2,1( qjj =θ  are the model parameters and q is the 

order of the model. The random shocks are assumed to be a white noise [21, 23] process, i.e. a 
sequence of independent and identically distributed (i.i.d) random variables with zero mean 

and a constant variance .2σ  Generally, the random shocks are assumed to follow the typical 
normal distribution. Thus conceptually a moving average model is a linear regression of the 
current observation of the time series against the random shocks of one or more prior 
observations. Fitting an MA model to a time series is more complicated than fitting an AR 
model because in the former one the random error terms are not fore-seeable. 
 
Autoregressive (AR) and moving average (MA) models can be effectively combined together 
to form a general and useful class of time series models, known as the ARMA models. 
Mathematically an ARMA(p, q) model is represented as [12, 21, 23]: 
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Here the model orders qp ,  refer to p autoregressive and q  moving average terms. 

 

Usually ARMA models are manipulated using the lag operator [21, 23] notation. The lag or 

backshift operator is defined as 1−= tt yLy . Polynomials of lag operator or lag polynomials are 

used to represent ARMA models as follows [21]: 

AR(p) model: .)( tt yLϕε =     
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MA(q) model: .)( tt Ly εθ=  

ARMA(p, q) model: .)()( tt LyL εθϕ =  
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It is shown in [23] that an important property of AR(p) process is invertibility, i.e. an AR(p) 
process can always be written in terms of an MA(∞) process. Whereas for an MA(q) process to 
be invertible, all the roots of the equation 0)( =Lθ  must lie outside the unit circle. This 

condition is known as the Invertibility Condition for an MA process.  
 
3.3 Stationarity Analysis 

When an AR(p) process is represented as tt yL)(ϕε = , then 0)( =Lϕ  is known as the 

characteristic equation for the process. It is proved by Box and Jenkins [6] that a necessary and 
sufficient condition for the AR(p) process to be stationary is that all the roots of the 
characteristic equation must fall outside the unit circle. Hipel and McLeod [23] mentioned 
another simple algorithm (by Schur and Pagano) for determining stationarity of an AR process. 

For example as shown in [12] the AR(1) model ttt ycy εϕ ++= −11  is stationary when 11 <ϕ , 

with a constant mean 
11 ϕ

μ
−

=
c and constant variance .

1 2
1

2

0 ϕ
σγ
−

=  

An MA(q) process is always stationary, irrespective of the values the MA parameters [23]. The 
conditions regarding stationarity and invertibility of AR and MA processes also hold for an 
ARMA process. An ARMA(p, q) process is stationary if all the roots of the characteristic 
equation 0)( =Lϕ  lie outside the unit circle. Similarly, if all the roots of the lag equation 

0)( =Lθ  lie outside the unit circle, then the ARMA(p, q) process is invertible and can be 

expressed as a pure AR process. 
 
3.4 Autocorrelation and Partial Autocorrelation Functions (ACF and PACF) 

To determine a proper model for a given time series data, it is necessary to carry out the 
ACF and PACF analysis. These statistical measures reflect how the observations in a time 
series are related to each other. For modeling and forecasting purpose it is often useful to plot 
the ACF and PACF against consecutive time lags. These plots help in determining the order of 
AR and MA terms. Below we give their mathematical definitions: 

For a time series{ }...,2,1,0),( =ttx  the Autocovariance [21, 23] at lag k  is defined as: 

)])([(),( μμγ −−== ++ kttkttk xxExxCov                                                       (3.4) 
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The Autocorrelation Coeffient [21, 23] at lag k is defined as: 

0γ
γ

ρ k
k =                                                                                                           (3.5) 

Here μ is the mean of the time series, i.e. ][ txE=μ . The autocovariance at lag zero i.e. 0γ  is 

the variance of the time series. From the definition it is clear that the autocorrelation coefficient 

kρ  is dimensionless and so is independent of the scale of measurement. Also, clearly 

.11 ≤≤− kρ  Statisticians Box and Jenkins [6] termed kγ  as the theoretical Autocovariance 

Function (ACVF) and kρ  as the theoretical Autocorrelation Function (ACF).  

Another measure, known as the Partial Autucorrelation Function (PACF) is used to measure 
the correlation between an observation k period ago and the current observation, after 
controlling for observations at intermediate lags (i.e. at lags k< ) [12]. At lag 1, PACF(1) is 
same as ACF(1). The detailed formulae for calculating PACF are given in [6, 23]. 
 
Normally, the stochastic process governing a time series is unknown and so it is not possible to 
determine the actual or theoretical ACF and PACF values. Rather these values are to be 
estimated from the training data, i.e. the known time series at hand. The estimated ACF and 
PACF values from the training data are respectively termed as sample ACF and PACF [6, 23].  
As given in [23], the most appropriate sample estimate for the ACVF at lag k is  
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Then the estimate for the sample ACF at lag k is given by 

0c
c

r k
k =                                                                                                             (3.7) 

Here { },.......2,1,0),( =ttx  is the training series of size n  with meanμ .  

 
As explained by Box and Jenkins [6], the sample ACF plot is useful in determining the type of 
model to fit to a time series of length N. Since ACF is symmetrical about lag zero, it is only 
required to plot the sample ACF for positive lags, from lag one onwards to a maximum lag of 
about N/4. The sample PACF plot helps in identifying the maximum order of an AR process. 
The methods for calculating ACF and PACF for ARMA models are described in [23]. We 
shall demonstrate the use of these plots for our practical datasets in Chapter 7. 
 
3.5 Autoregressive Integrated Moving Average (ARIMA) Models 

The ARMA models, described above can only be used for stationary time series data. 
However in practice many time series such as those related to socio-economic [23] and 
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business show non-stationary behavior. Time series, which contain trend and seasonal patterns, 
are also non-stationary in nature [3, 11]. Thus from application view point ARMA models are 
inadequate to properly describe non-stationary time series, which are frequently encountered in 
practice. For this reason the ARIMA model [6, 23, 27] is proposed, which is a generalization 
of an ARMA model to include the case of non-stationarity as well. 
In ARIMA models a non-stationary time series is made stationary by applying finite 
differencing of the data points. The mathematical formulation of the ARIMA(p,d,q) model 
using lag polynomials is given below [23, 27]: 
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• Here, p, d and q are integers greater than or equal to zero and refer to the order of the 
autoregressive, integrated, and moving average parts of the model respectively.  

• The integer d controls the level of differencing. Generally d=1 is enough in most cases. 
When d=0, then it reduces to an ARMA(p,q) model.  

• An ARIMA(p,0,0) is nothing but the AR(p) model and ARIMA(0,0,q) is the MA(q) model.  

• ARIMA(0,1,0), i.e. ttt yy ε+= −1  is a special one and known as the Random Walk model 

[8, 12, 21]. It is widely used for non-stationary data, like economic and stock price series. 
 
A useful generalization of ARIMA models is the Autoregressive Fractionally Integrated 
Moving Average (ARFIMA) model, which allows non-integer values of the differencing 
parameter d. ARFIMA has useful application in modeling time series with long memory [17]. 

In this model the expansion of the term ( )dL−1  is to be done by using the general binomial 

theorem. Various contributions have been made by researchers towards the estimation of the 
general ARFIMA parameters. 
 
3.6 Seasonal Autoregressive Integrated Moving Average (SARIMA) Models 

The ARIMA model (3.8) is for non-seasonal non-stationary data. Box and Jenkins [6] have 
generalized this model to deal with seasonality. Their proposed model is known as the 
Seasonal ARIMA (SARIMA) model. In this model seasonal differencing of appropriate order 
is used to remove non-stationarity from the series. A first order seasonal difference is the 
difference between an observation and the corresponding observation from the previous year 

and is calculated as .sttt yyz −−=  For monthly time series 12=s  and for quarterly time series 

.4=s  This model is generally termed as the sQDPqdp ),,(),,(SARIMA ×  model.  
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The mathematical formulation of a sQDPqdp ),,(),,(SARIMA ×  model in terms of lag 

polynomials is given below [13]: 
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Here tz  is the seasonally differenced series.  

 
3.7 Some Nonlinear Time Series Models 

So far we have discussed about linear time series models. As mentioned earlier, nonlinear 
models should also be considered for better time series analysis and forecasting. Campbell, Lo 
and McKinley (1997) made important contributions towards this direction. According to them 
almost all non-linear time series can be divided into two branches: one includes models non-
linear in mean and other includes models non-linear in variance (heteroskedastic). As an 
illustrative example, here we present two nonlinear time series models from [28]: 

• Nonlinear Moving Average (NMA) Model: .2
1−+= ttty αεε  This model is non-linear in 

mean but not in variance. 

• Eagle’s (1982) ARCH Model: .2
ttty εαε +=  This model is heteroskedastic, i.e. non-

linear in variance, but linear in mean. This model has several other variations, like 
GARCH, EGARCH etc. 

 
3.8 Box-Jenkins Methodology  

After describing various time series models, the next issue to our concern is how to select 
an appropriate model that can produce accurate forecast based on a description of historical 
pattern in the data and how to determine the optimal model orders. Statisticians George Box 
and Gwilym Jenkins [6] developed a practical approach to build ARIMA model, which best fit 
to a given time series and also satisfy the parsimony principle. Their concept has fundamental 
importance on the area of time series analysis and forecasting [8, 27].  

The Box-Jenkins methodology does not assume any particular pattern in the historical data 
of the series to be forecasted. Rather, it uses a three step iterative approach of model 
identification, parameter estimation and diagnostic checking to determine the best 
parsimonious model from a general class of ARIMA models [6, 8, 12, 27]. This three-step 
process is repeated several times until a satisfactory model is finally selected. Then this model 
can be used for forecasting future values of the time series.   
 
The Box-Jenkins forecast method is schematically shown in Fig. 3.1:  
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Fig. 3.1: The Box-Jenkins methodology for optimal model selection 
 
A crucial step in an appropriate model selection is the determination of optimal model 
parameters.  One criterion is that the sample ACF and PACF, calculated from the training data 
should match with the corresponding theoretical or actual values [11, 13, 23]. Other widely 
used measures for model identification are Akaike Information Criterion (AIC) [11, 13] and 
Bayesian Information Criterion (BIC) [11, 13] which are defined below [11]: 
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Here n is the number of effective observations, used to fit the model, p is the number of 

parameters in the model and 2ˆ eσ  is the sum of sample squared residuals. The optimal model 

order is chosen by the number of model parameters, which minimizes either AIC or BIC. Other 
similar criteria have also been proposed in literature for optimal model identification. 
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Chapter-4   
Time Series Forecasting Using Artificial Neural Networks 
 
4.1 Artificial Neural Networks (ANNs) 

In the previous Chapter we have discussed the important stochastic methods for time 
series modeling and forecasting. Artificial neural networks (ANNs) approach has been 
suggested as an alternative technique to time series forecasting and it gained immense 
popularity in last few years. The basic objective of ANNs was to construct a model for 
mimicking the intelligence of human brain into machine [13, 20]. Similar to the work of a 
human brain, ANNs try to recognize regularities and patterns in the input data, learn from 
experience and then provide generalized results based on their known previous knowledge. 
Although the development of ANNs was mainly biologically motivated, but afterwards they 
have been applied in many different areas, especially for forecasting and classification 
purposes [13, 20]. Below we shall mention the salient features of ANNs, which make them 
quite favorite for time series analysis and forecasting. 

First, ANNs are data-driven and self-adaptive in nature [5, 20]. There is no need to specify 
a particular model form or to make any a priori assumption about the statistical distribution of 
the data; the desired model is adaptively formed based on the features presented from the data. 
This approach is quite useful for many practical situations, where no theoretical guidance is 
available for an appropriate data generation process. 

Second, ANNs are inherently non-linear, which makes them more practical and accurate in 
modeling complex data patterns, as opposed to various traditional linear approaches, such as 
ARIMA methods [5, 8, 20]. There are many instances, which suggest that ANNs made quite 
better analysis and forecasting than various linear models. 

Finally, as suggested by Hornik and Stinchcombe [22], ANNs are universal functional 
approximators. They have shown that a network can approximate any continuous function to 
any desired accuracy [5, 22]. ANNs use parallel processing of the information from the data to 
approximate a large class of functions with a high degree of accuracy. Further, they can deal 
with situation, where the input data are erroneous, incomplete or fuzzy [20]. 

 
4.2 The ANN Architecture 

The most widely used ANNs in forecasting problems are multi-layer perceptrons (MLPs), 
which use a single hidden layer feed forward network (FNN) [5,8]. The model is characterized 
by a network of three layers, viz. input, hidden and output layer, connected by acyclic links. 
There may be more than one hidden layer. The nodes in various layers are also known as 
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processing elements. The three-layer feed forward architecture of ANN models can be 
diagrammatically depicted as below: 

 

 
Fig. 4.1: The three-layer feed forward ANN architecture 

  
The output of the model is computed using the following mathematical expression [7]: 
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Here ),...,2,1( piy it =−  are the p inputs and ty  is the output. The integers p, q are the number of 

input and hidden nodes respectively. ),...,2,1,0( qjj =α  and ),...,2,1,0;,...,2,1,0( qjpiij ==β  

are the connection weights and tε  is the random shock; 0α  and j0β  are the bias terms. Usually, the 

logistic sigmoid function xe
xg −+
=

1
1)(  is applied as the nonlinear activation function. Other 

activation functions, such as linear, hyperbolic tangent, Gaussian, etc. can also be used [20].  
 
The feed forward ANN model (4.1) in fact performs a non-linear functional mapping from the 

past observations of the time series to the future value, i.e. tptttt yyyfy ε+= −−− ),,.....,( 21 w , 

where w is a vector of all parameters and f  is a function determined by the network structure 

and connection weights [5, 8]. 
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To estimate the connection weights, non-linear least square procedures are used, which are 
based on the minimization of the error function [13]: 

∑∑ −==Ψ
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tt
t

t yyeF 22 )ˆ()(                                                                            (4.2) 

Here Ψ is the space of all connection weights.  
The optimization techniques used for minimizing the error function (4.2) are referred as 
Learning Rules. The best-known learning rule in literature is the Backpropagation or 
Generalized Delta Rule [13, 20]. 
 
4.3 Time Lagged Neural Networks (TLNN) 

In the FNN formulation, described above, the input nodes are the successive observations 

of the time series, i.e. the target tx  is a function of the values ),...,2,1(, pix it =−  where p is the 

number of input nodes.  Another variation of FNN, viz. the TLNN architecture [11, 13] is also 
widely used. In TLNN, the input nodes are the time series values at some particular lags. For 
example, a typical TLNN for a time series, with seasonal period 12=s  can contain the input 
nodes as the lagged values at time 1−t , 2−t  and .12−t The value at time t  is to be forecasted 
using the values at lags 1, 2 and 12. 

 
 

 
Fig. 4.2: A typical TLNN architecture for monthly data 
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In addition, there is a constant input term, which may be conveniently taken as 1 and this is 

connected to every neuron in the hidden and output layer. The introduction of this constant 

input unit avoids the necessity of separately introducing a bias term. 

For a TLNN with one hidden level, the general prediction equation for computing a forecast 

may be written as [11]: 
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Here, the selected past observations 
kjtjtjt xxx −−− ,...,,

21
are the input terms, { }chw are the 

weights for the connections between the constant input and hidden neurons and 0cw  is the 

weight of the direct connection between the constant input and the output. Also { }ihw  and 

{ }0hw denote the weights for other connections between the input and hidden neurons and 

between the hidden and output neurons respectively. hφ  and 0φ  are the hidden and output 

layer activation functions respectively. 

Faraway and Chatfield [11] used the notation );,...,,( 21 hjjjNN k  to denote the TLNN with 

inputs at lags kjjj ,...,, 21  and h  hidden neurons. We shall also adopt this notation in our 

upcoming experiments. Thus Fig. 4.2 represents an NN (1, 2, 12; 3) model. 

 

4.4 Seasonal Artificial Neural Networks (SANN) 

The SANN structure is proposed by C. Hamzacebi [3] to improve the forecasting 

performance of ANNs for seasonal time series data. The proposed SANN model does not 

require any preprocessing of raw data. Also SANN can learn the seasonal pattern in the series, 

without removing them, contrary to some other traditional approaches, such as SARIMA, 

discussed in Chapter 3. The author has empirically verified the good forecasting ability of 

SANN on four practical time data sets. We have also used this model in our current work on 

two new seasonal time series and obtained quite satisfactory results. Here we present a brief 

overview of SANN model as proposed in [3]. 

In this model, the seasonal parameter s is used to determine the number of input and 

output neurons. This consideration makes the model surprisingly simple for understanding 

and implementation. The ith and (i+1)th seasonal period observations are respectively used as 

the values of input and output neurons in this network structure. Each seasonal period is 

composed of a number of observations.  

 

Diagrammatically an SANN structure can be shown as [3]: 
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Fig. 4.3: SANN architecture for seasonal time series 
 
Mathematical expression for the output of the model is [3]: 
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Here ),...,3,2,1( slY lt =+ are the predictions for the future s periods and )1,...,2,1,0( −=− siY it are 

the observations of the previous s periods; ),...,3,2,1;1,...,2,1,0( mjsivij =−= are weights of 

connections from input nodes to hidden nodes and ),...,3,2,1;,...,3,2,1( slmjw jl == are weights 

of connections from hidden nodes to output nodes. Also ),...,3,2,1( sll =α and 

),...,3,2,1( mjj =θ are weights of bias connection and f  is the activation function. 

Thus while forecasting with SANN, the number of input and output neurons should be taken as 
12 for monthly and 4 for quarterly time series. The appropriate number of hidden nodes can be 
determined by performing suitable experiments on the training data. 
 
4.5 Selection of A Proper Network Architecture 

So far we have discussed about three important network architectures, viz. the FNN, TLNN 
and SANN, which are extensively used in forecasting problems. Some other types of neural 
models are also proposed in literature, such as the Probabilistic Neural Network (PNN) [20] for 
classification problem and Generalized Regression Neural Network (GRNN) [20] for regression 
problem. After specifying a particular network structure, the next most important issue is the 
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determination of the optimal network parameters. The number of network parameters is equal to 
the total number of connections between the neurons and the bias terms [3, 11]. 

A desired network model should produce reasonably small error not only on within sample 
(training) data but also on out of sample (test) data [20]. Due to this reason immense care is 
required while choosing the number of input and hidden neurons. However, it is a difficult task 
as there is no theoretical guidance available for the selection of these parameters and often 
experiments, such as cross-validation are conducted for this purpose [3, 8].  

Another major problem is that an inadequate or large number of network parameters may 
lead to the overtraining of data [2, 11]. Overtraining produces spuriously good within-sample fit, 
which does not generate better forecasts. To penalize the addition of extra parameters some 
model comparison criteria, such as AIC and BIC can be used [11, 13]. Network Pruning [13] and 
MacKay’s Bayesian Regularization Algorithm [11, 20] are also quite popular in this regard. 
 
In summary we can say that NNs are amazingly simple though powerful techniques for time 
series forecasting. The selection of appropriate network parameters is crucial, while using NN for 
forecasting purpose. Also a suitable transformation or rescaling of the training data is often 
necessary to obtain best results. 
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Chapter-5   
Time Series Forecasting Using Support Vector Machines 
 
5.1 Concept of Support Vector Machines 

Till now, we have studied about various stochastic and neural network methods for time 
series modeling and forecasting. Despite of their own strengths and weaknesses, these methods 
are quite successful in forecasting applications.  Recently, a new statistical learning theory, viz. 
the Support Vector Machine (SVM) has been receiving increasing attention for classification 
and forecasting [18, 24, 30, 31]. SVM was developed by Vapnik and his co-workers at the AT 
& T Bell laboratories in 1995 [24, 29, 33]. Initially SVMs were designed to solve pattern 
classification problems, such as optimal character recognition, face identification and text 
classification, etc. But soon they found wide applications in other domains, such as function 
approximation, regression estimation and time series prediction problems [24, 31, 34]. 

Vapnik’s SVM technique is based on the Structural Risk Minimization (SRM) principle 
[24, 29, 30]. The objective of SVM is to find a decision rule with good generalization ability 
through selecting some particular subset of training data, called support vectors [29, 31, 33]. In 
this method, an optimal separating hyperplane is constructed, after nonlinearly mapping the 
input space into a higher dimensional feature space. Thus, the quality and complexity of SVM 
solution does not depend directly on the input space [18, 19].  

Another important characteristic of SVM is that here the training process is equivalent to 
solving a linearly constrained quadratic programming problem. So, contrary to other networks’ 
training, the SVM solution is always unique and globally optimal. However a major 
disadvantage of SVM is that when the training size is large, it requires an enormous amount of 
computation which increases the time complexity of the solution [24]. 
 
Now we are going to present a brief mathematical discussion about SVM concept. 
   
5.2 Introduction to Statistical Learning Theory 

Vapnik’s statistical learning theory is developed in order to derive a learning technique 
which will provide good generalization. According to Vapnik [33] there are three main 
problems in machine learning, viz. Classification, Regression and Density Estimation. In all 
these cases the main goal is to learn a function (or hypothesis) from the training data using a 
learning machine and then infer general results based on this knowledge. 
In case of supervised learning the training data is composed of pairs of input and output 

variables. The input vectors nX ℜ⊆∈x and the output points .ℜ⊆∈Dy  The two sets X  and 

D  are respectively termed as the input space and output space [29, 33]. { } { }1,0 or1,1−=D  for 

binary classification problem and ℜ=D  for regression problem. 
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In case of unsupervised learning the training data is composed of only the input vectors. Here 
the main goal is to infer the inherent structure of the data through density estimation and 
clustering technique. 
The training data is supposed to be generated from an i.i.d process following an unknown 
distribution ),( yP x defined on the set .DX ×  An input vector is drawn from X  with the 

marginal probability )(xP and the corresponding output point is observed in D  with the 

conditional probability ).( xyP   

 

 
Fig. 5.1: Probabilistic mapping of input and output points 

 
After these descriptions, the learning problem can be visualized as searching for the 
appropriate estimator function DXf →:  which will represent the process of output 

generations from the input vectors [29, 33]. This function then can be used for generalization, 
i.e. to produce an output value in response to an unseen input vector. 
 
5.3 Empirical Risk Minimization (ERM) 

We have seen that the main aim of statistical learning theory is to search for the most 
appropriate estimator function DXf →:  which maps the points of the input space X  to the 

output space .D  Following Vapnik and Chervonenkis (1971) first a Risk Functional is defined 
on DX ×  to measure the average error occurred among the actual and predicted (or classified) 
outputs due to using an estimator function .f  Then the most suitable estimator function is 

chosen to be that function which minimizes this risk [29, 30, 33].  
Let us consider the set of functions { }),( wxfF =  that map the points from the input space 

nX ℜ⊆  into the output space ℜ⊆D  where w  denotes the parameters defining .f  Also 

)(xP  )( xyP  

Input Space X  Output Space D  



 - 33 -

suppose that y  be the actual output point corresponding to the input vector .x  Now if 

)),(,( wxfyL measures the error between the actual value y and the predicted value ),( wxf for 

using the prediction function f then the Expected Risk is defined as [29, 33]: 

∫= ),()),(,()( ydPfyLfR xwx                                                                       (5.1) 

Here ),( yP x is the probability distribution followed by the training data. )),(,( wxfyL  is 

known as the Loss Function and it can be defined in a number of ways [24, 29, 30]. 
The most suitable prediction function is the one which minimizes the expected risk )( fR  and 

is denoted by .0f  This is known as the Target Function. The main task of learning problem is 

now to find out this target function, which is the ideal estimator. Unfortunately this is not 
possible because the probability distribution ),( yP x of the given data is unknown and so the 

expected risk (5.1) cannot be computed. This critical problem motivates Vapnik to suggest the 
Empirical Risk Minimization (ERM) principle [33].   
The concept of ERM is to estimate the expected risk )( fR by using the training set. This 

approximation of )( fR  is called the empirical risk. For a given training set{ }ii y,x , where 

),...,3,2,1(, NiDyX i
n

i =∀ℜ⊆∈ℜ⊆∈x  the empirical risk is defined as [29, 33]:  
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The empirical risk )( fRemp  has its own minimizer in F , which can be taken as .f̂  The goal of 

ERM principle is to approximate the target function 0f  by .f̂  This is possible due to the result 

that )( fR  infact converges to )( fRemp  when the training size N  is infinitely large [33]. 

 
5.4 Vapnik-Chervonenkis (VC) Dimension 

The VC dimension h  of a class of functions F  is defined as the maximum number of 
points that can be exactly classified (i.e. shattered) by F [29, 33]. So mathematically [1, 33]: 

{ }{ }.1that such,1,1that such,,max iii
Xn b)f(xN),i(XxFfbXXh =≤≤∈∀∈∃−∈∀ℜ⊆=  

The VC dimension is infact a measure of the intrinsic capacity of a class of functions F . It is 

proved by Burges in 1998 [1] that the VC dimension of the set of oriented hyperplanes in nℜ  
is )1( +n . Thus three points labeled in eight different ways can always be classified by a linear 

oriented decision boundary in 2ℜ  but four points cannot. Thus VC dimension of the set of 

oriented straight lines in 2ℜ  is three. For example the XOR problem [29] cannot be realized 
using a linear decision boundary. However a quadratic decision boundary can correctly classify 
the points in this problem. This is shown in the figures below:   
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(a) The linearly non-separable                                (b) A quadratic decision boundary 

           XOR problem                                                             classifying the XOR problem 
 

Fig. 5.2: The two-dimensional XOR problem 
 

5.5 Structural Risk Minimization (SRM) 
The crucial shortcoming of ERM principle is that in practice we always have a finite set of 

observations and so it cannot be guaranteed that the estimator function minimizing the 
empirical risk over F  will also minimize the expected risk. To deal with this issue the SRM 
principle was developed by Vapnik and Chervonenkis in 1982 [33]. The key result motivating 
this principle is that the difference between the empirical and expected risk can be bounded in 
terms of the VC dimension of the class F  of estimator functions. Below we present the 
corresponding mathematical theorem for { }1,0  binary classification problem [29]: 

Theorem: Let F  be a class of estimator functions of VC dimension .h  Then for any 

sample{ }ii y,x , where ),...,3,2,1(, NiDyX i
n

i =∀ℜ⊆∈ℜ⊆∈x drawn from any distribution 

),( yP x the following bound holds true with probability )10(1 ≤≤− ηη : 
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The second term on the right is said to be the VC Confidence and η−1  is called the Confidence Level.  

 
Equation (4.3) is the main inspiration behind the SRM principle. It suggests that to achieve a 
good generalization one has to minimize the combination of the empirical risk and the 
complexity of the hypothesis space. In other words one should try to select that hypothesis 
space which realizes the best trade-off between small empirical error and small model 
complexity. This concept is similar to the Bias-Variance Dilemma of machine learning [29]. 
 

(0, 0) 
Class -1 

(1, 0) 
Class 1 

(1, 1) 
Class -1 

(0, 1) 
Class 1 

(0, 0) 
Class -1 

(1, 0) 
Class 1 

(1, 1) 
Class -1 

(0, 1) 
Class 1 



 - 35 -

5.6 Support Vector Machines (SVMs) 
The main idea of SVM when applied to binary classification problems is to find a 

canonical hyperplane which maximally separates the two given classes of training samples [18, 

24, 29, 31, 33]. Let us consider two sets of linearly separable training data points in nℜ  which 

are to be classified into one of the two classes 21  and CC  using linear hyperplanes, (i.e. 

straight lines). From an infinite number of separating hyperplanes the one with maximum 
margin is to be selected for best classification and generalization [29, 33]. Below we present a 
diagrammatic view of this concept:  
 

                 
(a) Infinite number of linearly        (b) The maximum margin hyperplane 

separating hyperplanes   
                                                                   

Fig. 5.3: Support vectors for linearly separable data points 
 
In Fig.4.3(a) it can be seen that there are an infinite number of hyperplanes, separating the 

training data points. As shown in Fig.4.3(b), −+ dd  and  denote the perpendicular distances 

from the separating hyperplane to the closest data points of 21  and CC  respectively. Then 

either of the distances −+ dd or   is termed as the margin and the total margin is 

 .−+ += ddM For accurate classification as well as best generalization, the hyperplane which 

maximizes the total margin is considered as the optimal one and is known as the Maximum 

Margin Hyperplane [29, 33]. Offcourse for this optimal hyperplane ].29[−+ = dd  The data 

points from either of the two classes which are closest to the maximum margin hyperplane are 
known as Support Vectors [29, 33]. In Fig.4.3(b) π  denotes the optimal hyperplane and 
circulated data points of both the classes represent the support vectors.  

Class 2C  

Class  1C  

π

+d  

−d  

Class  2C  

Class  1C  
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Let us consider that the training set is composed of the input-output pairs { }N
iii y 1, =x , where 

{ }.1,1, −∈ℜ∈ i
n

i yx  The goal is to classify the data points into two classes by finding a 

maximum margin canonical hyperplane. The hypothesis space is the set of functions 

)sgn(),,( bbf T += xwwx  where w  is the weight vector, nℜ∈x  and b  is the bias term. The 

set of separating hyperplanes is given by { }., where,0: ℜ∈ℜ∈=+ℜ∈ bb nTn wxwx  Using 

SVM the problem of finding the maximum margin hyperplane reduces to solving a non-linear 
convex quadratic programming problem (QPP) [29, 32, 33]. 
 
SVM for Linearly Separable Data 
For linearly separable data the corresponding quadratic optimization problem is [18, 29, 33]: 
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To solve the QPP (5.4) it is conveniently transformed to the dual space. Then Lagrange 
multipliers and Kühn-Tucker complimentary conditions are used to find the optimal solution. 
Let us consider that the solution to the QPP yields the optimized Lagrange multipliers 

),...,2,1(0where,),...,,( 21 Nii
T

N =∀≥= ααααα  and the optimal bias .optb  The data vectors 

for which 0>iα  are the support vectors and suppose that there are total sN  support vectors. 

Then the optimal weight vector can be written as [29, 33]: 
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The optimal hyperplane decision function is given by [29, 33]: 
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An unknown data is classified in either of the two classes according as the sign of ).(xy  

 
SVM for Non-linearly Separable Data 
In practical applications often the training data points are not linearly separable; as an example 
we can take the XOR classification problem. In such cases a Soft Margin Hyperplane [29] 
classifier is constructed. The corresponding QPP is given by [18, 29, 33]: 
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Here the slack variables iξ  are introduced to relax the hard-margin constraints and 0>C  is 

the regularization constant which assigns a penalty to misclassification. Again (4.7) represents 
a QPP and its solution can be found by applying Lagrange multipliers and Kühn-Tucker 
conditions. The optimal weight vector and decision function is similar to those in the linearly 
separable case. The only difference is that in this case the Lagrange multipliers have an upper 
bound on CC i ≤≤ α0 i.e.,  and for support vectors .0 Ci ≤< α  

  
5.7 Support Vector Kernels  

In SVM applications it is convenient to map the points of the input space to a high 
dimensional Feature Space through some non-linear mapping [18, 19, 29] and the optimal 
separating hyperplane is constructed in this new feature space. This method also resolves the 
problem where the training points are not separable by a linear decision boundary. Because by 
using an appropriate transformation the training data points can be made linearly separable in 
the feature space. A pictorial view of this idea can be obtained from Fig. 4.4:  
 

 
 

Fig. 5.4: Non-linear mapping of input space to the feature space 
 

In Fig. 4.4, the data points of the input space nX ℜ⊆  are mapped to the feature space H  

using the nonlinear mapping .: HX →ϕ  Due to this transformation, the linearly non-

separable input points can now be separated by a linear decision boundary fπ  in the feature 

space. The corresponding linear decision function in H can be written as [18, 29, 33]: 
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Now if we can find a function )()(),( j
T

ijiK xxxx ϕϕ= then it can be directly used in the 

SVM training equations, without even knowing about the mapping ).(xϕ  This function K  is 

known as the Kernel Function [18, 29, 30, 34]. To avoid the explicit computation of the non-
linear mapping ),(xϕ  the associated kernel function must satisfy the Mercer’s Condition [29, 

30, 34]. Below we present some well known kernels used in SVM literature: 

• The Linear Kernel [34] .),( yxyx TK =  

• The Polynomial Kernel [29, 34] ( ) .1),( dTK yxyx +=   

• The Radial Basis Function (RBF) Kernel [29, 34] ( ).2exp),( 22 σyxyx −−=K  

• The Neural Network Kernel [29] ( ) constants.are,  wheretanh),( babaK T += yxyx  

 
5.8 SVM for Regression (SVR) 

We have briefly discussed about the SVM techniques used for classification. To use SVM 
for regression problem Vapnik derived a generalized method [29, 30, 33] which we shall 
present here in short. Except the outputs ℜ∈iy  all other variables will have the same meaning 

as in case of the classification problems. 
In SVR, Vapnik used the ε -insensitive loss function defined by [19, 24, 29, 30, 33]: 
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Then as usual the empirical risk to be minimized is given by: 
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The associated QPP can be written as [18, 23, 28, 29, 32]: 
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To get the solution of (5.11) two sets of Lagrange multipliers are used which are 

.,0 where),...,,( and),...,,( ***
2

*
1

*
21 Cii

T
N

T
N ≤≤== αααααααα αα  For support vectors 

.,0 * Cii ≤< αα  Finally, the optimal decision hyperplane is obtained as [19, 24, 30, 33]:  
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During the past few years extensive research works have been carried out towards the 
application of SVM for time series forecasting. As a result many different SVM forecasting 
algorithms have been derived. Some of them are the Critical Suppot Vector Machine (CSVM) 
[31] algorithm, the Least Square Support Vector Machine (LS-SVM) [18] algorithm and its 
variants, viz. the Recurrent Least Square Support Vector Machine [19], the Dynamic Least 
Square Support Vector Machine (DLS-SVM) [34] etc. We are now going to present the 
celebrated DLS-SVM algorithm developed by Y. Fan et al., 2006 [34] for time series 
forecasting. Before that we shall give an overview of the LS-SVM technique.  
 
5.9 The LS-SVM Method 

An LS-SVM formulation employs the equality constraints and a sum-squared error (SSE) 
cost function, instead of quadratic program in traditional SVM. Consider a training data set of 

N points { }N
iii y 1, =x  with input data n

i ℜ∈x  and the response ℜ∈iy . Then we have the 

optimization problem [18, 19, 32, 34]: 
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Here ϕ  is the non-linear mapping to a higher dimensional space and γ  is the regularization 

parameter. The RBF kernel ( )22 2exp),( σyxyx −−=K with the tuning parameter σ  can be 

employed, which satisfies the Mercer’s condition [29, 30, 34]. The primal space model of the 
optimization problem (5.13) is given by: 

by T += )(xw ϕ                                                                                              (5.14)                   

For computational simplicity and avoiding the case of infinite dimensionality of the weight 
vector w  the optimization operations are performed in the dual space [18, 19, 34]. 
The Lagrangian for the problem (5.13) is given by [34]: 
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Here [ ] ),...,2,1(0where,,...,, 21 Nii
T

N =∀≥= ααααα  are the Lagrange multipliers. 

 
Applying the conditions of optimality, one can compute the partial derivatives of L  with 
respect to ,,,, kkeb αw  equate them to zero and finally eliminating w and ke  obtain the 

following linear system of equations [18, 19, 34]: 
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Here [ ] [ ] ),...,2,1,(),(),(with   and1,...,1,11,,...,, 21 Njikjiyyyy jiN =∀=Ω== xxΩ  is the 

kernel matrix. The LS-SVM decision function is thus given by [18, 19, 34]: 
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Here b,α are the solutions of the linear system (5.16). 

The main benefit of the LS-SVM technique is that it transforms the traditional QPP to a 
simultaneous linear system problem, thus ensuring simplicity in computations, fast convergence 
and high precision [18, 34]. 
 
5.10 The DLS-SVM Method  

DLS-SVM [34] is the modified version of the LS-SVM and is suitable for real time 
system recognition and time series forecasting. It employs the similar concept but different 
computation method than the recurrent LS-SVM [19]. The key feature of DLS-SVM is that it 
can track the dynamics of the nonlinear time-varying systems by deleting one existing data 
point whenever a new observation is added, thus maintaining a constant window size. Keeping 
in mind the LS-SVM formulation just discussed, let us consider that [34]: 
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Now for solving (5.16) we need 1−
NQ  which is to be computed efficiently. When a new 

observation is to be added to the existing training set then NQ  becomes [34]: 
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To save computation time, matrix inversion lemma is applied to calculate 1
1

−
+NQ  as [34]: 
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Here .1
1

1
*

1 +
−

++ −= NN
T
NNk kQkρ  With the above recursion equation, all direct matrix inversions 

are eliminated. To use the relation (5.20) we only need to know ,1−
NQ  which is obtained during 

the solution of (5.16). 
When a new data point is added while forecasting then Pruning [34] is applied to get rid of the 
first point and replace it with the new input vector. To remove the first point from the training 

dataset it is assumed that the new data point has just been added and 1
1

−
+NQ  is already known. 

Now rearrange the training dataset as [ ]1132 ,,...,, xxxx +N  and get the matrix:  
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We notice that the difference between 1+NQ  and 1+NQ
)

 is only the order of rows and columns 

and so is 1
1

−
+NQ  and .1

1
−
+NQ

)
 Thus adjusting the element positions of 1

1
−
+NQ  the matrix 1

1
−
+NQ

)
 can 

be obtained and then again by matrix inversion lemma [34]: 
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Then using (5.20) and (5.22), one can compute [34]: 
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Now we can again compute b andα from (5.16) with 1−
NQ

)
 and repeat the steps of pruning until 

all the data points are exhausted. In this way the DLS-SVM method can be applied for real 
time series forecasting with efficiency and reduced computation time. A working algorithm for 
using DLS-SVM for forecasting is given in [34]. 
 
 
We shall now conclude this chapter after touching an important point. The success of SVM to 
produce a close forecast depends a lot on the proper selection of the hyper-parameters such as 
the kernel parameter ,σ  the regularization constant ,γ  the SVR constant ,ε  etc. An improper 

choice of these parameters may result in totally ridiculous forecast. As there is no structured 
way to choose the best hyper-parameters in advance so in practical applications, techniques 
like cross-validation [24, 34] or Bayesian inference [34] are used. However it should be noted 
that the values of the optimal hyper-parameters selected in advance could vary afterwards due 
to different characteristics of future observations [24].  
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Chapter-6   
Forecast Performance Measures  
 
6.1 Making Real Time Forecasts: A Few Points  

In the previous three chapters, we have studied various useful and popular techniques for 
time series forecasting. The next important issue is offcourse implementation, i.e. to apply 
these methods for generating forecasts. While applying a particular model to some real or 
simulated time series, first the raw data is divided into two parts, viz. the Training Set and Test 
Set. The observations in the training set are used for constructing the desired model. Often a 
small subpart of the training set is kept for validation purpose and is known as the Validation 
Set. Sometimes a preprocessing is done by normalizing the data or taking logarithmic or other 
transforms. One such famous technique is the Box-Cox Transformation [23]. Once a model is 
constructed, it is used for generating forecasts. The test set observations are kept for verifying 
how accurate the fitted model performed in forecasting these values. If necessary, an inverse 
transformation is applied on the forecasted values to convert them in original scale. In order to 
judge the forecasting accuracy of a particular model or for evaluating and comparing different 
models, their relative performance on the test dataset is considered. 

Due to the fundamental importance of time series forecasting in many practical situations, 
proper care should be taken while selecting a particular model. For this reason, various 
performance measures are proposed in literature [3, 7, 8, 9, 24, 27] to estimate forecast 
accuracy and to compare different models. These are also known as performance metrics [24]. 
Each of these measures is a function of the actual and forecasted values of the time series. 
 
In this chapter we shall describe few important performance measures which are frequently 
used by researchers, with their salient features. 
 
6.2 Description of Various Forecast Performance Measures 

Now we shall discuss about the commonly used performance measures and their 

important properties. In each of the forthcoming definitions, ty  is the actual value, tf  is the 

forecasted value, ttt fye −=  is the forecast error and n  is the size of the test set. Also, 
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1σ is the test variance.  

 
6.2.1 The Mean Forecast Error (MFE) 

This measure is defined as [24] MFE = .1
1
∑
=

n

t
te

n
 The properties of MFE are: 
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• It is a measure of the average deviation of forecasted values from actual ones. 

• It shows the direction of error and thus also termed as the Forecast Bias. 

• In MFE, the effects of positive and negative errors cancel out and there is no way to 
know their exact amount. 

• A zero MFE does not mean that forecasts are perfect, i.e. contain no error; rather it only 
indicates that forecasts are on proper target. 

• MFE does not panelize extreme errors. 

• It depends on the scale of measurement and also affected by data transformations. 

• For a good forecast, i.e. to have a minimum bias, it is desirable that the MFE is as close 
to zero as possible. 

 
6.2.2 The Mean Absolute Error (MAE)  

The mean absolute error is defined as [3, 7, 9, 24] MAE = .1
1
∑
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n

t
te

n
 Its properties are: 

• It measures the average absolute deviation of forecasted values from original ones. 

• It is also termed as the Mean Absolute Deviation (MAD). 

• It shows the magnitude of overall error, occurred due to forecasting. 

• In MAE, the effects of positive and negative errors do not cancel out. 

• Unlike MFE, MAE does not provide any idea about the direction of errors. 

• For a good forecast, the obtained MAE should be as small as possible. 

• Like MFE, MAE also depends on the scale of measurement and data transformations.  

• Extreme forecast errors are not panelized by MAE. 
 

6.2.3 The Mean Absolute Percentage Error (MAPE)  

This measure is given by [3, 24] MAPE = .1001
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 Its important features are: 

• This measure represents the percentage of average absolute error occurred.  

• It is independent of the scale of measurement, but affected by data transformation. 

• It does not show the direction of error. 

• MAPE does not panelize extreme deviations. 

• In this measure, opposite signed errors do not offset each other. 
 
6.2.4 The Mean Percentage Error (MPE)  

It is defined as [27] MPE = .1001
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• MPE represents the percentage of average error occurred, while forecasting. 

• It has similar properties as MAPE, except, 

• It shows the direction of error occurred. 

• Opposite signed errors affect each other and cancel out. 

• Thus like MFE, by obtaining a value of MPE close to zero, we cannot conclude that the 
corresponding model performed very well. 

• It is desirable that for a good forecast the obtained MPE should be small. 
 

6.2.5 The Mean Squared Error (MSE)  

Mathematical definition of this measure is [3, 8] MSE = .1
1

2∑
=

n

t
te

n
 Its properties are: 

• It is a measure of average squared deviation of forecasted values. 

• As here the opposite signed errors do not offset one another, MSE gives an overall idea 
of the error occurred during forecasting. 

• It panelizes extreme errors occurred while forecasting. 

• MSE emphasizes the fact that the total forecast error is in fact much affected by large 
individual errors, i.e. large errors are much expensive than small errors. 

• MSE does not provide any idea about the direction of overall error. 

• MSE is sensitive to the change of scale and data transformations. 

• Although MSE is a good measure of overall forecast error, but it is not as intuitive and 
easily interpretable as the other measures discussed before. 

 

6.2.6 The Sum of Squared Error (SSE)  

It is mathematically defined as [3] SSE = .
1

2∑
=

n

t
te  

• It measures the total squared deviation of forecasted observations, from the actual values.  

• The properties of SSE are same as those of MSE. 
 

6.2.7 The Signed Mean Squared Error (SMSE)  

This measure is defined as [24] SMSE = .1
1
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 Its salient features are: 

• It is same as MSE, except that here the original sign is kept for each individual squared error. 

•  SMSE panelizes extreme errors, occurred while forecasting. 

• Unlike MSE, SMSE also shows the direction of the overall error. 
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• In calculation of SMSE, positive and negative errors offset each other. 

• Like MSE, SMSE is also sensitive to the change of scale and data transformations. 

 
6.2.8 The Root Mean Squared Error (RMSE)  

Mathematically, RMSE [7, 9] = .1MSE
1

2∑
=

=
n

t
te

n
 

• RMSE is nothing but the square root of calculated MSE. 

• All the properties of MSE hold for RMSE as well. 
 

6.2.9 The Normalized Mean Squared Error (NMSE)  

This measure is defined as [24] NMSE = .1MSE
1

2
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=
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t
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nσσ
 Its features are: 

• NMSE normalizes the obtained MSE after dividing it by the test variance. 

• It is a balanced error measure and is very effective in judging forecast accuracy of a model. 

• The smaller the NMSE value, the better forecast.  

• Other properties of NMSE are same as those of MSE.  

 
6.2.10 The Theil’s U-statistics  

This important measure is defined as [9] U = .
11
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 Its properties are: 

• It is a normalized measure of total forecast error. 

• fit.perfectameans0U;1U0 =≤≤  

• This measure is affected by change of scale and data transformations. 

• For assessing good forecast accuracy, it is desirable that the U-statistic is close to zero. 
 
We have discussed ten important measures for judging forecast accuracy of a fitted model. Each 
of these measures has some unique properties, different from others. In experiments, it is better 
to consider more than one performance criteria. This will help to obtain a reasonable knowledge 
about the amount, magnitude and direction of overall forecast error. For this reason, time series 
analysts usually use more than one measure for judgment. The next chapter will demonstrate the 
application of some of these performance measures, in our experimental results.      
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Chapter-7   
Experimental Results 
 
7.1 A Brief Overview 

Perhaps this is the chapter for which the reader is most eagerly waiting. After gaining a 
reasonable knowledge about time series modeling and forecasting from the previous chapters, 
we are now going to implement them on practical datasets. 

In this current book, till now we have considered six time series, taken from various 
sources and research works. All the associated programs are written in MATLAB. To judge 
forecast performances of different methods, the measures MAD, MSE, RMSE, MAPE and 
Theil’s U-statistics are considered. For each dataset, we have presented our obtained results in 
tabular form. Also in this chapter we have used the term Forecast Diagram to mean the graph 
showing the test (actual) and forecasted data points. In each forecast diagram, the solid and 
dotted line respectively represents the actual and forecasted observations. 

In all the experiments we have used the RBF kernel for SVM training. Crossvalidation is 
applied to determine the optimum values of ,and,, NnCσ  where Nn and  are respectively 

the dimension and number of input vectors with ( )Nn+  being the size of the training set. The 

experiments involving all the techniques except SVM are iterated a large number of times. 
Also rescaling and data transformations are used to some of the datasets.  
 
7.2 The Canadian Lynx Dataset 
 

 

Fig. 7.2.1: Canadian lynx data series (1821-1934) 
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The lynx series shown in Fig. 7.2.1 contains the number of lynx trapped per year in the 
MacKenzie River district of Northern Canada from 1821 to 1934. It has been extensively 
studied by time series analysts like G. P. Zhang [8] and M. J. Campbell et al. [26].  
The lynx dataset has total 114 observations. Out of these the first 100 are considered for 
training and the remaining 14 for testing. An AR model of order 12 has been found to be the 
most parsimonious ARIMA model for this series [8]. Below we have shown the sample ACF 
and PACF plots for the lynx data series. 
 

 
Fig. 7.2.2: Sample ACF plot for lynx series 

 
 

 
Fig. 7.2.3: Sample PACF plot for lynx Series 
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Following Hipel and McLeod [23], we have considered the ACF and PACF values up to lag 25, 
i.e. one-fourth of the training size and 95% confidence level. From these plots we can determine 
the type and order of the adequate model required to fit the series. Moreover as the ACF values 
attenuate rapidly for increasing lags, we can assume that the lynx series is stationary. Later this 
fact is also justified by the unit root test.  
Similar to [8, 26] we have transformed the lynx series using logarithms to the base 10. Then we 
have employed AR(12), ARMA(12, 9), ANN and SVM to the series. Following G. P. Zhang [8], 
a 157 ××  ANN structure is used. Though the fitted ARMA(12, 9) model is not parsimonious, 
but still it generates good forecasts, as can be seen from Table 7.2. Also in this table, for SVM 
we have given in bracket the optimal hyper-parameter values found by crossvalidation. 
 
The performance measures obtained for the lynx series are shown in Table 7.2: 
 

Table 7.2: Forecast results for Canadian lynx time series  

 
Method 

 

 
MSE 

 
MAD 

 
RMSE 

 
MAPE 

 
Theil’s U 
Statistics 

 
AR(12) 

 
0.005123

 
0.058614

 
0.071577

 
1.950160% 

 
0.007479 

 
ARMA(12,9) 

 
0.016533

 
0.096895

 
0.128581

 
3.409039% 

 
0.013402 

 
ANN 

 
0.012659

 
0.066743

 
0.112512

 
2.392407% 

 
0.017836 

 
SVM 

⎟⎟
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⎞
⎜⎜
⎝

⎛
==

==
97,3

,4126.1,8493.0
Nn

Cσ
 

 
0.052676

 
0.173318

 
0.229513

 
5.811812% 

 
0.023986 

 
It can be seen from the above table that the best performance is obtained by using AR(12) 
model. The four forecast diagrams for lynx series are shown in Fig. 7.2.4.   
  

                  
(a) AR(12) forecast diagram         (b) ARMA(12, 9) forecast diagram 
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(c) ANN forecast diagram                   (d) SVM forecast diagram 

 

Fig. 7.2.4: Forecast diagrams for lynx series 
 

The four forecast diagrams presented in Fig. 7.2.4 are corresponding to the transformed lynx 
series. The good forecasting performance of the fitted AR(12) model can be visualized from 
Fig. 7.2.4 (a) as the two graphs are very close to each other. 
 
7.3 The Wolf’s Sunspot Dataset 
 

 

Fig. 7.3.1: Wolf’s sunspot data series (1700-1987) 

 
The Wolf’s sunspot series shown in Fig. 7.3.1 represents the annual number of sunspots from 
1700 to 1987 [8]. This data series is considered as non-linear and it has important practical 
applications in many domains, such as geophysics, environmental science and climatology [8]. 
From Fig. 7.3.1 it can be seen that the sunspot series has a mean cycle of about 11 years. 
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The sunspot dataset has a total of 288 observations, from which the first 221 (i.e. 1700 to 
1920) are used for training and the remaining 67 (i.e. 1921 to 1987) for testing. An AR(9) 
model has been found to be the most parsimonious ARIMA model for this series [8].  The 
sample ACF and PACF plots with 95% confidence level for the sunspot series are shown in 
the two figures below: 
 
 

 

Fig. 7.3.2: Sample ACF plot for sunspot series 

 
 

 

Fig. 7.3.3: Sample PACF plot for sunspot series 
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The sunspot series follows stationary behavior, which can be seen from the above two plots. 
We have also analytically verified this fact by unit root test. The models we have fitted to the 
sunspot series are AR(9), ANN (a 144 ××  structure) and SVM.  
 
The obtained performance measures for the sunspot series are shown in the Table 7.3: 
 

Table 7.3: Forecast results for sunspot series  

 
Method 

 

 
MSE 

 
MAD 

 
RMSE 

 
MAPE 

 
Theil’s U 
Statistics 

 
AR(9) 

 
483.561260

 
17.628101

 
21.990026

 
60.042080% 

 
0.003703 

 
ANN 

 
334.173011

 
13.116898

 
18.280400

 
30.498342% 

 
0.003315 

 
SVM 
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792.961254

 
18.261674

 
28.159568

 
40.433136% 

 
0.004236 

 
From the above table we can see that the forecasting performance of ANN is best in our 
experiments for the sunspot series. We have transformed the series in the range [1 2] while 
fitting ANN model and in the range [100 400] while fitting SVM model to achieve good 
forecast results. The optimal SVM hyper-parameters obtained by crossvalidation for the 
transformed sunspot series are shown in Table 7.3. The three forecast diagrams for the sunspot 
series are shown in the figures below:  
 

 

(a) AR(9) forecast diagram 



 - 52 -

 

(b) ANN forecast diagram 

 

 

(c) SVM forecast diagram 

Fig. 7.3.4: Forecast diagrams for sunspot series 

 
From the three forecast diagrams presented in Fig. 7.3.4, we can have a graphical comparison 
between the actual and forecasted observations for the sunspot series, obtained by using three 
different techniques. It can be seen that in Fig. 7.3.4 (b) the ANN forecasted series closely 
resembles with the original one. However in case of SVM prediction a significant deviation 
between the forecasted and test values can be seen from Fig. 7.3.4 (c). 
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7.4 The Airline Passenger Dataset 
 

 

Fig. 7.4.1: Airline passenger data series (Jan. 1949-Dec. 1960) 

 
The airline passenger series, shown in Fig. 7.4.1 represents the monthly total number of 
international airline passengers (in thousands) from January 1949 to December 1960 [3, 11, 13].  
It is a famous time series and is used by many analysts including Box and Jenkins [6]. The 
important characteristic of this series is that it follows a multiplicative seasonal pattern with an 
upward trend, as can be seen from Fig. 7.4.1. The airline passenger series has total 144 
observations, out of which we have used the first 132 for training and the remaining 12 for 
testing. Due to the presence of strong seasonal variations, the airline data is non-stationary. This 
can also be clarified from its sample ACF and PACF plots, as given below: 
 

 

Fig. 7.4.2: Sample ACF plot for airline series 
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 Fig. 7.4.3: Sample PACF plot for airline series 

 
Fig. 7.4.2 shows that there are significantly large sample ACF values at the increasing lags, 

which do not diminish quickly. This indicates the non-stationarity of the airline data [6, 23]. Box 

et al. [6] used natural logarithmic transformation and seasonal differencing to remove non-

stationarity from the series. Then they have fitted the 12)1,1,0()1,1,0(SARIMA ×  model, which 

according to them is the best stochastic model for the airline data. Due to this reason 
12)1,1,0()1,1,0(SARIMA ×  is often termed as the Airline Model [11]. Faraway and Chatfield 

[11] used thirteen different ANN structures to the airline data and compared the results obtained. 

Also C. Hamzacebi in 2008 [3] experimented by fitting three SANN models to this data. 

 

In this work we have fitted three different ANN, three SANN, 12)1,1,0()1,1,0(SARIMA ×  and 

SVM models to the airline data. Following Box et al. [6] we have also used natural logarithmic 

transformation and seasonal differencing to the data for fitting the SARIMA model. Also 

following C. Hamzacebi [3] and Faraway et al. [11] we have rescaled the data after dividing by 

100 for fitting ANN and SANN models. However for fitting the SVM model we have used the 

original airline data.  

 

The forecast performance measures, we obtained for the airline data by using the above 

mentioned models are presented in Table 7.4. As usual the optimal SVM hyper-parameters are 

shown in bracket in this table. These measures are calculated using the untransformed test and 

forecasted observations. 
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Table 7.4: Forecast results for airline passenger time series  

 
Method 

 

 
MSE 

 
MAD 

 
RMSE 

 
MAPE 

 
Theil’s U 
Statistics 

 
12)1,1,0()1,1,0(SARIMA ×  

 
189.333893 

 
10.539463

 
13.759865

 
2.244234% 

 
0.000060 

 
ANN (1, 12; 2) 

 
285.633562 

 
15.225263

 
16.900697

 
3.234460% 

 
0.000074 

 
ANN (1, 2, 12; 2) 

 
248.794863 

 
14.159554

 
15.773232

 
3.025739% 

 
0.000068 

 
ANN (1, 12 13; 2) 

 
2532.238561

 
41.438166

 
50.321353

 
8.454268% 

 
0.000232 

 
SANN (1 hidden node) 

 
676.481142 

 
24.311987

 
26.009251

 
5.138674% 

 
0.000118 

 
SANN (2 hidden nodes) 

 
275.720525 

 
11.888831

 
16.604834

 
2.486088% 

 
0.000071 

 
SANN (3 hidden nodes) 

 
556.054822 

 
17.693719

 
23.580815

 
3.624587% 

 
0.000098 

 
SVM 
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176.885301 

 
10.849932

 
13.299823

 
2.336608% 

 
0.000057 

         
From Table 7.4 we can see that SARIMA and SVM generated quite good forecasts for the 
airline data. Except MAD, all other performance measures obtained by SVM are least relative 
to the other applied models. ANN (1, 12; 2), ANN (1, 2, 12; 2) and SANN with 2 hidden nodes 
also produced reasonably well forecasts.  
 

Below we present the four forecast diagrams obtained using ,)1,1,0()1,1,0(SARIMA 12×  ANN 

(1, 2, 12; 2), SANN (2 hidden nodes) and SVM for the airline data:  
 

          
(a) SARIMA forecast diagram         (b) ANN (1, 2, 12; 2) forecast diagram 
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(c) SANN forecast diagram                   (d) SVM forecast diagram 

 

Fig. 7.4.4: Forecast diagrams for airline passenger series 
 
The four forecast diagrams in Fig. 7.4.4 shows the success of our applied techniques to 
produce forecasts for the airline data. In particular Fig. 7.4.4 (d) depicts the excellent 
forecasting performance of SVM for this dataset. 
 
7.5 The Quarterly Sales Dataset 
 

 

Fig. 7.5.1: Quarterly sales time series (for 6 years) 

 
Fig. 7.5.1 represents the quarterly export data of a French firm for six years [3]. It is a non-
stationary seasonal time series (with seasonal period 4) and was used by C. Hamzacebi [3] to 
assess the performance of SANN for quarterly data. This dataset has total 24 observations. 
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Following C. Hamzacebi [3] we have kept the first five years observations from the quarterly 
sales dataset for training and the sixth year observations for testing. We have fitted the 

4)1,1,0()1,1,0(SARIMA ×  model to the quarterly sales series after making natural logarithmic 

transformation and seasonal differencing. We have also fitted three SANN models (varying the 
number of hidden nodes to 1, 2 and 3) and the SVM model to this data. For fitting the SANN 
models we have used the rescaled quarterly sales data, obtained after diving by 100; for fitting 
the SVM model we have used the original data.  
 
Our obtained forecast performance measures, calculated on original scale for the quarterly 
sales time series are presented in Table 7.5: 
 

Table 7.5: Forecast results for quarterly sales time series  

 
Method 

 

 
MSE 

 
MAD 

 
RMSE 

 
MAPE 

 
Theil’s U 
Statistics 

 
4)1,1,0()1,1,0(SARIMA ×  

 
116.126604 

 
9.740500 

 
10.776205

 
1.335287% 

 
0.000021 

 
SANN (1 hidden node) 

 
968.677397 

 
29.368519

 
31.123583

 
4.172137% 

 
0.000060 

 
SANN (2 hidden nodes) 

 
1004.001275

 
29.481937

 
31.685979

 
4.211440% 

 
0.000060 

 
SANN (3 hidden nodes) 

 
466.920955 

 
16.734615

 
21.608354

 
2.525232% 

 
0.000041 

 
SVM 
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1645.392593

 
32.921002

 
40.563439

 
4.902750%

  

 
0.000075 

 
 
From Table 7.5 we it can be seen that the best forecasts for the quarterly sales series are 

obtained by fitting 4)1,1,0()1,1,0(SARIMA ×  model. The forecasting performances of SANN 

models are moderate, while those of the SVM model are not up to the expectation. We can 
suggest that the forecasting performance of SVM may be improved by choosing some 
appropriate data transformation or rescaling for this time series. 
 
In Fig. 7.5.2 we present the SARIMA and SANN (3 hidden nodes) forecast diagrams for the 
quarterly sales time series:  
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(a) SARIMA forecast diagram          (b) SANN forecast diagram 

 

Fig. 7.5.2: Forecast diagrams for quarterly sales series 
 
From the above two forecast diagrams we can get a visual idea about the forecasting accuracy 
of the mentioned SARIMA and SANN models for the quarterly sales series. 
  
7.6 The Quarterly U.S. Beer Production Dataset 
 

 

Fig. 7.6.1: Quarterly U.S. beer production time series (1975-1982) 

 
Fig. 7.6.1 shows the quarterly U.S. beer production in millions of barrels from 1975 to 1982. 
This time series dataset is provided by William W. S. Wei; the associated website link is 
provided at the end of this ongoing book. Out of the total 32 observations in this time series, 
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we have used the first 24 (i.e. 1975 to 1980) for training and the remaining 8 (i.e. 1981 to 
1982) for testing. The forecasting models, we have fitted to this time series are 

,)1,1,0()1,1,0(SARIMA 4×  SANN (with hidden nodes 1, 2, 3 and 4) and SVM models. As 

usual for fitting the SARIMA model, we have performed natural logarithmic transformation 
and seasonal differencing of the data values. Also for fitting SANN models, we have divided 
the original observations by 10.  
 
Our obtained forecast performance measures for the quarterly U.S. beer production time series 
are presented in original scale in Table 7.6: 
 

Table 7.6: Forecast results for quarterly U.S. beer production time series  

 
Method 

 

 
MSE 

 
MAD 

 
RMSE 

 
MAPE 

 
Theil’s U 
Statistics 

 
4)1,1,0()1,1,0(SARIMA ×  

 
1.784946 

 
1.195592 

 
1.336019 

 
2.468494% 

 
0.000553 

 
SANN (1 hidden node) 

 
2.448568 

 
1.307804 

 
1.564790 

 
2.630288% 

 
0.000660 

 
SANN (2 hidden nodes) 

 
1.868804 

 
1.144692 

 
1.367042 

 
2.364879% 

 
0.000572 

 
SANN (3 hidden nodes) 

 
1.810862 

 
1.076623 

 
1.345683 

 
2.325204% 

 
0.000556 

 
SANN (4 hidden nodes) 

 
1.409691 

 
1.015860 

 
1.187304 

 
2.072790% 

 
0.000496 

 
SVM 
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1.511534 

 
1.020438 

 
1.229445 

 
2.187802% 

 
0.000510 

 
 
Table 7.6 shows that the relatively best forecast performance measures for quarterly U.S. beer 
production time series are obtained using SANN model with four hidden nodes. The 
performances of SARIMA and SVM models are also quite good, as can be seen from the table. 
 
We present the three forecast diagrams for quarterly U.S. beer production time series, 
corresponding to SARIMA, SANN (4 hidden nodes) and SVM models in Fig. 7.6.2: 
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(a) SARIMA forecast diagram 

 

 
(b) SANN forecast diagram 

 

 
(c) SVM forecast diagram 

 

Fig. 7.6.2: Forecast diagrams for quarterly U.S. beer production series 
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7.7 The Monthly USA Accidental Deaths Dataset 
 

 

Fig. 7.7.1: Monthly USA accidental deaths time series (1973-1978) 

 
The time series plot in Fig 7.7.1 represents the number of accidental deaths in USA from 1973 

to 1978 on a monthly basis. This series is made available by Brockwell and Davis. We have 

given the associated website source  at the end of this book. From the depicted Fig 7.7.1, it can 

be seen that the series shows seasonal fluctuations with somewhat a constant trend.  

 

Out of the total 72 observations in the series, we have used the observations of first five years 

for training and those of the sixth year for testing. Thus the first 60 observations are considered 

for training and the remaining 12 for testing. Our fitted models for this time series are 

,)1,1,0()1,1,0(SARIMA 12×  SANN (with 4 hidden nodes) and SVM. As before for fitting 

SARIMA model we have applied logarithmic transformation and seasonal differencing. Also For 

fitting SANN and SVM models the observations are divided by 100.  

 

We present the obtained forecast performance measures in Table 7.7. These measures are 

calculated based on the rescaled dataset (i.e. after dividing by 100).  
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Table 7.7: Forecast results for monthly USA accidental deaths time series  

 
Method 

 

 
MSE 

 
MAD 

 
RMSE 

 
MAPE 

 
Theil’s U 
Statistics 

 
12)1,1,0()1,1,0(SARIMA ×  

 
3.981148     

 
1.499827   

 
1.995281 

 
1.694144%   

 
0.000254 

 
SANN (4 hidden nodes) 

 
13.994408 

 
2.986875 

 
3.740910 

 
3.344423% 

 
0.000491 

 
SVM 
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16.203377 

 
3.328154 

 
4.025342 

 
3.708167% 

 
0.000531 

 
 
From Table 7.7 we see that the minimum performance measures are obtained by the fitted 

12)1,1,0()1,1,0(SARIMA ×  model. Here to fit the SANN model 4 hidden nodes are 

considered, because our experiments have shown that with other number of hidden nodes the 
performance measures increased for this dataset. It can be suggested that the SVM 
performance for this dataset may be improved by performing some other suitable data 
preprocessing or using some other kernel function.  
 
The two forecast diagrams for monthly USA accidental deaths time series, corresponding to 
the fitted SARIMA and SANN models are presented in Fig. 7.7.2: 
 
 

 
(a) SARIMA forecast diagram 
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(b) SANN forecast diagram 

Fig. 7.7.2: Forecast diagrams for monthly USA accidental deaths series 

 
The excellent performance of SARIMA for the monthly USA accidental deaths time series can 
be visualized from the forecast diagram in Fig. 7.7.2 (a).  
 
 
We have presented the forecasting results of all the experiments done by us. From the 
performance measures obtained for each dataset, one can have a relative idea about the 
effectiveness and accuracy of the fitted models. The six time series datasets, we have 
considered are taken from non-confidential sources and each of them is freely available for 
analysis. At the end of the current book, we have listed the original online source for each 
dataset, together with the corresponding website link from which it is collected.  
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Conclusion                   
 
Broadly speaking, in this introductory book we have presented a state-of-the-art of the 
following popular time series forecasting models with their salient features: 

• The Box-Jenkins or ARIMA models for linear time series forecasting. 

• Some non-linear stochastic models, such as NMA, ARCH. 

• Neural network forecasting models; TLNN and SANN. 

• SVM based forecasting models; LS-SVM and DLS-SVM. 
It has been seen that, the proper selection of the model orders (in case of ARIMA), the number 
of input, hidden and output neurons (in case of ANN) and the constant hyper-parameters (in 
case of SVM) is extremely crucial for successful forecasting. We have discussed the two 
important functions, viz. AIC and BIC, which are frequently used for ARIMA model selection. 
For selecting the number of appropriate neurons in ANN and constant hyper-parameters in 
SVM, crossvalidation should be carried out, as mentioned earlier. 
 
We have considered a few important performance measures for evaluating the accuracy of 
forecasting models. It has been understood that for obtaining a reasonable knowledge about the 
overall forecasting error, more than one measure should be used in practice. The last chapter 
contains the forecasting results of our experiments, performed on six real time series datasets. 
Our satisfactory understanding about the considered forecasting models and their successful 
implementation can be observed form the five performance measures and the forecast 
diagrams, we obtained for each of the six datasets. However in some cases, significant 
deviation can be seen among the original observations and our forecasted values. In such cases, 
we can suggest that a suitable data preprocessing, other than those we have used in our work 
may improve the forecast performances.  
 
Time series forecasting is a fast growing area of research and as such provides many scope for 
future works. One of them is the Combining Approach, i.e. to combine a number of different 
and dissimilar methods to improve forecast accuracy. A lot of works have been done towards 
this direction and various combining methods have been proposed in literature [8, 14, 15, 16]. 
Together with other analysis in time series forecasting, we have thought to find an efficient 
combining model, in future if possible. With the aim of further studies in time series modeling 
and forecasting, here we conclude the present book. 
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Datasets Sources 
 

1. The Canadian Lynx Dataset 
 Original source: Elton, C. and Nicholson, M. (1942), "The ten year cycle in numbers of 
 Canadian lynx", J. Animal Ecology, Vol. 11, pages: 215-244. 
Website link: http://www.stats.uwo.ca/faculty/aim/epubs/mhsets/ecology/lynx.1 
 
2. The Wolf’s Sunspot Dataset 
 Original source: H. Tong, “Non-linear Time Series: A Dynamical System Approach”, 
 Oxford Statistical Science, Series 6, July 1993, pages: 469-471. 
Website link: http://www.stats.uwo.ca/faculty/aim/epubs/mhsets/annual/sunspt.1 
 
3. The Airline Passenger Dataset 
 Original source: R. G. Brown, “Smoothing, Forecasting and Prediction of Discrete Time 
 Series”, Prentice-Hall, Englewood Cliffs, 1994.  
 This dataset is also used by Box and Jenkins in [6] and they had named it as Series G. 
Website link: http://robjhyndman.com/TSDL/data/airpass.dat 
 
4. The Quarterly Sales Dataset  
 Original source: S. Makridakis, S. Wheelwright, R. J. Hyndman, “Forecasting: Methods 
 and Applications”, 3rd edition, John Wiley & Sons, New York, 1998. 
Website link: http://robjhyndman.com/forecasting/data/qsales.csv 
 
5. The Quarterly U.S. Beer Production Dataset  
 Original source: William W. S. Wei, “Time Series Analysis: Univariate and Multivariate 
 Methods”, 2nd edition, Addison Wesley; July, 2005. 
Website link: http://astro.temple.edu/~wwei/datasets/W10.txt 
 
6. The Monthly USA Accidental Deaths Dataset (1973-1978)  
 Original source: P. J. Brockwell, R. A. Davis, “Introduction to Time Series and 
 Forecasting”, 2nd edition, Springer Publication; March, 2003. 
Website link: http://robjhyndman.com/forecasting/data/deaths.csv 
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