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Preface

The EZ version can be used for an introductory time series course where the prerequi-
site is an understanding of linear regression analysis, although it assumes some basic
probability skills (expectation) and general high school math skills (trigonometry,
complex numbers, polynomials, calculus, and so on):

e A calculus based introduction to probability course is an essential co-requisite
for this course. Readers should be familiar with most of the content of basic
probability facts (a pdf file), which is a short introduction to the necessary
material.

* For readers who are a little rusty on the basic math skills, the WikiBook on
K-12 mathematics http://en.wikibooks.org/wiki/Subject:K-12_mathematics may
be a useful resource; in particular, we mention the book covering calculus.
We occasionally use matrix notation. For readers lacking this skill, see the high
school page on matrices. For Chapter 4, this primer on complex numbers may
be helpful.

The EZ version follows the basic outline of the blue version, but with the addition
of examples to take the place of entire sections. Appendix R has information regarding
the use of the R package for the text astsa. The code listing on the website for the
yellow text does not match the EZ version.

Two stars (xx) indicate that skills obtained in a course on basic mathematical
statistics are recommended and these parts may be skipped. Chapter 5 is a #x-
ed chapter on some advanced time domain topics. In this version, the section on
regression with autocorrelated errors is in Chapter 3. In Chapter 3, there are two
estimation sections, one that uses only least squares and method of moments, and a
+x-ed section on MLE that comes after the section on forecasting.

Internal links are dark red, external links are magenta, R code is in blue, output
is purple and comments are # green.


http://www.stat.pitt.edu/stoffer/tsa3/intro_prob.pdf
http://www.stat.pitt.edu/stoffer/tsa3/intro_prob.pdf
http://en.wikibooks.org/wiki/Subject:K-12_mathematics
http://en.wikibooks.org/wiki/Calculus
http://en.wikibooks.org/wiki/High_School_Mathematics_Extensions/Matrices
http://tutorial.math.lamar.edu/pdf/Complex/ComplexNumbers.pdf
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Chapter 1

Time Series Characteristics

1.1 Introduction

The analysis of experimental data that have been observed at different points in time
leads to new and unique problems in statistical modeling and inference. The obvi-
ous correlation introduced by the sampling of adjacent points in time can severely
restrict the applicability of the many conventional statistical methods traditionally
dependent on the assumption that these adjacent observations are independent and
identically distributed. The systematic approach by which one goes about answer-
ing the mathematical and statistical questions posed by these time correlations is
commonly referred to as time series analysis.

Historically, time series methods were applied to problems in the physical and
environmental sciences. This fact accounts for the basic engineering flavor permeating
the language of time series analysis. In our view, the first step in any time series
investigation always involves careful scrutiny of the recorded data plotted over time.
Before looking more closely at the particular statistical methods, it is appropriate to
mention that two separate, but not necessarily mutually exclusive, approaches to time
series analysis exist, commonly identified as the time domain approach (Chapter 3)
and the frequency domain approach (Chapter 4).

1.2 Some Time Series Data

The following examples illustrate some of the common kinds of time series data as
well as some of the statistical questions that might be asked about such data.

Example 1.1 Johnson & Johnson Quarterly Earnings
Figure 1.1 shows quarterly earnings per share for the U.S. company Johnson &
Johnson. There are 84 quarters (21 years) measured from the first quarter of 1960
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Fig. 1.1. Johnson & Johnson quarterly earnings per share, 1960-1 to 1980-1V.
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Fig. 1.2. Left: Quarterly value of initial deposits of $75, $100, $125, and $150 over 15 years,
with a quarterly growth rate of 5%; x; = (1 + .05)x,_1. Right: Logs of the quarterly values;
log(x;) = log(1 + .05) + log(x;—1). When marked in terms of quarters, Figure 1.2 looks like
Figure 1.1.

to the last quarter of 1980. Modeling such series begins by observing the primary
patterns in the time history. In this case, note the increasing underlying trend and
variability, and a somewhat regular oscillation superimposed on the trend that seems
to repeat over quarters. Methods for analyzing data such as these are explored in
Chapter 2 (see Problem 2.1) using regression techniques. Also, compare Figure 1.1
with Figure 1.2. To use package astsa, and then plot the data for this example

using R, type the following (try plotting the logged the data yourself).
require(astsa) # ** SEE FOOTNOTE

plot(jj, type="o", ylab="Quarterly Earnings per Share")
plot(log(jjd) # not shown

Example 1.2 Global Warming
Consider the global temperature series record shown in Figure 1.3. The data are the
global mean land—ocean temperature index from 1880 to 2009, with the base period
1951-1980. In particular, the data are deviations, measured in degrees centigrade,
from the 1951-1980 average, and are an update of Hansen et al. (2006). We note an
apparent upward trend in the series during the latter part of the twentieth century

** Throughout the text, we assume that the R package for the book, astsa, has been downloaded and
installed. See Appendix R (Section R.2) for further details.
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Fig. 1.3. Yearly average global temperature deviations (1880-2009) in °C.

that has been used as an argument for the global warming hypothesis. Note also
the leveling off at about 1935 and then another rather sharp upward trend at about
1970. The question of interest for global warming proponents and opponents is
whether the overall trend is natural or whether it is caused by some human-induced

interface. The R code for this example is similar to the code in Example 1.1:
plot(gtemp, type="o", ylab="Global Temperature Deviations")

Example 1.3 New York Stock Exchange
As an example of financial time series data, Figure 1.4 shows the daily returns
(or percent change) of the New York Stock Exchange (NYSE) from February 2,
1984 to December 31, 1991. It is easy to spot the crash of October 19, 1987 in the
figure. The data shown in Figure 1.4 are typical of return data. The mean of the
series appears to be stable with an average return of approximately zero, however,
the volatility (or variability) of data changes over time. In fact, the data show
volatility clustering; that is, highly volatile periods tend to be clustered together. A
problem in the analysis of these type of financial data is to forecast the volatility of
future returns. For example, GARCH models have been developed to handle these

problems. The R code for this example is similar to the previous examples:
plot(nyse, ylab="NYSE Returns")

NYSE Returns
-0.10 -0.05 0.00 0.05

-0.15

T T T T T
o 500 1000 1500 2000

Time

Fig. 1.4. Daily weighted market returns from February 2, 1984 to December 31, 1991. The
crash of October 19, 1987 occurs at ¢ = 938.
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Fig. 1.5. Monthly SOI and Recruitment (estimated new fish), 1950-1987.

Example 1.4 El Nifio and Fish Population
We may also be interested in analyzing several time series at once. Figure 1.5
shows monthly values of an environmental series called the Southern Oscillation
Index (SOI) and associated Recruitment (an index of the number of new fish).
Both series are for a period of 453 months ranging over the years 1950-1987.
SOI measures changes in air pressure related to sea surface temperatures in the
central Pacific Ocean. The central Pacific warms every three to seven years due
to the El Nifio effect, which has been blamed, in particular, for the 1997 floods
in the midwestern portions of the United States. Both series in Figure 1.5 tend to
exhibit repetitive behavior, with regularly repeating cycles that are easily visible.
This periodic behavior is of interest because underlying processes of interest may
be regular and the rate or frequency of oscillation characterizing the behavior of the
underlying series would help to identify them. The Recruitment series also shows
several kinds of oscillations. The study of the kinds of cycles and their strengths is
the subject of Chapter 4. The two series also tend to be somewhat related; it is easy
to imagine that somehow the fish population is dependent on the SOI.
The following R code will reproduce Figure 1.5:
par(mfrow = c(2,1)) # set up the graphics

plot(soi, ylab="", xlab="", main="Southern Oscillation Index")
plot(rec, ylab="", xlab="", main="Recruitment")

Example 1.5 fMRI Imaging
A fundamental problem in classical statistics occurs when we are given a collection
of independent series or vectors of series, generated under varying experimental
conditions or treatment configurations. Such a set of series is shown in Figure 1.6,
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Fig. 1.6. fMRI data from various locations in the cortex, thalamus, and cerebellum; n = 128
points, one observation taken every 2 seconds.

where we observe data collected from various locations in the brain via functional
magnetic resonance imaging (fMRI). In this example, a stimulus was applied for 32
seconds and then stopped for 32 seconds; thus, the signal period is 64 seconds. The
sampling rate was one observation every 2 seconds for 256 seconds (n = 128). The
series shown in Figure 1.6 are consecutive measures of blood oxygenation-level
dependent (BoLD) signal intensity, which measures areas of activation in the brain.
Notice that the periodicities appear strongly in the motor cortex series and less
strongly in the thalamus and cerebellum. The fact that one has series from different
areas of the brain suggests testing whether the areas are responding differently to

the brush stimulus. Use the following R commands to plot the data:

par (mfrow=c(2,1), mar=c(3,2,1,0)+.5, mgp=c(1.6,.6,0))

ts.plot(fmril[,2:5], col=1:4, ylab="BOLD", xlab="", main="Cortex")
ts.plot(fmril[,6:9], col=1:4, ylab="BOLD", xlab="", main="Thalam & Cereb")
mtext("Time (1 pt = 2 sec)", side=1, line=2)

1.3 Time Series Models

The primary objective of time series analysis is to develop mathematical models that
provide plausible descriptions for sample data, like that encountered in the previous
section.

The fundamental visual characteristic distinguishing the different series shown in
Example 1.1 — Example 1.5 is their differing degrees of smoothness. One possible
explanation for this smoothness is that adjacent points in time are correlated, so
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the value of the series at time ¢, say, x;, depends in some way on the past values
X¢—1, X¢=2, . ... This model expresses a fundamental way in which we might think
about generating realistic-looking time series.

Example 1.6 White Noise (3 flavors)
A simple kind of generated series might be a collection of uncorrelated random
variables, w;, with mean 0 and finite variance a'vzv. The time series generated from
uncorrelated variables is used as a model for noise in engineering applications where
it is called white noise; we shall sometimes denote this process as w; ~ wn(0, 0"2‘,).
The designation white originates from the analogy with white light and indicates
that all possible periodic oscillations are present with equal strength.

We will, at times, also require the noise to be independent and identically
distributed (iid) random variables with mean O and variance o-vzv. We will distin-
guish this by saying white independent noise, or by writing w; ~ iid(0,02). A
particularly useful white noise series is Gaussian white noise, wherein the w; are
independent normal random variables, with mean 0 and variance o-fv; or more suc-

cinctly, w, ~ iid N(O, 0'3,). Figure 1.7 shows in the upper panel a collection of 500
such random variables, with o-fv = 1, plotted in the order in which they were drawn.
The resulting series bears a slight resemblance to portions of the NYSE returns in
Figure 1.4. The plot tends to show visually a mixture of many different kinds of
oscillations in the white noise series.

If the stochastic behavior of all time series could be explained in terms of the
white noise model, classical statistical methods would suffice. Two ways of intro-
ducing serial correlation and more smoothness into time series models are given in
Example 1.7 and Example 1.8.

Example 1.7 Moving Averages and Filtering
We might replace the white noise series w; by a moving average that smooths the
series. For example, consider replacing w, in Example 1.6 by an average of its
current value and its immediate neighbors in the past and future. That is, let

Ve = %(Wz—l + W+ Wii), (L.1)

which leads to the series shown in the lower panel of Figure 1.7. Inspecting the
series shows a smoother version of the first series, reflecting the fact that the slower
oscillations are more apparent and some of the faster oscillations are taken out. We
begin to notice a similarity to some of the non-cyclic fMRI series in Figure 1.6.
To reproduce Figure 1.7 in R use the following commands. A linear combination
of values in a time series such as in (1.1) is referred to, generically, as a filtered

series; hence the command filter.

w = rnorm(500,0,1) # 500 N(0,1) variates
v = filter(w, sides=2, rep(1/3,3)) # moving average

par (mfrow=c(2,1))

plot.ts(w, main="white noise")

plot.ts(v, ylim=c(-3,3), main="moving average")
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Fig. 1.7. Gaussian white noise series (top) and three-point moving average of the Gaussian
white noise series (bottom).

The SOI and Recruitment series in Figure 1.5, as well as some of the MRI series
in Figure 1.6, differ from the moving average series because one particular kind of
oscillatory behavior seems to predominate, producing a sinusoidal type of behavior.
A number of methods exist for generating series with this quasi-periodic behavior;
we illustrate a popular one based on the autoregressive model considered in Chapter
3.

Example 1.8 Autoregressions
Suppose we consider the white noise series w, of Example 1.6 as input and calculate
the output using the second-order equation

Xt = X¢—1 — .9x,_2 + wy (1.2)

successively for r = 1,2,...,500. Equation (1.2) represents a regression or predic-
tion of the current value x, of a time series as a function of the past two values of the
series, and, hence, the term autoregression is suggested for this model. A problem
with startup values exists here because (1.2) also depends on the initial conditions x
and x_1, but, for now, we assume that we are given these values and generate the suc-
ceeding values by substituting into (1.2). Thatis, given wy, wo, . . ., w500, and xg, x_1,
we start with x; = x¢9 —.9x_; + wy, then recursively compute x, = x; —.9xg + w»,
then x3 = xp — .9x; + w3, and so on. The resulting output series is shown in
Figure 1.8, and we note the periodic behavior of the series, which is similar to
that displayed by the SOI and Recruitment in Figure 1.5 and some fMRI series
in Figure 1.6. The autoregressive model above and its generalizations can be used
as an underlying model for many observed series and will be studied in detail in
Chapter 3.
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Fig. 1.8. Autoregressive series generated from model (1.2).

One way to simulate and plot data from the model (1.2) in R is to use the
following commands (another way is to use arima.sim). The initial conditions are

set equal to zero, so we let the filter run an extra 50 values to avoid startup problems.
w = rnorm(550,0,1) # 50 extra to avoid startup problems

x = filter(w, filter=c(1l,-.9), method="recursive")[-(1:50)]

plot.ts(x, main="autoregression')

Example 1.9 Random Walk with Drift
A model for analyzing trend such as seen in the global temperature data in Figure 1.3,
is the random walk with drift model given by

Xt = 0+ Xi—1 + Wy (13)

for t = 1,2,..., with initial condition xo = 0, and where w; is white noise. The
constant ¢ is called the drift, and when ¢ = 0, the model is called simply a random
walk because the value of the time series at time ¢ is the value of the series at time
t — 1 plus a completely random movement determined by w;. Note that we may
rewrite (1.3) as a cumulative sum of white noise variates. That is,

3
x,=6t+ij (1.4)
j=1

fort = 1,2,...; either use induction, or plug (1.4) into (1.3) to verify this statement.
Figure 1.9 shows 200 observations generated from the model with 6 = 0 and .2,
and with o, = 1. For comparison, we also superimposed the straight lines ¢ on
the graph.

To reproduce Figure 1.9 in R use the following code (notice the use of multiple
commands per line using a semicolon).
set.seed(154) # so you can reproduce the results
w = rnorm(200,0,1); x = cumsum(w) # two commands in one line
wd = w +.2; xd = cumsum(wd)
plot.ts(xd, ylim=c(-5,55), main="random walk")
lines(x); lines(.2%(1:200), lty="dashed")
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Fig. 1.9. Random walk, o, = 1, with drift § = .2 (upper jagged line), without drift, § = 0
(lower jagged line), and dashed lines showing the drifts.

Example 1.10 Signal in Noise
Many realistic models for generating time series assume an underlying signal with
some consistent periodic variation, contaminated by adding a random noise. For
example, it is easy to detect the regular cycle fMRI series displayed on the top of
Figure 1.6. Consider the model

x; = 2cos(2m ) + wy (1.5)
fort = 1,2,...,500, where the first term is regarded as the signal, shown in the
upper panel of Figure 1.10. We note that a sinusoidal waveform can be written as

AcosQrwt + @), (1.6)

where A is the amplitude, w is the frequency of oscillation, and ¢ is a phase shift.
In (1.5), A =2, w = 1/50 (one cycle every 50 time points), and ¢ = .67.

An additive noise term was taken to be white noise with o, = 1 (middle
panel) and o, = 5 (bottom panel), drawn from a normal distribution. Adding the
two together obscures the signal, as shown in the lower panels of Figure 1.10. Of
course, the degree to which the signal is obscured depends on the amplitude of the
signal and the size of o,. The ratio of the amplitude of the signal to o, (or some
function of the ratio) is sometimes called the signal-to-noise ratio (SNR); the larger
the SNR, the easier it is to detect the signal. Note that the signal is easily discernible
in the middle panel of Figure 1.10, whereas the signal is obscured in the bottom
panel. Typically, we will not observe the signal but the signal obscured by noise.

To reproduce Figure 1.10 in R, use the following commands:
cs = 2%cos(2*pi*1:500/50 + .6%pi)
w = rnorm(500,0,1)
par(mfrow=c(3,1), mar=c(3,2,2,1), cex.main=1.5)
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Fig. 1.10. Cosine wave with period 50 points (top panel) compared with the cosine wave
contaminated with additive white Gaussian noise, o, = 1 (middle panel) and o, = 5 (bottom
panel); see (1.5).

plot.ts(cs, main=expression(2*cos(2*pi*t/50+.6%pi)))
plot.ts(cs+w, main=expression(2*cos(2*pi*t/50+.6%pi) + N(0,1)))
plot.ts(cs+5*%w, main=expression(2*cos(2*pi*t/50+.6%pi) + N(0,25)))

1.4 Measures of Dependence

We now discuss various measures that describe the general behavior of a process as
it evolves over time. A rather simple descriptive measure is the mean function.

Definition 1.1 The mean function is defined as

Hxr = E(x;) (1.7)

provided it exists, where E denotes the usual expected value operator.! When no
confusion exists about which time series we are referring to, we will drop a subscript
and write [x; as Uy.

! Expectation is discussed in the third chapter of the basic probability facts pdf mentioned in the preface.
For continuous-valued finite variance processes, the mean is yu; = E(x;) = ff; Xf (x) dx and the
variance is o-t2 = E(x; —ut)z = fj; (x—py )2ﬁ (x) dx, where f; is the density of x;. If x; is Gaussian
with mean y; and variance o-?, abbreviated as x; ~ N(uy, o-tz), the marginal density is given by

_ 1 N SV 2
fi(x) = Utmexp{ 2(rtz(x e )} forx e R.
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Example 1.11 Mean Function of a Moving Average Series
If w, denotes a white noise series, then u,,; = E(w;) = 0 for all z. The top series in
Figure 1.7 reflects this, as the series clearly fluctuates around a mean value of zero.
Smoothing the series as in Example 1.7 does not change the mean because we can
write
fve = E() = $[E(w—1) + E(wy) + E(wi1)] =0

Example 1.12 Mean Function of a Random Walk with Drift
Consider the random walk with drift model given in (1.4),

t
xt=6t+ij, t=12,....

Because E(w,) = 0 for all ¢, and § is a constant, we have

t
e = E(x;) =61 + ZE(wj) =5t
J=1

which is a straight line with slope . A realization of a random walk with drift can
be compared to its mean function in Figure 1.9.

Example 1.13 Mean Function of Signal Plus Noise
A great many practical applications depend on assuming the observed data have
been generated by a fixed signal waveform superimposed on a zero-mean noise
process, leading to an additive signal model of the form (1.5). It is clear, because
the signal in (1.5) is a fixed function of time, we will have
pxe = E(x;) = E[2cos(2nt2) + w,]
= 2cos(2n ) + E(w,)

= 2cos(2n i),
and the mean function is just the cosine wave.

The mean function describes only the marginal behavior of a time series. The lack
of independence between two adjacent values x, and x; can be assessed numerically,
as in classical statistics, using the notions of covariance and correlation. Assuming
the variance of x; is finite, we have the following definition.

Definition 1.2 The autocovariance function is defined as the second moment product
Yx(s,1) = cov(xg, x¢) = E[(xs — ps)(xe = pe)1, (1.8)

Jor all s and t. When no possible confusion exists about which time series we are
referring to, we will drop the subscript and write yx(s,t) as y(s,t).
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Note that y,(s,f) = yx(t,s) for all time points s and ¢t. The autocovariance
measures the linear dependence between two points on the same series observed at
different times. Recall from classical statistics that if y.(s,¢) = 0, x5 and x; are not
linearly related, but there still may be some dependence structure between them. If,
however, x; and x; are bivariate normal, yx(s,7) = O ensures their independence. It
is clear that, for s = z, the autocovariance reduces to the (assumed finite) variance,
because

Yx(t,1) = E[(x; = p)°] = var(x,). (1.9)
Example 1.14 Autocovariance of White Noise
The white noise series w, has E(w,;) = 0 and

2

o s=t,

w (1.10)

1) = cov(wg, =
Yw (s, 1) (Ws, W) {0 sit

A realization of white noise with o-%v = 1 is shown in the top panel of Figure 1.7.

We often have to calculate the autocovariance between filtered series. A useful
result is given in the following proposition.

Property 1.1 If the random variables
U:Zanj and V:Zkak
j=1 k=1

are linear filters of (finite variance) random variables {X;} and (Y}, respectively,
then

cov(U, V) = Zzajbkcov(xj,yk). (1.11)

j=1 k=1
Furthermore, var(U) = cov(U, U).

An easy way to remember (1.11) is to treat it like multiplication:
(a1 Xy + axX2)(bi1) = aibi XiY1 + axb1 XYy .
Example 1.15 Autocovariance of a Moving Average

Consider applying a three-point moving average to the white noise series w; of the
previous example as in Example 1.7. In this case,

1 1
Yo(8,1) = cov(vs, vi) = cov {3 (Wt +wy + W), § Wit +wp + wi)f
When s =t we have

Yo(t,1) = Scov{(Wimt + Wy + wie1), (Wmt + Wy + Wi}

1
= gleov(wi—1, wi—1) + cov(we, we) + COV(Wrr1, Wes1)]

3.2
50'w.
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Whens =¢+1,

Yot +1,0) = Geov{(wy + Weat +Wrs2), (Wemt + Wy +Wii1))

1
= gleov(wy, wy) + cov(wrsr, wee1)]

2.2
= 50w

using (1.10). Similar computations give y,, (f — 1,1) = 20'30/9, Yot +2,1) =y, (t —
2,1) = o-fv /9, and 0 when |t — s| > 2. We summarize the values for all s and ¢ as

%o-fv s =1,
ol |s—tl=1,
s, 1) =19, 2 (1.12)
50w ls—1l=2
0 |s —¢t] > 2.

Example 1.15 shows clearly that the smoothing operation introduces a covariance
function that decreases as the separation between the two time points increases and
disappears completely when the time points are separated by three or more time
points. This particular autocovariance is interesting because it only depends on the
time separation or lag and not on the absolute location of the points along the series.
We shall see later that this dependence suggests a mathematical model for the concept
of weak stationarity.

Example 1.16 Autocovariance of a Random Walk
For the random walk model, x, = Z}:l wj, we have

N t
vx (8, 1) = cov(xg, x;) = cov Z wj, Z w | = min{s, ¢} a‘fv,
j=1 k=1

because the w; are uncorrelated random variables. Note that, as opposed to the
previous examples, the autocovariance function of a random walk depends on the
particular time values s and ¢, and not on the time separation or lag. Also, notice that
the variance of the random walk, var(x;) = y,(t, 1) = ¢ o-fv ,increases without bound
as time ¢ increases. The effect of this variance increase can be seen in Figure 1.9
where the processes start to move away from their mean functions ¢ ¢ (note that
¢ = 0 and .2 in that example).

As in classical statistics, it is more convenient to deal with a measure of association
between —1 and 1, and this leads to the following definition.

Definition 1.3 The autocorrelation function (ACF) is defined as

v (s, 1)

WG sy

o(s,1) = (1.13)
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The ACF measures the linear predictability of the series at time ¢, say x;, using only
the value x;. We can show easily that —1 < p(s,#) < 1 using the Cauchy—Schwarz
inequality.? If we can predict x; perfectly from xg through a linear relationship,
x; = Bo + B1xs, then the correlation will be +1 when 81 > 0, and —1 when g; < 0.
Hence, we have a rough measure of the ability to forecast the series at time ¢ from the
value at time s.

Often, we would like to measure the predictability of another series y, from the
series x;. Assuming both series have finite variances, we have the following definition.

Definition 1.4 The cross-covariance function between two series, x; and y;, is

%cy(S, 1) = cov(xs, yr) = E[(x5 — pxs) (e — ﬂyt)]- (1.14)

The cross-covariance function can be scaled to live in [—1, 1]:
Definition 1.5 The cross-correlation function (CCF) is given by

yxy (S’ t)

NGO

pxy(S,t) = (1.15)

1.5 Stationary Time Series

The preceding definitions of the mean and autocovariance functions are completely
general. Although we have not made any special assumptions about the behavior of
the time series, many of the preceding examples have hinted that a sort of regularity
may exist over time in the behavior of a time series.

Definition 1.6 A strictly stationary time series is one for which the probabilistic
behavior of every collection of values

(BT PR
is identical to that of the time shifted set
{Xt1+h, Xto+hs o+ +» th+h}a
forall k = 1,2,..., all time points t1,t, .. .,tx, and all time shifts h = 0, 1, +2, ...

Itis difficult to assess strict stationarity from data. Rather than imposing conditions
on all possible distributions of a time series, we will use a milder version that imposes
conditions only on the first two moments of the series.

2 The Cauchy—Schwarz inequality implies |y (s, t) 12 < y(s, s)y(t, t).
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Definition 1.7 A weakly stationary time series is a finite variance process where

(i) the mean value function, u;, defined in (1.7) is constant and does not depend on
time t, and

(ii) the autocovariance function, y(s,t), defined in (1.8) depends on s and t only
through their difference |s — t|.

Henceforth, we will use the term stationary to mean weakly stationary; if a process
is stationary in the strict sense, we will use the term strictly stationary.

Stationarity requires regularity in the mean and autocorrelation functions so that
these quantities (at least) may be estimated by averaging. It should be clear that a
strictly stationary, finite variance, time series is also stationary. The converse is not
true in general. One important case where stationarity implies strict stationarity is if
the time series is Gaussian [meaning all finite collections of the series are Gaussian].

Example 1.17 A Random Walk is Not Stationary
A random walk is not stationary because its autocovariance function, y(s,t) =
min{s, t}a’fv , depends on time; see Example 1.16 and Problem 1.6. Also, the random
walk with drift violates both conditions of Definition 1.7 because, as shown in
Example 1.12, the mean function, p; = 6t, is also a function of time 7.

Because the mean function, E(x;) = u,, of a stationary time series is independent
of time ¢, we will write
He = H (1.16)

Also, because the autocovariance function, y(s,t), of a stationary time series, x;,
depends on s and ¢ only through their difference |s — ¢|, we may simplify the notation.
Let s = ¢ + h, where h represents the time shift or lag. Then

y(t + ht) = cov(Xr4n, X1) = cov(xp, xo) = y(h,0)

because the time difference between times ¢ + & and ¢ is the same as the time difference
between times / and 0. Thus, the autocovariance function of a stationary time series
does not depend on the time argument 7. Henceforth, for convenience, we will drop
the second argument of y (4, 0).

Definition 1.8 The autocovariance function of a stationary time series will be
written as

y(h) = cov(Xpen, X¢) = E[(Xpen — ) (x: — 1. (1.17)

Definition 1.9 The autocorrelation function (ACF) of a stationary time series will
be written using (1.13) as

_yh

y(0)’

The Cauchy—Schwarz inequality shows again that —1 < p(h) < 1 for all A,

enabling one to assess the relative importance of a given autocorrelation value by
comparing with the extreme values —1 and 1.

p(h) (1.18)
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Fig. 1.11. Autocovariance function of a three-point moving average.

Example 1.18 Stationarity of White Noise
The mean and autocovariance functions of the white noise series discussed in
Example 1.6 and Example 1.14 are easily evaluated as u,,, = 0 and

() = covtwpam) = |7 1=0

= COV(Wpih, Wr) =

Yw t+hs Wt 0 h+0.

Thus, white noise satisfies the conditions of Definition 1.7 and is weakly stationary
or stationary.

Example 1.19 Stationarity of a Moving Average
The three-point moving average process of Example 1.7 is stationary because, from

Example 1.11 and Example 1.15, the mean and autocovariance functions yu,; = 0,
and

%a’fv h=0,

2 2
sos h==1
my =497y ’
W=V s
0 |h| > 2

are independent of time #, satisfying the conditions of Definition 1.7.
Note that the ACF is given by

1 h=0,
2
5 h==l
hy=143 T
pv(h) [
0 |hl>2

Figure 1.11 shows a plot of the autocorrelation as a function of lag . Note that the
autocorrelation function is symmetric about lag zero and in this example, decays as
a function of lag.
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Example 1.20 Trend Stationarity
If x; = @ + Bt + wy, then the mean function is py; = E(x;) = a + B¢, which is
not independent of time. Therefore, the process is not stationary. The autocovari-
ance function, however, is independent of time, because y,(h) = cov(x;4p, X;) =
E[(X¢4h — Mx,t+n)(Xr — px,0)] = E(Wianwy) = yw(h), which is given in Exam-
ple 1.18. Thus, the model may be considered as having stationary behavior around
a linear trend; this behavior is sometimes called trend stationarity.

The autocovariance function of a stationary process has several useful properties.
First, the value at & = 0, namely

¥(0) = E[(x; — p)*] = var(x,). (1.19)

Also, the Cauchy—Schwarz inequality implies |y(%)| < y(0). Another useful property
is that the autocovariance function of a stationary series is symmetric around the
origin,

y(h) =y(=h) (1.20)

for all A. This property follows because

y(h) =y((t + h) = 1) = E[(x¢+n = 1) (x; = p)]
= E[(x; = ) (xpon — )] = y(t = (1 + b)) = y(=h),

which shows how to use the notation as well as proving the result.
When several series are available, a notion of stationarity still applies with addi-
tional conditions.

Definition 1.10 Tiwo time series, say, x; and y;, are said to be jointly stationary if
they are each stationary, and the cross-covariance function

Yxy(h) = CoV(Xrin, Yr) = E[(Xpan — px) (Ve — py)] (1.21)
is a function only of lag h.

Definition 1.11 The cross-correlation function (CCF) of jointly stationary time
series x; and y; is defined as

Yy (h)

V207, 0)

Again, we have the result -1 < pyy(h) < 1 which enables comparison with
the extreme values —1 and 1 when looking at the relation between x;., and y;.
The cross-correlation function is not generally symmetric about zero [i.e., typically
Pxy(h) # pxy(=h)]; however, it is the case that

Pxy(h) = (1.22)

Pxy(h) = pyx(=h), (1.23)

which can be shown by manipulations similar to those used to show (1.20).
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CCovF

-15 -10 -5 0 5 10 15
Lag

Fig. 1.12. Demonstration of the results of Example 1.22 when £ = 5.

Example 1.21 Joint Stationarity
Consider the two series, x; and y;, formed from the sum and difference of two
successive values of a white noise process, say,

Xr =wy+wip and  y; = wp — wpy,

where w; are independent random variables with zero means and variance 0'3v. It
is easy to show that y,(0) = ,(0) = 202 and y,(1) = y,(=1) = 02, y,(1) =
yy(=1) = =% Also,

%cy(l) = COV(Xt41, Y1) = COV(Wrp1 + Wi, Wy — Wy_y) = 0'3V
because only one term is nonzero (recall Property 1.1 on page 12). Similarly,
Yxy(0) = 0,75y (=1) = —o-fv. We obtain, using (1.22),

0 h =0,
12 h=1,
h) =
Pxy () 2 b=l
0 |hl>2.

Clearly, the autocovariance and cross-covariance functions depend only on the lag
separation, /, so the series are jointly stationary.

Example 1.22 Prediction Using Cross-Correlation
Consider the problem of determining possible leading or lagging relations between
two series x; and y,. If the model

Ve = Axi_g + Wy

holds, the series x; is said to lead y, for £ > 0 and is said to lag y, for £ < 0. Hence,
the analysis of leading and lagging relations might be important in predicting the
value of y; from x,. Assuming that the noise w; is uncorrelated with the x; series,
the cross-covariance function can be computed as

Vxy(h) = cOV(Xtih, Y1) = COV(Xp4h, AXs—p + Wy)
= COV(Xt1p, Axs_g) = Ayx(h + 0).
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Since the largest value of y, (h+¢) is y,(0), i.e., when h = —{, the cross-covariance
function will look like the autocovariance of the input series x;, and it will have a
peak on the negative side if x, leads y, and a peak on the positive side if x, lags y;.
Below is the R code of an example with £ = 5 and (/) is shown in Figure 1.12.

set.seed(90210); x = rnorm(100); y = lag(x,-5) + rnorm(100)
ccf(x,y, ylab='CCovF', type='covariance')

1.6 Estimation of Correlation

For data analysis, only the sample values, x1, x2, . . ., X, are available for estimating
the mean, autocovariance, and autocorrelation functions. In this case, the assumption
of stationarity becomes critical and allows the use of averaging to estimate the
population means and covariance functions.

Accordingly, if a time series is stationary, the mean function (1.16) y, = p is
constant so that we can estimate it by the sample mean,

1 n
%= ;;x,. (1.24)

The standard error of the estimate is the square root of var(x), which can be computed
using first principles (recall Property 1.1), and is given by

n n

var(x) = nLZCOV(Z x,,zn:xs) = nizzzn:cov (x4, x5) = % i (1 - %)yx(h); (1.25)

t=1 s=1 t=1s=1 h=-n

see Figure 1.13.

summing over s and t

Fig. 1.13. Summing over s and ¢ in (1.25) with n = 5.

If the process is white noise, (1.25) reduces to the familiar o-fc/n recalling that
v (0) = o-fc. Note that, in the case of dependence, the standard error of X may be
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smaller or larger than the white noise case depending on the nature of the correlation
structure (see Problem 1.13).

The theoretical autocovariance function, (1.17), is estimated by the sample auto-
covariance function defined as follows.

Definition 1.12 7he sample autocovariance function is defined as
n—h
OENRYEAEEICAE)) (1.26)
t=1

with y(=h) = Y(h) for h=0,1,...,n - 1.

The sum in (1.26) runs over a restricted range because x,.;, is not available for
t + h > n. The estimator in (1.26) is preferred to the one that would be obtained by
dividing by n — h because (1.26) is a non-negative definite function.

The autocovariance function, y (h), of a stationary process is non-negative definite
ensuring that variances of linear combinations of the variates x; will never be negative.
That is, for any n > 1, and constants ay, . . ., ay,

n n
0 < var(a| x| + -+ + apxy) = Z ZajakV(j - k),
i=1 k=1

using Property 1.1. And, because a variance is never negative, the estimate of that
variance

n n
var(ajxi + -+ + anXp) = ZZ%’%?U -k,
i=1 k=1

should also be non-negative. The estimator in (1.26) guarantees this result, but no
such guarantee exists if we divide by n — h. Note that neither dividing by n nor n — h
in (1.26) yields an unbiased estimator of y (k).

Definition 1.13 The sample autocorrelation function is defined, analogously to
(1.18), as
~ y(h)
(h) = =——. 1.27)
Y750

Example 1.23 Sample ACF and Scatterplots
Estimating autocorrelation is similar to estimating of correlation in the usual setup
where we have pairs of observations, say (x;,y;), fori = 1,...,n. For example,
if we have time series data x, for = 1,..., n, then the pairs of observations for
estimating p(h) are the n—h pairs given by {(x;, x;41); t = 1,...,n—h}.Figure 1.14
shows an example using the SOI series where p(1) = .604 and p(6) = —.187. The
following code was used for Figure 1.14.
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Fig. 1.14. Display for Example 1.23. For the SOI series, we have a scatterplot of pairs of values
one month apart (left) and six months apart (right). The estimated correlation is displayed in
the box.

(r = round(acf(soi, 6, plot=FALSE)S$acf[-1], 3)) # first 6 sample acf values
[1] ©0.604 0.374 0.214 0.050 -0.107 -0.187

par (mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(1.6,.6,0))

plot(lag(soi,-1), soi)

legend('topleft', legend=r[1])

plot(lag(soi,-6), soi)

legend('topleft', legend=r[6])

The sample autocorrelation function has a sampling distribution that allows us to
assess whether the data comes from a completely random or white series or whether
correlations are statistically significant at some lags.

Property 1.2 Large-Sample Distribution of the ACF

If x; is white noise, then for n large and under mild conditions, the sample ACF,
ox(h), for h = 1,2,..., H, where H is fixed but arbitrary, is approximately normal
with zero mean and standard deviation given by of ‘/Lﬁ

Based on Property 1.2, we obtain a rough method for assessing whether a series is
white noise by determining how many values of p(h) are outside the interval £2/+/n
(two standard errors); for white noise, approximately 95% of the sample ACFs should
be within these limits.3 The bounds do not hold in general and can be ignored if the
interest is other than assessing whiteness. The applications of this property develop
because many statistical modeling procedures depend on reducing a time series to
a white noise series using various kinds of transformations. Afterwards the plotted
ACEF of the residuals behave as stated.

Example 1.24 A Simulated Time Series
To compare the sample ACF for various sample sizes to the theoretical ACF,
consider a contrived set of data generated by tossing a fair coin, letting x, = 1 when
a head is obtained and x; = —1 when a tail is obtained. Then, construct y; as

3 In this text, z.gp5 = 1.95996398454005423552 . . . of normal fame, which is often rounded to 1.96, is
rounded to 2.
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Fig. 1.15. Realization of (1.28), n = 10.

YVt = 5 + X; — .7.xt_1. (1.28)

To simulate data, we consider two cases, one with a small sample size (n = 10;

see Figure 1.15) and another with a moderate sample size (n = 100).
set.seed(101010)
x1 = 2*rbinom(11, 1, .5) -1 # simulated sequence of coin tosses
x2 = 2*rbinom(101, 1, .5) - 1
yl 5 + filter(x1l, sides=1, filter=c(1,-.7))[-1]
y2 = 5 + filter(x2, sides=1, filter=c(1l,-.7))[-1]
plot.ts(yl, type='s'); plot.ts(y2, type='s') # only one shown
acf(yl, lag.max=4, plot=FALSE) # 1/V10 =.32
Autocorrelations of series 'yl', by lag
0 1 2 3 4
1.000 -0.688 0.425 -0.306 -0.007
acf(y2, lag.max=4, plot=FALSE) # 1/V100 =.1
Autocorrelations of series 'y2', by lag
0 1 2 3 4
1.000 -0.480 -0.002 -0.004 0.000
# Note that the sample ACF at lag zero is always 1 (Why?).

The theoretical ACF can be obtained from the model (1.28) using first principles
so that

-7
=17
and p, (h) = Ofor |A| > 1 (Problem 1.18). Itis interesting to compare the theoretical
ACF with sample ACFs for the realization where n = 10 and the other realization
where n = 100; note the increased variability in the smaller size sample.

= —47

Definition 1.14 The estimators for the cross-covariance function, yxy(h), as given
in (1.21) and the cross-correlation, pxy(h), in (1.22) are given, respectively, by the
sample cross-covariance function

n-h
Fey(h) = n7 > Ceren = D = ), (1.29)
t=1

where Yyy (—h) = Yyx(h) determines the function for negative lags, and the sample
cross-correlation function
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Fig. 1.16. Sample ACFs of the SOI series (top) and of the Recruitment series (middle), and
the sample CCF of the two series (bottom); negative lags indicate SOI leads Recruitment. The
lag axes are in terms of seasons (12 months).

Yxy(h)

J707,0)

The sample cross-correlation function can be examined graphically as a function
of lag h to search for leading or lagging relations in the data using the property
mentioned in Example 1.22 for the theoretical cross-covariance function. Because
-1 < pyy(h) < 1, the practical importance of peaks can be assessed by comparing
their magnitudes with their theoretical maximum values. Furthermore, for x; and y,
independent processes, then under mild conditions, we have the following property.

ﬁxy(h) = (1.30)

Property 1.3 Large-Sample Distribution of Cross-Correlation
The large sample distribution of pxy(h) is normal with mean zero and standard
deviation —= 1f at least one of the processes is independent white noise.

Example 1.25 SOI and Recruitment Correlation Analysis
The autocorrelation and cross-correlation functions are also useful for analyzing
the joint behavior of two stationary series whose behavior may be related in some
unspecified way. In Example 1.4 (see Figure 1.5), we have considered simultaneous
monthly readings of the SOI and the number of new fish (Recruitment) computed
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from a model. Figure 1.16 shows the autocorrelation and cross-correlation functions
(ACFs and CCF) for these two series.

Both of the ACFs exhibit periodicities corresponding to the correlation between
values separated by 12 units. Observations 12 months or one year apart are strongly
positively correlated, as are observations at multiples such as 24, 36,48, . . . Obser-
vations separated by six months are negatively correlated, showing that positive
excursions tend to be associated with negative excursions six months removed.
This appearance is rather characteristic of the pattern that would be produced by a
sinusoidal component with a period of 12 months; see Example 1.26. The cross-
correlation function peaks at 4 = —6, showing that the SOI measured at time ¢ — 6
months is associated with the Recruitment series at time 7. We could say the SOI
leads the Recruitment series by six months. The sign of the CCF at h = —6 is
negative, leading to the conclusion that the two series move in different directions;
that is, increases in SOI lead to decreases in Recruitment and vice versa. Again,
note the periodicity of 12 months in the CCFE.

The flat lines shown on the plots indicate +2/ V453, so that upper values would
be exceeded about 2.5% of the time if the noise were white as specified in Prop-
erty 1.2 and Property 1.3. Of course, neither series is noise, so we can ignore these
lines. To reproduce Figure 1.16 in R, use the following commands:
par (mfrow=c(3,1))
acf(soi, 48, main="Southern Oscillation Index")

acf(rec, 48, main="Recruitment')
ccf(soi, rec, 48, main="SOI vs Recruitment", ylab="CCF")

Example 1.26 Prewhitening and Cross Correlation Analysis

Although we do not have all the tools necessary yet, it is worthwhile to discuss the
idea of prewhitening a series prior to a cross-correlation analysis. The basic idea is
simple; in order to use Property 1.3, at least one of the series must be white noise.
If this is not the case, there is no simple way to tell if a cross-correlation estimate is
significantly different from zero. Hence, in Example 1.25, we were only guessing
at the linear dependence relationship between SOI and Recruitment.

For example, in Figure 1.17 we generated two series, x, and y;, fort = 1,..., 120
independently as

X, =2cos(2mt5) +wy and  y, =2cos(2m [t +5135) + wia

where {w;1, wy; t = 1,...,120} are all independent standard normals. The series
are made to resemble SOI and Recruitment. The generated data are shown in the
top row of the figure. The middle row of Figure 1.17 show the sample ACF of each
series, each of which exhibits the cyclic nature of each series. The bottom row (left)
of Figure 1.17 shows the sample CCF between x; and y,, which appears to show
cross-correlation even though the series are independent. The bottom row (right)
also displays the sample CCF between x; and the prewhitened y;, which shows that
the two sequences are uncorrelated. By prewhtiening y;, we mean that the signal
has been removed from the data by running a regression of y, on cos(2nt) and
sin(2nt) [see Example 2.9] and then putting §; = y; —y;, where J, are the predicted
values from the regression.
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Fig. 1.17. Display for Example 1.26

The following code will reproduce Figure 1.17.
set.seed(1492)
num=120; t=1:num
X = ts(2*cos(2*pi*t/12) + rnorm(num), freq=12)
Y = ts(2%cos(2*pi*(t+5)/12) + rnorm(num), freq=12)
Yw = resid( 1m(Y~ cos(2*pi*t/12) + sin(2*pi*t/12), na.action=NULL) )
par (mfrow=c(3,2), mgp=c(1.6,.6,0), mar=c(3,3,1,1) )
plot(X); plot(Y)
acf(X,48, ylab="ACF(X)'); acf(Y,48, ylab="ACF(Y)"')
ccf(X,Y,24, ylab="CCFX,YD")
ccf(X,Yw,24, ylab="CCF(X,Yw)', ylim=c(-.6,.6))

Problems

1.1 In 25 words or less, and without using symbols, why is stationarity important?
1.2 (a) Generate n = 100 observations from the autoregression
Xy = —.9Xt_2 + wy

with o, = 1, using the method described in Example 1.8. Next, apply the moving
average filter
Ve = (Xp + X1 + X2 + X0-3) /4

to x;, the data you generated. Now plot x; as a line and superimpose v; as a dashed
line. Note: v = filter(x, rep(1l/4, 4), sides = 1)
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(b) Repeat (a) but with
x; = 2cos(2nt/4) + wy,

where w, ~ iid N(0, 1).

(c) Repeat (a) but where x; is the log of the Johnson & Johnson data discussed in
Example 1.1.

(d) What is seasonal adjustment (you can do an internet search)?

(e) State your conclusions (in other words, what did you learn from this exercise).

1.3 Show that the autocovariance function can be written as

v(s,t) = E[(xs — ps) (X — )] = E(xgX¢) — ps iy,
where E[x;] = y,.

1.4 Consider the time series

X; = 1+ Bot +wy,

where 1 and (3, are regression coefficients, and w, is a white noise process with
variance o2

we

(a) Determine whether x; is stationary.
(b) Show that the process y, = x; — x;_ is stationary.
(c) Show that the mean of the moving average

1
Vr = g(xt—l + X + Xeq1)

is B1 + Bat.
1.5 For a moving average process of the form
Xt = Wiol + 2w + Wi,

where w, are independent with zero means and variance a'vzv, determine the autoco-
variance and autocorrelation functions as a function of lag 4 and sketch the ACF as
a function of A.

1.6 Consider the random walk with drift model

Xt = 6+xt_1 + wy,

fort =1,2,..., with xg = 0, where w; is white noise with variance o-fv.
(a) Show that the model can be written as x; = ot + 212:1 Wk.
(b) Find the mean function and the autocovariance function of x;.

(c) Argue that x; is not stationary.
(d) Show p,(t — 1,1) = 1/% — 1 as t — oo. What is the implication of this result?
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(e) Suggest a transformation to make the series stationary, and prove that the trans-
formed series is stationary. (Hint: See Problem 1.4b.)

1.7 Would you treat the global temperature data discussed in Example 1.2 and shown
in Figure 1.3 as stationary or non-stationary? Support your answer.

1.8 A time series with a periodic component can be constructed from
x; = Uy sin(2rrwot) + U, cos(2rwot),

where U; and U, are independent random variables with zero means and E (Ulz) =
E (U22) = o2, The constant wq determines the period or time it takes the process to
make one complete cycle. Show that this series is weakly stationary with autocovari-
ance function

y(h) = o2 cos(2nwoh).

1.9 Suppose we would like to predict a single stationary series x; with zero mean and
autocorrelation function y(h) at some time in the future, say, t + m, for m > 0.

(a) If we predict using only x, and some scale multiplier A, show that the mean-square
prediction error
MSE(A) = E[(Xr1m — Ax))’]

is minimized by the value
A = p(m).

(b) Show that the minimum mean-square prediction error is

MSE(A) = y(0)[1 - p*(m)].
(c) Show that if x;4,,;, = Ax;, then p(m) = 1if A > 0, and p(m) = -1if A <O.
1.10 For two jointly stationary series x; and y;, verify (1.23).

1.11 Consider the two series
Xt = Wy

Ve =W — 0wy + iy,

where w, and u, are independent white noise series with variances o2, and o2,
respectively, and 6 is an unspecified constant.

(a) Express the ACF, py(h), for h = 0, %1, +2,... of the series y; as a function of
2,02, and 6.

(b) Determine the CCF, pyy (h) relating x; and y;.
(c) Show that x; and y, are jointly stationary.

1.12 Let wy, fort = 0,+1,+2, ... be a normal white noise process, and consider the
series
Xt = WeWye_1.

Determine the mean and autocovariance function of x,, and state whether it is sta-
tionary.
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1.13 Suppose x; = u + w; + Ow,_1, where w; ~ wn(0,02).

(a) Show that mean function is E(x;) = u.

(b) Show that the autocovariance function of x; is given by y,(0) = o-%v(l + 62),
Yx(x1) = 026, and y, (h) = 0 otherwise.

(c) Show that x, is stationary for all values of 6 € R.

(d) Use (1.25) to calculate var(x) for estimating ¢ when (i) 6 = 1, (ii) 6 = 0, and (iii)
0=-1

(e) In time series, the sample size n is typically large, so that ("n;l) ~ 1. With this as
a consideration, comment on the results of part (d); in particular, how does the
accuracy in the estimate of the mean u change for the three different cases?

1.14 (a) Simulate a series of n = 500 Gaussian white noise observations as in Exam-
ple 1.6 and compute the sample ACF, p(h), to lag 20. Compare the sample ACF
you obtain to the actual ACF, p(h). [Recall Example 1.18.]

(b) Repeat part (a) using only n = 50. How does changing » affect the results?

1.15 (a) Simulate a series of n = 500 moving average observations as in Example 1.7
and compute the sample ACF, p(h), to lag 20. Compare the sample ACF you
obtain to the actual ACF, p(h). [Recall Example 1.19.]

(b) Repeat part (a) using only n = 50. How does changing n affect the results?

1.16 Simulate 500 observations from the AR model specified in Example 1.8 and
then plot the sample ACF to lag 50. What does the sample ACF tell you about the
approximate cyclic behavior of the data? Hint: Recall Example 1.25.

1.17 Simulate a series of n = 500 observations from the signal-plus-noise model
presented in Example 1.10 with (a) o, = 0, (b) o, = 1 and (¢) o, = 5. Compute
the sample ACF to lag 100 of the three series you generated and comment.

1.18 For the time series y, described in Example 1.24, verify the stated result that
py(1) = =47 and py(h) =0 for h > 1.



Chapter 2

Time Series Regression and EDA

2.1 Classical Regression for Time Series

We begin our discussion of linear regression in the time series context by assuming
some output or dependent time series, say, x;, forz = 1,.. ., n, is being influenced by
a collection of possible inputs or independent series, say, z;1, 22, - - - » 214, Where we
first regard the inputs as fixed and known. This assumption, necessary for applying
conventional linear regression, will be relaxed later on. We express this relation
through the linear regression model

Xy = Po+ P12z + Bazip+ -+ BgZig + Wi, 2.1

where S, B1, . . ., B4 are unknown fixed regression coefficients, and {w, } is arandom
error or noise process consisting of independent and identically distributed (iid)
normal variables with mean zero and variance o2 ; we will relax the iid assumption
later.

Example 2.1 Estimating a Linear Trend
Consider the global temperature data, say x;, shown in Figure 1.3 and Figure 2.1.
As discussed in Example 1.2, there is an apparent upward trend in the series that
has been used to argue the global warming hypothesis. We might use simple linear
regression to estimate that trend by fitting the model

x: = Bo+ Bizr +wr,  z = 1880, 1857, .. .,2009.

This is in the form of the regression model (2.1) with ¢ = 1. Note that we are

making the assumption that the errors, w;, are an iid normal sequence, which may

not be true; the problem of autocorrelated errors is discussed in detail in Chapter 3.

Also note that we could have used, for example, z; = 1, ..., 130, without affecting

the interpretation of the slope coefficient, §1; only the intercept, B¢, would change.
In ordinary least squares (OLS), we minimize the error sum of squares

Q=2 wl=>"(x~[ho+pral)’
t=1 t=1
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Global Temperature Deviation

<
?

I T T T T T I
1880 1900 1920 1940 1960 1980 2000

Time

Fig. 2.1. Global temperature deviations shown in Figure 1.3 with fitted linear trend line, which
SUCKS as an estimate of trend.

with respect to §; for i = O, 1. In this case we can use simple calculus to evaluate
00/0B; = 0 fori = 0,1, to obtain two equations to solve for the 8s. The OLS
estimates of the coefficients are explicit and given by

~ Z:l_l(xt - X)(zr = Z) ~ ~
B = — — and Bo=Xx-p812,
(2 —2)?
where X = }; x;/n and Z; = ), z;/n are the respective sample means. Note that we
could have used, for example, z; = 1,..., 130, without affecting the interpretation

of the slope coefficient, 3;; only the intercept, Sy, would change.

Using R, we obtained the estimated coefficients ,EO = —11.2, and El = .006
(with a standard error of .0003) yielding a highly significant estimated increase
of .6 degrees centigrade per 100 years. We discuss the precise way in which
the solution was accomplished after the example. Finally, Figure 2.1 shows the
global temperature data, say x;, with the estimated trend, say x; = —11.2 + .006z;,
superimposed. It is apparent that the estimated trend line obtained via simple linear
regression does not quite capture the trend of the data and better models will be

needed. To perform this analysis in R, use the following commands:
summary (fit <- lm(gtemp~time(gtemp))) # regress gtemp on time - view results

non

plot(gtemp, type="o", ylab="Global Temperature Deviation")
abline(fit) # add the fitted regression line to the plot

The multiple linear regression model described by (2.1) can be conveniently writ-
ten in a more general notation by defining the column vectors z; = (1, z¢1, 212, . - -» Ztq)”
and B = (Bo, B1, ..., Bg)’, where ’ denotes transpose, so (2.1) can be written in the
alternate form

xt=ﬁ0+ﬂlztl+"'+ﬁqth+wt=ﬁ,zt+wt. (2.2)

where w, ~ iid N(O0, o-fv). As in the previous example, OLS estimation finds the
coefficient vector B that minimizes the error sum of squares
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n n
Q= Z w; = Z(xr -B'u), (2.3)
=1 =1
with respect to Bo, B1,. .., By. This minimization can be accomplished by solving

00/0B; =0fori =0,1,...,q, which yields g + 1 equations with ¢ + 1 unknowns.
In vector notation, this procedure gives the normal equations

(Z 2z) B = Sz 24)
t=1 t=1

If 37" | z:z; is non-singular, the least squares estimate of B is

-1 .n

B= (Z z:z,’) ;zm.

The minimized error sum of squares (2.3), denoted SSE, can be written as
- —7
SSE = >"(x - Bz)”. 2.5)
=1

The ordinary least squares estimators are unbiased, i.e., £ (3) = B, and have the
smallest variance within the class of linear unbiased estimators.
If the errors w, are normally distributed, 8 is normally distributed with

cov(B) = 02 C, (2.6)

where

n -1
C= (Z z,z;) @2.7)
t=1

is a convenient notation. An unbiased estimator for the variance o2, is

s2 = MSE = —>— (2.8)

where M SE denotes the mean squared error. Under the normal assumption,

. (Bi — Bi) 2.9)

=
has the t-distribution with n — (¢ + 1) degrees of freedom; ¢;; denotes the i-th diagonal
element of C, as defined in (2.7). This result is often used for individual tests of the
null hypothesis Hy: 5; =0fori=1,...,q.

Various competing models are often of interest to isolate or select the best subset of
independent variables. Suppose a proposed model specifies that only a subset r < ¢
independent variables, say, z; 1> = {21, 22, .., 2} is influencing the dependent
variable x;. The reduced model is
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Table 2.1. Analysis of Variance for Regression

Source df Sum of Squares Mean Square F
Zr+lig q-r SSR=SSE, -SSE ~ MSR=SSR/(q-r) F =438
Error  n—(q+1) SSE MSE = SSE/(n—q— 1)
Xe=Bo+ Bizer + -+ Brig +wy (2.10)
where 1, B2, . .., B are a subset of coeflicients of the original g variables.
The null hypothesis in this case is Hy: 8,41 = -+ = B; = 0. We can test the

reduced model (2.10) against the full model (2.2) by comparing the error sums of
squares under the two models using the F'-statistic
_(SSE, - SSE)/(q—r) _ MSR
~ SSE/(n-g-1)  MSE’

@2.11)

where SSE, is the error sum of squares under the reduced model (2.10). Note that
SSE, > SSE because the full model has more parameters. If Hy: 8,11 =--+- = g, =
0 is true, then SSE, ~ SSE because the estimates of those SBs will be close to 0.
Hence, we do not believe Hy if SSR = SSE, — SSE is big. Under the null hypothesis,
(2.11) has a central F-distribution with ¢ — r and n — g — 1 degrees of freedom when
(2.10) is the correct model.

These results are often summarized in an Analysis of Variance (ANOVA) table
as given in Table 2.1 for this particular case. The difference in the numerator is often
called the regression sum of squares (SSR). The null hypothesis is rejected at level
aif F > F:f__qr_l (@), the 1 — a percentile of the F' distribution with g — r numerator
and n — g — 1 denominator degrees of freedom.

A special case of interest is the null hypothesis Hy: 1 = --- = 8, = 0. In this
case r = 0, and the model in (2.10) becomes

Xt = Po+ws.

We may measure the proportion of variation accounted for by all the variables using

Ey - SSE
R? = M7 (2.12)
SSEy
where the residual sum of squares under the reduced model is
n
SSEy = Z(x, 2. (2.13)
=1

In this case SSEy is the sum of squared deviations from the mean x and is otherwise
known as the adjusted total sum of squares. The measure R? is called the squared
multiple correlation between x, and the variables z;1, z/2, . . ., Zrq-
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The techniques discussed in the previous paragraph can be used to test various
models against one another using the F test given in (2.11). These tests have been
used in the past in a stepwise manner, where variables are added or deleted when the
values from the F-test either exceed or fail to exceed some predetermined levels. The
procedure, called stepwise multiple regression, is useful in arriving at a set of useful
variables. An alternative is to focus on a procedure for model selection that does not
proceed sequentially, but simply evaluates each model on its own merits. Suppose
we consider a normal regression model with k coefficients and denote the maximum
likelihood estimator for the variance as

ot SSE (k), (2.14)

n

where SSE (k) denotes the residual sum of squares under the model with k regression
coefficients. Then, Akaike (1969, 1973, 1974) suggested measuring the goodness of
fit for this particular model by balancing the error of the fit against the number of
parameters in the model; we define the following.

Definition 2.1 Akaike’s Information Criterion (AIC)

., n+2k
AIC =log 52 + == (2.15)
n

where 3,% is given by (2.14) and k is the number of parameters in the model.

The value of k yielding the minimum AIC specifies the best model.! The idea is
roughly that minimizing '&i would be a reasonable objective, except that it decreases
monotonically as k increases. Therefore, we ought to penalize the error variance by a
term proportional to the number of parameters. The choice for the penalty term given
by (2.15) is not the only one, and a considerable literature is available advocating
different penalty terms. A corrected form, suggested by Sugiura (1978), and expanded
by Hurvich and Tsai (1989), can be based on small-sample distributional results for
the linear regression model. The corrected form is defined as follows.

Definition 2.2 AIC, Bias Corrected (AICc)

n+k

AlICc = log 5’,% + T,
n—k-—

(2.16)
where 5']% is given by (2.14), k is the number of parameters in the model, and n is the
sample size.

We may also derive a correction term based on Bayesian arguments, as in Schwarz
(1978), which leads to the following.

! Formally, AIC is defined as —2log Ly + 2k where Ly, is the maximum value of the likelihood and k is
the number of parameters in the model. For the normal regression problem, AIC can be reduced to the
form given by (2.15).
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Definition 2.3 Bayesian Information Criterion (BIC)

., kI
BIC = log &2 + ~—2" 2.17)
n

using the same notation as in Definition 2.2.

BIC is also called the Schwarz Information Criterion (SIC); see also Rissanen
(1978) for an approach yielding the same statistic based on a minimum description
length argument. Various simulation studies have tended to verify that BIC does well
at getting the correct order in large samples, whereas AICc tends to be superior in
smaller samples where the relative number of parameters is large; see McQuarrie
and Tsai (1998) for detailed comparisons. In fitting regression models, two measures
that have been used in the past are adjusted R-squared, which is essentially s2,, and
Mallows C,,, Mallows (1973), which we do not consider in this context.

Example 2.2 Pollution, Temperature and Mortality
The data shown in Figure 2.2 are extracted series from a study by Shumway et
al. (1988) of the possible effects of temperature and pollution on weekly mor-
tality in Los Angeles County. Note the strong seasonal components in all of the
series, corresponding to winter-summer variations and the downward trend in the
cardiovascular mortality over the 10-year period.

A scatterplot matrix, shown in Figure 2.3, indicates a possible linear relation
between mortality and the pollutant particulates and a possible relation to tempera-
ture. Note the curvilinear shape of the temperature mortality curve, indicating that
higher temperatures as well as lower temperatures are associated with increases in
cardiovascular mortality.

Based on the scatterplot matrix, we entertain, tentatively, four models where
M; denotes cardiovascular mortality, 7; denotes temperature and P, denotes the
particulate levels. They are

M; = B1 + Bat + wy (2.18)
M; = B+ Bot + B3(T; = T.) + w; (2.19)
M, = B1 + Bat + B3(T; = T.) + Ba(T; = T)* + w, (2.20)
M, = By + Bot + B3(T; = T) + Ba(Ty = T.)* + BsPr + w, (2.21)

where we adjust temperature for its mean, 7. = 74.6, to avoid scaling problems.
It is clear that (2.18) is a trend only model, (2.19) is linear temperature, (2.20)
is curvilinear temperature and (2.21) is curvilinear temperature and pollution. We
summarize some of the statistics given for this particular case in Table 2.2. The
values of R? were computed by noting that SSE; = 50, 687 using (2.13).

We note that each model does substantially better than the one before it and that
the model including temperature, temperature squared, and particulates does the
best, accounting for some 60% of the variability and with the best value for AIC
and BIC (because of the large sample size, AIC and AICc are nearly the same).
Note that one can compare any two models using the residual sums of squares and
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Fig. 2.2. Average weekly cardiovascular mortality (top), temperature (middle) and particulate
pollution (bottom) in Los Angeles County. There are 508 six-day smoothed averages obtained
by filtering daily values over the 10 year period 1970-1979.

(2.11). Hence, a model with only trend could be compared to the full model using
qg=5r=2n=508,s0

(40,020 —20,508)/3

160,
20,508/503

F3503 =
which exceeds F3503(.001) = 5.51. We obtain the best prediction model,

M; = 81.59 — 027002\t — 473 (032)(T; — 74.6)
+ .023(.003)(7} - 74.6)2 + .255(4019)P¢,

for mortality, where the standard errors, computed from (2.6)-(2.8), are given in
parentheses. As expected, a negative trend is present in time as well as a negative
coeflicient for adjusted temperature. The quadratic effect of temperature can clearly
be seen in the scatterplots of Figure 2.3. Pollution weights positively and can be
interpreted as the incremental contribution to daily deaths per unit of particulate
pollution. It would still be essential to check the residuals w, = M; — A//L for
autocorrelation (of which there is a substantial amount), but we defer this question
to to §3.9 when we discuss regression with correlated errors.

Below is the R code to plot the series, display the scatterplot matrix, fit the final
regression model (2.21), and compute the corresponding values of AIC and BIC.
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Fig. 2.3. Scatterplot matrix showing plausible relations between mortality, temperature, and
pollution.

Table 2.2. Summary Statistics for Mortality Models

Model k& SSE df MSE R? AIC BIC
(2.18) 2 40,020 506 79.0 .21 538 540
(2.19) 3 31413 505 622 .38 5.14 5.17
(2.20) 4 27,985 504 555 .45 5.03 5.07
(2.21) 5 20,508 503 40.8 .60 4.72 4.77

Finally, the use of na.action in Im() is to retain the time series attributes for the
residuals and fitted values.
par (mfrow=c(3,1))

plot(cmort, main="Cardiovascular Mortality", xlab="", ylab="")
plot(tempr, main="Temperature", xlab="", ylab="")
plot(part, main="Particulates", xlab="", ylab="")

dev.new() # open a new graphic device for the scatterplot matrix
pairs(cbind(Mortality=cmort, Temperature=tempr, Particulates=part))
temp = tempr-mean(tempr) # center temperature

temp2 = temp*2

trend = time(cmort) # time

fit = Im(cmort~ trend + temp + temp2 + part, na.action=NULL)
summary(fit) # regression results

summary(aov(fit)) # ANOVA table (compare to next line)

summary (aov (lm(cmort~cbind(trend, temp, temp2, part)))) # Table 2.1
num = length(cmort) # sample size
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AIC(fit)/num - log(2*pi) # AIC as in Def 2.1
BIC(fit)/num - log(2*pi) # BIC as in Def 2.3

As previously mentioned, it is possible to include lagged variables in time series
regression models and we will continue to discuss this type of problem throughout
the text. This concept is explored further in Problem 2.2. The following is a simple
example of lagged regression.

Example 2.3 Regression With Lagged Variables

In Example 1.25, we discovered that the Southern Oscillation Index (SOI) measured
at time ¢ — 6 months is associated with the Recruitment series at time ¢, indicating
that the SOI leads the Recruitment series by six months. Although there is strong ev-
idence that the relationship is NOT linear (this is discussed further in Example 2.7),
for demonstration purposes only, we consider the following regression,

Ry = B1 + BaSi—6 + Wi, (2.22)

where R, denotes Recruitment for month 7 and S,_g denotes SOI six months prior.
Assuming the w;, sequence is white, the fitted model is

R, = 65.79 — 44.28(5.78)S1_¢ (2.23)

with &, = 22.5 on 445 degrees of freedom. This result indicates the strong
predictive ability of SOI for Recruitment six months in advance. Of course, it is
still essential to check the the model assumptions, but we defer this discussion until
later.

Performing lagged regression in R is a little difficult because the series must be
aligned prior to running the regression. The easiest way to do this is to create an

object that we call fish using ts.intersect, which aligns the lagged series.
fish = ts.intersect( rec, soil6=lag(soi,-6) )
summary(fitl <- Im(rec~ soil6, data=fish, na.action=NULL))

The headache of aligning the lagged series can be avoided by using the R package

dynlm, which must be downloaded and installed.
require (dynlm)
summary (fit2 <- dynlm(rec~ L(s0i,6)))

In the dynlm example, fit2 is similar to a 1m object, but the time series attributes
are retained without any additional commands.

2.2 Exploratory Data Analysis

In general, it is necessary for time series data to be stationary so averaging lagged
products over time, as in the previous section, will be a sensible thing to do. With time
series data, it is the dependence between the values of the series that is important
to measure; we must, at least, be able to estimate autocorrelations with precision.
It would be difficult to measure that dependence if the dependence structure is not
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regular or is changing at every time point. Hence, to achieve any meaningful sta-
tistical analysis of time series data, it will be crucial that, if nothing else, the mean
and the autocovariance functions satisfy the conditions of stationarity (for at least
some reasonable stretch of time) stated in Definition 1.7. Often, this is not the case,
and we will mention some methods in this section for playing down the effects of
nonstationarity so the stationary properties of the series may be studied.

A number of our examples came from clearly nonstationary series. The Johnson
& Johnson series in Figure 1.1 has a mean that increases exponentially over time, and
the increase in the magnitude of the fluctuations around this trend causes changes in
the covariance function; the variance of the process, for example, clearly increases as
one progresses over the length of the series. Also, the global temperature series shown
in Figure 1.3 contains some evidence of a trend over time; human-induced global
warming advocates seize on this as empirical evidence to advance their hypothesis
that temperatures are increasing.

Perhaps the easiest form of nonstationarity to work with is the trend stationary
model wherein the process has stationary behavior around a trend. We may write this
type of model as

Xt = Mr + Yt (2.24)

where x, are the observations, u; denotes the trend, and y; is a stationary process.
Quite often, strong trend, u,, will obscure the behavior of the stationary process, y;, as
we shall see in numerous examples. Hence, there is some advantage to removing the
trend as a first step in an exploratory analysis of such time series. The steps involved
are to obtain a reasonable estimate of the trend component, say i, and then work
with the residuals

Vi = Xt = Hy. (2.25)

Consider the following example.

Example 2.4 Detrending Global Temperature
Here we suppose the model is of the form of (2.24),

Xt = Mt + Y1,

where, as we suggested in the analysis of the global temperature data presented in
Example 2.1, a straight line might be a reasonable model for the trend, i.e.,

He = B1+ Bat.
In that example, we estimated the trend using ordinary least squares? and found

G =—11.2+.0061.

2 Because the error term, y;, is not assumed to be iid, the reader may feel that weighted least squares is
called for in this case. The problem is, we do not know the behavior of y, and that is precisely what
we are trying to assess at this stage. An important result by Grenander and Rosenblatt (1957, Ch 7),
however, is that under mild conditions, for polynomial or periodic regression, when the sample size is
large, ordinary least squares is equivalent to weighted least squares in that the standard errors of the
estimates are the approximately same.
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Fig. 2.4. Detrended (top) and differenced (bottom) global temperature series. The original data
are shown in Figure 1.3 and Figure 2.1.

Figure 2.1 shows the data with the estimated trend line superimposed. To obtain
the detrended series we simply subtract i, from the observations, x;, to obtain the
detrended series

V= x,+11.2 -.0061.

The top graph of Figure 2.4 shows the detrended series. Figure 2.5 shows the ACF
of the original data (top panel) as well as the ACF of the detrended data (middle
panel).

To detrend in the series in R, use the following commands. We also show how to
difference and plot the differenced data; we discuss differencing after this example.
In addition, we show how to generate the sample ACFs displayed in Figure 2.5.
fit = Im(gtemp~time(gtemp), na.action=NULL) # regress gtemp on time
par (mfrow=c(2,1))
plot(resid(fit), type="o", main="detrended")
plot(diff(gtemp), type="o", main="first difference")
par(mfrow=c(3,1)) # plot ACFs
acf(gtemp, 48, main="gtemp")
acf(resid(fit), 48, main="detrended")
acf(diff(gtemp), 48, main="first difference")

In Example 1.9 and the corresponding Figure 1.9 we saw that a random walk
might also be a good model for trend. That is, rather than modeling trend as fixed (as
in Example 2.4), we might model trend as a stochastic component using the random
walk with drift model,

M =0+ M-y + Wi, (2.26)
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where w; is white noise and is independent of y,. If the appropriate model is (2.24),
then differencing the data, x,, yields a stationary process; that is,

Xp = Xp—1 = (g + ye) — (=1 + Y1) (2.27)
=6+Wt+yt_yt—1'

It is easy to show z; = y, — y,_ is stationary using Property 1.1 of Chapter 1. That
is, because y; is stationary,

Yz (h) = cov(Zin, 2t) = COV(Vran — Yeah—1, Yt — Yi-1)
=2yy(h) —yy(h+ 1) —yy(h - 1) (2.28)

is independent of time; we leave it as an exercise (Problem 2.5) to show that x; — x,_;
in (2.27) is stationary.

One advantage of differencing over detrending to remove trend is that no param-
eters are estimated in the differencing operation. One disadvantage, however, is that
differencing does not yield an estimate of the stationary process y, as can be seen in
(2.27). If an estimate of y, is essential, then detrending may be more appropriate. If
the goal is to coerce the data to stationarity, then differencing may be more appropri-
ate. Differencing is also a viable tool if the trend is fixed, as in Example 2.4. That is,
e.g., if u; = B1 + B> t in the model (2.24), differencing the data produces stationarity
(see Problem 2.4):

Xe = X1 = (e +y1) = (et +yi21) = Bo+ yr — Y1

Because differencing plays a central role in time series analysis, it receives its
own notation. The first difference is denoted as

Vx: = x; — x4_1. (2.29)

As we have seen, the first difference eliminates a linear trend. A second difference,
that is, the difference of (2.29), can eliminate a quadratic trend, and so on. In order
to define higher differences, we need a variation in notation that we will use often in
our discussion of ARIMA models in Chapter 3.

Definition 2.4 We define the backshift operator by
Bx; = x,4
and extend it to powers B%x, = B(Bx;) = Bx;_1 = x;-3, and so on. Thus,
B x; = xix. (2.30)
The idea of an inverse operator can also be given if we require B~'B = 1, so that
X = B’le, = Bilx,_l.

That is, B~! is the forward-shift operator. In addition, it is clear that we may rewrite
(2.29) as
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Fig. 2.5. Sample ACFs of the global temperature (top), and of the detrended (middle) and the
differenced (bottom) series.

Vx; = (1 = B)x,, (2.31)
and we may extend the notion further. For example, the second difference becomes
V2x; = (1—=B)*x; = (1 =2B + B)x; = x; — 2x4_1 + X12 (2.32)

by the linearity of the operator. To check, just take the difference of the first difference
V(Vx,) = V(xr = xp-1) = (% = xp-1) = (Xe-1 — X-2).

Definition 2.5 Differences of order d are defined as
ve = (1-B), (2.33)

where we may expand the operator (1 — B)? algebraically to evaluate for higher
integer values of d. When d = 1, we drop it from the notation.

The first difference (2.29) is an example of a linear filter applied to eliminate a
trend. Other filters, formed by averaging values near x,, can produce adjusted series
that eliminate other kinds of unwanted fluctuations, as in Chapter 3. The differencing
technique is an important component of the ARIMA model discussed in Chapter 3.
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Example 2.5 Differencing Global Temperature
The first difference of the global temperature series, also shown in Figure 2.4,
produces different results than removing trend by detrending via regression. For
example, the differenced series does not contain the long middle cycle we observe
in the detrended series. The ACF of this series is also shown in Figure 2.5. In this
case it appears that the differenced process shows minimal autocorrelation, which
may imply the global temperature series is nearly a random walk with drift. It is
interesting to note that if the series is a random walk with drift, the mean of the
differenced series, which is an estimate of the drift, is about .0066 (but with a large

standard error):
mean (diff(gtemp)) = 0.00659 (drift)
sd(diff(gtemp))/sqrt(length(diff(gtemp))) # = 0.00966 (SE)

Often, obvious aberrations are present that can contribute nonstationary as well
as nonlinear behavior in observed time series. In such cases, transformations may
be useful to equalize the variability over the length of a single series. A particularly
useful transformation is

v = log xy, (2.34)

which tends to suppress larger fluctuations that occur over portions of the series where
the underlying values are larger. Other possibilities are power transformations in the
Box—Cox family of the form

(2.35)

(xt=1)/a A #0,
log x; 1=0.

Methods for choosing the power A are available (see Johnson and Wichern, 1992,
§4.7) but we do not pursue them here. Often, transformations are also used to improve
the approximation to normality or to improve linearity in predicting the value of one
series from another.

Example 2.6 Paleoclimatic Glacial Varves
Melting glaciers deposit yearly layers of sand and silt during the spring melting
seasons, which can be reconstructed yearly over a period ranging from the time
deglaciation began in New England (about 12,600 years ago) to the time it ended
(about 6,000 years ago). Such sedimentary deposits, called varves, can be used as
proxies for paleoclimatic parameters, such as temperature, because, in a warm year,
more sand and silt are deposited from the receding glacier. Figure 2.6 shows the
thicknesses of the yearly varves collected from one location in Massachusetts for
634 years, beginning 11,834 years ago. For further information, see Shumway and
Verosub (1992). Because the variation in thicknesses increases in proportion to the
amount deposited, a logarithmic transformation could remove the nonstationarity
observable in the variance as a function of time. Figure 2.6 shows the original and
transformed varves, and it is clear that this improvement has occurred. We may also
plot the histogram of the original and transformed data, as in Problem 2.6, to argue
that the approximation to normality is improved. The ordinary first differences
(2.31) are also computed in Problem 2.6, and we note that the first differences have
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Fig. 2.6. Glacial varve thicknesses (top) from Massachusetts for n = 634 years compared with
log transformed thicknesses (bottom).

a significant negative correlation at lag 4 = 1. Later, in Chapter 5, we will show
that perhaps the varve series has long memory and will propose using fractional
differencing.

Figure 2.6 was generated in R as follows:
par (mfrow=c(2,1))
plot(varve, main="varve", ylab="")
plot(log(varve), main="log(varve)", ylab="" )

Next, we consider another preliminary data processing technique that is used for
the purpose of visualizing the relations between series at different lags, namely, scat-
terplot matrices. In the definition of the ACF, we are essentially interested in relations
between x; and x;_j,; the autocorrelation function tells us whether a substantial linear
relation exists between the series and its own lagged values. The ACF gives a profile
of the linear correlation at all possible lags and shows which values of % lead to the
best predictability. The restriction of this idea to linear predictability, however, may
mask a possible nonlinear relation between current values, x;, and past values, x;_j,.
This idea extends to two series where one may be interested in examining scatterplots
of y; versus x;_p,.

Example 2.7 Scatterplot Matrices, SOI and Recruitment
To check for nonlinear relations of this form, it is convenient to display a lagged
scatterplot matrix, as in Figure 2.7, that displays values of the SOI, S;, on the vertical
axis plotted against S;_j, on the horizontal axis. The sample autocorrelations are
displayed in the upper right-hand corner and superimposed on the scatterplots
are locally weighted scatterplot smoothing (lowess) lines that can be used to help



44 2 Time Series Regression and EDA

s0i(t-2) s0i(t-3)

00 05 1.0
00 05 1.0
00 05 1.0

soi(t)
soi(t)
soi(t)

1.0
1.0
1.0

0.0 05 1.0
0.0 05 1.0
0.0 05 1.0

soi(t)
soi(t)
soi(t)

1.0
1.0
-1.0

soi(t)
00 05 1.0
00 05 1.0
00 05 1.0

soi(t)
soi(t)

1.0
1.0
-1.0

0.0 05 1.0
0.0 05 1.0
0.0 05 1.0

soi(t)
soi(t)
soi(t)

-1.0
-1.0
1.0

Fig. 2.7. Scatterplot matrix relating current SOI values, S;, to past SOI values, S;_j,, at lags
h =1,2,..,12. The values in the upper right corner are the sample autocorrelations and the
lines are a lowess fit.

discover any nonlinearities. We discuss smoothing in the next section, but for now,
think of lowess as a robust method for fitting nonlinear regression.

In Figure 2.7, we notice that the lowess fits are approximately linear, so that
the sample autocorrelations are meaningful. Also, we see strong positive linear
relations at lags 7 = 1,2, 11, 12, that is, between S; and S;_1, S¢-2, St-11, St—12, and
a negative linear relation at lags h = 6, 7. These results match up well with peaks
noticed in the ACF in Figure 1.16.

Similarly, we might want to look at values of one series, say Recruitment,
denoted R, plotted against another series at various lags, say the SOI, S;_j,, to look
for possible nonlinear relations between the two series. Because, for example, we
might wish to predict the Recruitment series, R;, from current or past values of the
SOl series, S;_j, for h = 0, 1, 2, ... it would be worthwhile to examine the scatterplot
matrix. Figure 2.8 shows the lagged scatterplot of the Recruitment series R, on the
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Fig. 2.8. Scatterplot matrix of the Recruitment series, R;, on the vertical axis plotted against
the SOI series, S;_j,, on the horizontal axis atlags & = 0, 1, ... ., 8. The values in the upper right
corner are the sample cross-correlations and the lines are a lowess fit.

vertical axis plotted against the SOI index S;_;, on the horizontal axis. In addition,
the figure exhibits the sample cross-correlations as well as lowess fits.

Figure 2.8 shows a fairly strong nonlinear relationship between Recruitment, R;,
and the SOI series at S;_s, S;—¢, Sy—7, S;—3, indicating the SOI series tends to lead
the Recruitment series and the coefficients are negative, implying that increases
in the SOI lead to decreases in the Recruitment. The nonlinearity observed in the
scatterplots (with the help of the superimposed lowess fits) indicate that the behavior
between Recruitment and the SOI is different for positive values of SOI than for
negative values of SOIL.

Simple scatterplot matrices for one series can be obtained in R using the
lag.plot command. Figure 2.7 and Figure 2.8 may be reproduced using the fol-
lowing scripts provided with the text (see Appendix R for detials):

lagl.plot(soi, 12) # Figure 2.7
lag2.plot(soi, rec, 8) # Figure 2.8
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Fig. 2.9. Display for Example 2.8: Plot of Recruitment (R;) vs SOI lagged 6 months (S;_g)
with the fitted values of the regression as points (+) and a lowess fit (—).

Example 2.8 Regression with Lagged Variables (cont)
In Example 2.3 we regressed Recruitment on lagged SOI,

Ry = B1+ BaSi—6 + wr.

However, in Example 2.7, we saw that the relationship is nonlinear and different
when SOI is positive or negative. In this case, we may consider adding a dummy
variable to account for this change. In particular, we fit the model

R = B1+ B2Si—6 + B3Ds—¢ + BaD;s_6 St + Wy,

where D, is a dummy variable that is 0 if S; < 0 and 1 otherwise. The result of
the fit is given in the R code below. Figure 2.9 shows R, vs S,_¢ with the fitted
values of the regression and a lowess fit superimposed. The piecewise regression
fit is similar to the lowess fit, but we note that the residuals are not white noise (see
the code below). This is followed up in Example 3.40.

dummy = ifelse(soi<®, 0, 1)

fish = ts.intersect(rec, soil6=1lag(soi,-6), dL6=1lag(dummy,-6), dframe=TRUE)
summary (fit <- lm(rec~ soil6*dL6, data=fish, na.action=NULL))

Coefficients:

Estimate Std.Error t.value p.value
(Intercept) 74.479 2.865 25.998 < 2e-16
soil6 -15.358 7.401 -2.075 0.0386
dL6 -1.139 3.711 -0.307 0.7590
soil6:dL6 -51.244 9.523 -5.381 1.2e-07

Residual standard error: 21.84 on 443 degrees of freedom
Multiple R-squared: 0.4024
F-statistic: 99.43 on 3 and 443 DF, p-value: < 2.2e-16
attach(fish)
plot(soil6, rec)
lines(lowess(soil6, rec), col=4, lwd=2)
points(soil6, fitted(fit), pch="+', col=2)
plot(resid(fit)) # not shown ...
acf(resid(fit)) # ... but obviously not noise
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Fig. 2.10. Data generated by (2.36) [top] and the fitted line (2.38) superimposed on the data
[bottom].

As a final exploratory tool, we discuss assessing periodic behavior in time series
data using regression analysis and the periodogram; this material may be thought
of as an introduction to spectral analysis, which we discuss in detail in Chapter 4.
In Example 1.10, we briefly discussed the problem of identifying cyclic or periodic
signals in time series. A number of the time series we have seen so far exhibit periodic
behavior. For example, the data from the pollution study example shown in Figure 2.2
exhibit strong yearly cycles. Also, the Johnson & Johnson data shown in Figure 1.1
make one cycle every year (four quarters) on top of an increasing trend and the speech
data in Figure 1.3 is highly repetitive. The monthly SOI and Recruitment series in
Figure 1.6 show strong yearly cycles, but hidden in the series are clues to the El Nifio
cycle.

Example 2.9 Using Regression to Discover a Signal in Noise
In Example 1.10, we generated n = 500 observations from the model

x; = AcosQQrwt + @) + wy, (2.36)

where w = 1/50, A = 2, ¢ = .6m, and o, = 5; the data are shown on the
bottom panel of Figure 1.10 on page 10. At this point we assume the frequency
of oscillation w = 1/50 is known, but A and ¢ are unknown parameters. In this
case the parameters appear in (2.36) in a nonlinear way, so we use a trigonometric
identity> and write

AcosQrwt + ¢) = 1 cos(Lrwt) + B2 sin(2rwt),

where 1 = Acos(¢) and 8, = —Asin(¢). Now the model (2.36) can be written in
the usual linear regression form given by (no intercept term is needed here)

3 cos(a + f3) = cos(a) cos(B) F sin(a) sin(B).
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x; = B1cos(2nt/50) + B, sin(2xt/50) + wy. (2.37)

Using linear regression on the generated data, the fitted model is

BC\t = —.71('30) cos(2nt/50) — 2.55(_30) sin(27t/50) (2.38)
with &7, = 4.68, where the values in parentheses are the standard errors. We note
the actual values of the coefficients for this example are 8; = 2cos(.6m) = —.62
and B, = —2sin(.6m) = —1.90. Because the parameter estimates are significant and

close to the actual values, it is clear that we are able to detect the signal in the noise
using regression, even though the signal appears to be obscured by the noise in the
bottom panel of Figure 1.10. Figure 2.10 shows data generated by (2.36) with the
fitted line, (2.38), superimposed.

To reproduce the analysis and Figure 2.10 in R, use the following:
set.seed(1000) # so you can reproduce these results
X = 2*cos(2*pi*1:500/50 + .6%pi) + rnorm(500,0,5)
z1l = cos(2*pi*1:500/50)
z2 = sin(2*pi*1:500/50)
summary (fit <- Im(x~0+z1+z2)) # zero to exclude the intercept
par (mfrow=c(2,1), mar=c(3,3,1,1), mgp=c(1.6,.6,0))
plot.ts(x)
plot.ts(x, col=8, ylab=expression(hat(x)))
lines(fitted(fit), col=2)

We will discuss this and related approaches in more detail in Chapter 4.

2.3 Smoothing Time Series

In §1.4, we introduced the concept of smoothing a time series, and in Example 1.7,
we discussed using a moving average to smooth white noise. This method is useful for
discovering certain traits in a time series, such as long-term trend and seasonal com-
ponents (see Section 4.7 for details). In particular, if x, represents the observations,
then

mo= > ax g, (2.39)

where aj = a_; > 0 and Z;f}k a; = 1is a symmetric moving average of the data.

Example 2.10 Moving Average Smoother
For example, Figure 2.11 shows the monthly SOI series discussed in Example 1.4
smoothed using (2.39) with weights ag = @+ = -+ = as5 = 1/12,and a.¢ = 1/24;
k = 6. This particular method removes (filters out) the obvious annual temperature
cycle and helps emphasize the El Nifio cycle.
To reproduce Figure 2.11 in R:
wgts = c(.5, rep(1,11), .5)/12
soif = filter(soi, sides=2, filter=wgts)
plot(soi)
lines(soif, lwd=2, col=4)
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Fig. 2.11. The SOI series smoothed using (2.39) with k = 6 (and half-weights at the ends). The
insert shows the shape of the moving average (“boxcar’) kernel [not drawn to scale] described
in (2.41).
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Fig. 2.12. Kernel smoother of the SOI. The insert shows the shape of the normal kernel [not
drawn to scale].

Although the moving average smoother does a good job in highlighting the El
Nifio effect, it might be considered too choppy. We can obtain a smoother fit using
the normal distribution for the weights, instead of boxcar-type weights of (2.39).

Example 2.11 Kernel Smoothing
Kernel smoothing is a moving average smoother that uses a weight function, or
kernel, to average the observations. Figure 2.12 shows kernel smoothing of the
mortality series, where m;, is now

m; = i w; () x;, (2.40)
i=1
where _ .
wi(t) = K () [ 2, K () (2.41)

are the weights and K (-) is a kernel function. This estimator, which was originally
explored by Parzen (1962) and Rosenblatt (1956b), is often called the Nadaraya—
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Fig. 2.13. Locally weighted scatterplot smoothers (lowess) of the SOI series.

Watson estimator (Watson, 1966). In this example, and typically, the normal kernel,
K(z) = ﬁ exp(—z2/2), is used.

To implement this in R, use the ksmooth function where a bandwidth can be
chosen. The wider the bandwidth, b, the smoother the result. From the R ksmooth
help file: The kernels are scaled so that their quartiles (viewed as probability densities) are
at + 0.25xbandwidth. For the standard normal distribution, the quartiles are +.674.

In our case, we are smoothing over time, which is of the form #/12 for the
SOI time series. In Figure 2.12, we used the value of b = 1 to correspond to
approximately smoothing over one year (recall that SOI has freq = 12 so that the
time scale is #/12). Figure 2.12 can be reproduced in R as follows.

plot(soi)
lines(ksmooth(time(soi), soi, "normal", bandwidth=1), lwd=2, col=4)

Example 2.12 Lowess
Another approach to smoothing a time plot is nearest neighbor regression. The
technique is based on k-nearest neighbors regression, wherein one uses only the
data {x;—x/2, ..., Xz, ..., X;+k/2} to predict x, via regression, and then sets m; = £;.
Lowess is a method of smoothing that is rather complex, but the basic idea
is close to nearest neighbor regression. Figure 2.13 shows smoothing of mortality
using the R function lowess (see Cleveland, 1979). First, a certain proportion of
nearest neighbors to x; are included in a weighting scheme; values closer to x;
in time get more weight. Then, a robust weighted regression is used to predict x;
and obtain the smoothed values m;. The larger the fraction of nearest neighbors
included, the smoother the fit will be. In Figure 2.13, one smoother uses 5% of
the data to obtain an estimate of the El Nifio cycle of the data. In addition, a
(negative) trend in SOI would indicate the long-term warming of the Pacific Ocean.
To investigate this, we used a lowess with the default smoother span of £=2/3 of the
data.

Figure 2.13 can be reproduced in R or S-PLUS as follows.
plot(soi)
lines(lowess(soi, f=.05), lwd=2, col=4) # E1 Nino cycle
lines(lowess(soi), 1lty=2, 1lwd=2, col=2) # trend (using default span)
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Fig. 2.14. Smooth of mortality as a function of temperature using lowess.

Example 2.13 Smoothing One Series as a Function of Another

In addition to smoothing time plots, smoothing techniques can be applied to smooth-
ing a time series as a function of another time series. We already used this idea in
Example 2.7 to visualize the nonlinearity between Recruitment and SOI at various
lags via lowess. In this example, we smooth the scatterplot of two contemporane-
ously measured time series, mortality as a function of temperature. In Example 2.2,
we discovered a nonlinear relationship between mortality and temperature. Con-
tinuing along these lines, Figure 2.14 shows scatterplots of mortality, M;, and
temperature, T;, along with M; smoothed as a function of 7; using lowess Note that
mortality increases at extreme temperatures, but in an asymmetric way; mortality is
higher at colder temperatures than at hotter temperatures. The minimum mortality
rate seems to occur at approximately 80° F.

Figure 2.14 can be reproduced in R as follows using the defaults.
plot(tempr, cmort, xlab="Temperature", ylab="Mortality")
lines(lowess(tempr, cmort))

Problems

2.1 (Structural Model) For the Johnson & Johnson data, say y,, shown in Figure 1.1,
let x; = log(y;). In this problem, we are going to fit a special type of structural model,
x; =T; + S; + Ny where T; is a trend component, S; is a seasonal component, and N;
is noise. In our case, time ¢ is in quarters (1960.00, 1960.25, .. .) so one unit of time
is a year.

(a) Fit the regression model

xr= Bt +a101() + 202(t) + @303(8) + @aQ4(t) + wy
—— —_——

noise

trend seasonal

where Q;(¢) = 1 if time 7 corresponds to quarter i = 1,2, 3,4, and zero otherwise.
The Q;(¢)’s are called indicator variables. We will assume for now that w; is a
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Gaussian white noise sequence. Hint: Detailed code is given in Appendix R on
page 186.

(b) If the model is correct, what is the estimated average annual increase in the logged
earnings per share?

(c) If the model is correct, does the average logged earnings rate increase or decrease
from the third quarter to the fourth quarter? And, by what percentage does it
increase or decrease?

(d) What happens if you include an intercept term in the model in (a)? Explain why
there was a problem.

(e) Graph the data, x,, and superimpose the fitted values, say x;, on the graph.
Examine the residuals, x; — X;, and state your conclusions. Does it appear that the
model fits the data well (do the residuals look white)?

2.2 For the mortality data examined in Example 2.2:

(a) Add another component to the regression in (2.21) that accounts for the particulate
count four weeks prior; that is, add P,;_4 to the regression in (2.21). State your
conclusion.

(b) Using AIC and BIC, is the model in (a) an improvement over the final model in
Example 2.27

2.3 Read the entire problem before you start because you can do parts (a) and (b) at
the same time.

(a) Generate four series that are random walk with drift, (1.4), of length n = 100
with 6 = .01 and o, = 1. Call the data x; fort = 1, ..., 100. Fit the regression
x; = Bt + w; using least squares. Plot the data, the true mean function (i.e.,
u; = .01¢) and the fitted line, X; = Et, on the same graph.

(b) Generate four series of length n = 100 that are linear trend plus noise, say
y; = .01¢ + w;, where ¢t and w; are as in part (a). Fit the regression y, = Bt + w;
using least squares. Plot the data, the true mean function (i.e., u, = .017) and the
fitted line, y, = B, on the same graph.

(c) Comment (what did you learn from this assignment).

The following R code may be useful for doing (a) and (b) at the same time.
par (mfrow=c(4,2), mar=c(2.5,2.5,0,0)+.5, mgp=c(1.6,.6,0)) # set up
for (i in 1:4){

x = ts(cumsum(rnorm(100,.01,1))) # data

y = ts(.01%1:100 + rnorm(100))

regx = Ilm(x~0+time(x), na.action=NULL) # regressions
regy = lm(y~0+time(y), na.action=NULL)

plot(x) # plots
lines(.01*time(x), col="red", lty="dashed") # true mean
abline(regx, col="blue") # fitted line
plot(y)

lines(.01*time(y), col="red", lty="dashed")
abline(regy, col="blue")
}
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2.4 Consider a process consisting of a linear trend with an additive noise term con-
sisting of independent random variables w, with zero means and variances o2, that
is,

X; = Bo + Bit + wy,

where By, 81 are fixed constants.

(a) Prove x; is nonstationary.

(b) Prove that the first difference series Vx; = x, — x,_; is stationary by finding its
mean and autocovariance function.

(c) Repeat part (b) if w, is replaced by a general stationary process, say y;, with mean
function u, and autocovariance function yy (k). [Hint: See (2.28).]

2.5 Show (2.27) is stationary.

2.6 The glacial varve record plotted in Figure 2.6 exhibits some nonstationarity that
can be improved by transforming to logarithms and some additional nonstationarity
that can be corrected by differencing the logarithms.

(a) Argue that the glacial varves series, say x;, exhibits heteroscedasticity by com-
puting the sample variance over the first half and the second half of the data.
Argue that the transformation y; = log x, stabilizes the variance over the series.
Plot the histograms of x; and y; to see whether the approximation to normality is
improved by transforming the data.

(b) Plot the series y;. Do any time intervals, of the order 100 years, exist where
one can observe behavior comparable to that observed in the global temperature
records in Figure 1.3?

(c) Examine the sample ACF of y; and comment.

(d) Compute the difference u; = y; — y,—1, examine its time plot and sample ACF,
and argue that differencing the logged varve data produces a reasonably stationary
series. Can you think of a practical interpretation for u,? Hint: For |p| close to

zero, log(l + p) =~ p;let p = (yr — ye-1)/y:-1-

2.7 Use the three different smoothing techniques described in Example 2.10, Exam-
ple 2.11, and Example 2.12, to estimate the trend in the global temperature series
displayed in Figure 1.3. Comment.



Chapter 3

ARIMA Models

3.1 Introduction

In Chapters 1 and 2, we introduced autocorrelation and cross-correlation functions
(ACFs and CCFs) as tools for clarifying relations that may occur within and between
time series at various lags. In addition, we explained how to build linear models based
on classical regression theory for exploiting the associations indicated by large values
of the ACF or CCF.

Classical regression is often insufficient for explaining all of the interesting dy-
namics of a time series. For example, the ACF of the residuals of the simple linear
regression fit to the global temperature data (see Example 2.4 of Chapter 2) reveals
additional structure in the data that the regression did not capture. Instead, the in-
troduction of correlation as a phenomenon that may be generated through lagged
linear relations leads to proposing the autoregressive (AR) and moving average (MA)
models. Often, these models are combined to form the autoregressive moving average
(ARMA) model. Adding nonstationary models to the mix leads to the autoregressive
integrated moving average (ARIMA) model popularized in the landmark work by Box
and Jenkins (1970). Seasonal data, such as the data discussed in Example 1.1 and
Example 1.4 lead to seasonal autoregressive integrated moving average (SARIMA)
models. The Box—Jenkins method for identifying a plausible models is given in this
chapter along with techniques for parameter estimation and forecasting for these
models.

3.2 Autoregressive Moving Average Models

Autoregressive models are based on the idea that the current value of the series,
x;, can be explained as a function of p past values, x;_1, x;-2, ..., X;—p, Where p
determines the number of steps into the past needed to forecast the current value. As
a typical case, recall Example 1.8 in which data were generated using the model

Xt = X¢—1 — .90Xt_2 + Wrt,
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where w; is white Gaussian noise with o2, = 1. We have now assumed the current
value is a particular /inear function of past values. The regularity that persists in
Figure 1.8 gives an indication that forecasting for such a model might be a distinct
possibility, say, through some version such as

n
Xpo1 = Xn —.90x,1,

where the quantity on the left-hand side denotes the forecast at the next period
n + 1 based on the observed data, xy, xs, . . ., X,,. For example, the lagged scatterplot
matrix for the Southern Oscillation Index (SOI), shown in Figure 2.7, gives a distinct
indication that the values at lags 1, 2, and 12, are linearly associated with the current
value. We will make this notion more precise in our discussion of forecasting.

Definition 3.1 An autoregressive model of order p, abbreviated AR(p), is of the
form

Xt = Q1Xe—1 + PoXp2+ -+ PpXe—p + Wy, 3.D

where x; is stationary, and ¢1, ¢2, . . ., ¢p are constants (¢, # 0). Although it is not
necessary yet, we assume that w, is a Gaussian white noise series with mean zero and
variance o2, unless otherwise stated. The mean of x, in (3.1) is zero. If the mean, p,
of x; is not zero, replace x; by x; — pin (3.1),

X —pu=@1(x—1 =)+ d2(xp2 — )+ + p(X—p — ) + wy,

or write
X =+ P1x1 + Paxpo+ o+ PpXi_p + Wy, 3.2)

where @ = u(l — ¢y — - = ¢p).

We note that (3.2) is similar to the regression model of §2.2, and hence the term
auto (or self) regression. Some technical difficulties, however, develop from applying
that model because the regressors, x;_1, .. ., X;_p,, are random components, whereas
z; was assumed to be fixed. A useful form follows by using the backshift operator
(2.30) to write the AR(p) model, (3.1), as

(1=¢1B—¢2B> — - = ¢,BP)x; = wy, (3.3)

or even more concisely as
¢(B)x: = wy. (3.4)



56 3 ARIMA Models

Example 3.1 The AR(1) Model
Consider the first-order model, AR(1), given by x; = ¢x,_; + w;. Provided that
|#| < 1 we can represent an AR(1) model as a linear process given by!

X= ) @l (3.5)
7=0

Representation (3.5) is called the stationary solution of the model. In fact, by simple
substitution,

00 o
] k
Z‘P’Wt—j =¢ (Z¢ Wz—l—k) + we.
Jj=0 k=0
~—— S——————
Xt Xr-1

Using (3.5), it is easy to see that the AR(1) process is stationary with mean
E(x) =) ¢/E(w,) =0,
j=0
and autocovariance function (2 > 0),

om i)

y(h) = cov(Xpsn, X1) = E

=0 =0
=E [(WH—h +o et gw " e + ) (Wr + dwe—1 + )] (3.6)
2N a2 h N ) ond"
=oh R =l Y e = s
Jj=0 Jj=0

Recall that y(h) = y(—h), so we will only exhibit the autocovariance function for
h > 0. From (3.6), the ACF of an AR(1) is

:M:

20 ", h>0. 3.7)

p(h)

Example 3.2 The Sample Path of an AR(1) Process
Figure 3.1 shows a time plot of two AR(1) processes, one with ¢ = .9 and one
with ¢ = —.9; in both cases, o2, = 1. In the first case, p(h) = .9", for h > 0, so
observations close together in time are positively correlated with each other. This
result means that observations at contiguous time points will tend to be close in
value to each other; this fact shows up in the top of Figure 3.1 as a very smooth
sample path for x,. Now, contrast this with the case in which ¢ = —.9, so that

! Tterate backward, x; = ¢x;_1 + Wy = G(PXr_n + Wr_1) + Wr = P°Xp 0 + Wi + Wy = -+ =
. c— : . . _ : 2
o xp o + Zf»:ol @/ wi_j. T |¢| < 1and sup, E(x?) < oo, then limy o0 E (x; — Z;?ZOI pIwij) =
: 2k 2 —
limg 500 @FE (xt_k) =0.
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AR(1) ¢ = +.9
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Fig. 3.1. Simulated AR(1) models: ¢ = .9 (top); ¢ = —.9 (bottom).

p(h) = (=.9)", for & > 0. This result means that observations at contiguous time
points are negatively correlated but observations two time points apart are positively
correlated. This fact shows up in the bottom of Figure 3.1, where, for example, if
an observation, x;, is positive, the next observation, x;.1, is typically negative, and
the next observation, x;,, is typically positive. Thus, in this case, the sample path
is very choppy.
The following R code can be used to obtain a figure similar to Figure 3.1:
par (mfrow=c(2,1))
plot(arima.sim(list(order=c(1,0,0), ar=.9), n=100), ylab="x",
main=(expression(AR(1)~~~phi==+.9)))
plot(arima.sim(list(order=c(1,0,0), ar=-.9), n=100), ylab="x",
main=(expression(AR(1)~~~phi==-.9)))

As an alternative to the autoregressive representation in which the x; on the left-
hand side of the equation are assumed to be combined linearly, the moving average
model of order g, abbreviated as MA(g), assumes the white noise w; on the right-hand
side of the defining equation are combined linearly to form the observed data.

Definition 3.2 The moving average model of order q, or MA(q) model, is defined
to be
Xt = W + GIWt_l + 92Wt_2 + -+ qul—q’ (3.8)

where there are q lags in the moving average and 61, 6», . . .,0, (6, # 0) are param-
eters.? Although it is not necessary yet, we assume that w, is a Gaussian white noise
series with mean zero and variance %, unless otherwise stated.

2 Some texts and software packages write the MA model with negative coefficients; that is, x;, =
Wi = 0wy | —OrWwy o — - —OgWr—q.
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MA(1) 0 = +.5
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Fig. 3.2. Simulated MA(1) models: 8 = .5 (top); 6 = —.5 (bottom).

As in the AR(p) case, the MA(q) model may be written as
X =(1+61B+6:B>+---+6,B)w, (3.9)

or more concisely as
Xy = 0(B)wy, (3.10)

Unlike the autoregressive process, the moving average process is stationary for any
values of the parameters 6y, ..., 6,.

Example 3.3 The MA(1) Process
Consider the MA(1) model x; = w; + Ow;_1. Then, E(x;) =0,

(1+6%02 h=0,

y(h) = {6072, h=1,
0 h>1,
and the ACF is
b h=1,
LOER
0 h>1.
Note |p(1)] < 1/2 for all values of 6 (Problem 3.1). Also, x; is correlated with
X;_1, but not with x;_», x;,_3, ... . Contrast this with the case of the AR(1) model in
which the correlation between x; and x;_ is never zero. When 6 = .5, for example,
x; and x;_; are positively correlated, and p(1) = .4. When 6 = —.5, x; and x;_4

are negatively correlated, p(1) = —.4. Figure 3.2 shows a time plot of these two
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processes with o2, = 1. The series where 6 = .5 is smoother than the series where
6=-.5.
A figure similar to Figure 3.2 can be created in R as follows:
par(mfrow = c(2,1))
plot(arima.sim(list(order=c(0,0,1), ma=.5), n=100), ylab="x",
main=(expression(MA(1)~~~theta==+.5)))
plot(arima.sim(list(order=c(0,0,1), ma=-.5), n=100), ylab="x",
main=(expression(MA(1)~~~theta==-.5)))

We now proceed with the general development of mixed autoregressive moving
average (ARMA) models for stationary time series.

Definition 3.3 A time series {x;; t = 0, x1,+2,...} is ARMA(p, q) if it is stationary
and
Xt = ¢1x,_1 + -+ ¢px,_p +w; + 91w,_1 + -+ qut—q’ (31 1)

with ¢, # 0, 84 # 0, and 0"24, > 0. The parameters p and q are called the autoregres-
sive and the moving average orders, respectively. If x; has a nonzero mean p, we set
a=u(l—¢1—---— ¢p) and write the model as

X =@+ @P1x—1+ -+ Ppxpptw 0w+ +Ogwrg. (3.12)

Although it is not necessary yet, we assume that w; is a Gaussian white noise series
with mean zero and variance o2, unless otherwise stated.

The ARMA model may be seen as a regression of the present outcome (x;) on
the past outcomes (x;_1, . .., X;—p), with correlated errors. That is,

Xt = Pot Prxe—1+ -+ BpXi—p t+ €,

where €; = w; + 01w + -+ - + 8,w;_4, although we call the regression parameters
¢ instead of S.

As previously noted, when g = 0, the model is called an autoregressive model of
order p, AR(p), and when p = 0, the model is called a moving average model of order
q, MA(q). Using (3.3) and (3.9), the ARMA(p, g) model in (3.11) may be written in
concise form as

@(B)x; = 0(B)wy. (3.13)

The concise form of an ARMA model points to a potential problem in that we can
unnecessarily complicate the model by multiplying both sides by another operator,
say

n(B)p(B)x; = n(B)O(B)w;,

without changing the dynamics. Consider the following example.

Example 3.4 Parameter Redundancy
Consider a white noise process x; = w;. Equivalently, we can write this as .5x,_| =
.Sw;_1 by shifting back one unit of time and multiplying by .5. Now, subtract the
two representations to obtain
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Xy — .S5x_1 = wp — .Sw_yq,

or
Xy = .5xt,1 - .5W[7] + wy, (314)

which looks like an ARMA(1, 1) model. Of course, x; is still white noise; nothing
has changed in this regard [i.e., x;, = w; is the solution to (3.14)], but we have
hidden the fact that x, is white noise because of the parameter redundancy or
over-parameterization. Write the parameter redundant model in operator form as
¢(B)x; = 0(B)wy, or

(1-.5B)x; = (1 - .5B)w;.

Apply the operator ¢(B)~! = (1 —.5B)! to both sides to obtain
x;=(1=5B)7'1=.5B)x, =(1-.5B)"'(1 = .5B)w; = wy,
which is the original model.

Example 3.4 points out the need to be careful when fitting ARMA models to
data. For example, if a process is truly white noise, it is possible to fit a significant
ARMA(k, k) model to the data. That is, it is possible to obtain a seemingly compli-
cated dynamic description of simple white noise. Consider the following example.

Example 3.5 Parameter Redundancy (cont)
Although we have not yet discussed estimation, we present the following example
demonstrating the problem of over parameterization. We generated 150 iid standard
normals and then fitan ARMAC(1, 1) to the data. Note that 5 =-.96and0 = .95 ,and
both are significant. Below is the R code (note that the estimate called ‘intercept’
is really the estimate of the mean).

set.seed(8675309) # Jenny, I got your number
X = rnorm(150) # generate iid N(0,1)s
arima(x, order=c(1,0,1)) # estimation
Coefficients:
arl mal intercept <- misnomer
-0.9595 0.9527 0.0462
s.e. 0.1688 0.1750 0.0727

Thus, forgetting the (non-significant) mean estimate, the fitted model looks like

(1+.96B)x; = (1 +.95B)w;

Definition 3.4 Causality and Invertibility

The causality and invertibility conditions are conditions on the parameters that
ensure the present will not depend on the future. These conditions are obviously
crucial for forecasting.

The causal form of the model is given by

X0 = (B 0By, = w(Byw, = ) yjwi (3.15)
J=0

where Y (B) = Z;‘;O W jBf (Yo = 1). Note that the parameters y; may be obtained by
matching coefficients of B in $(B)y (B) = 6(B).
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The invertible form of the model is given by
we = 0(B) " ¢(B)x, = n(B)x, = ) mjxi . (3.16)
j=0

where n(B) = Z;'io ﬂij (mo = 1), assuming the representations are well-defined.
Likewise, the parameters nt; may be obtained by matching coefficients of B in ¢(B) =
n(B)6(B).

We note that it is not always possible to solve these relationships and some
restrictions apply, as follows.

Property 3.1 Causality and Invertibility (existence)
Let

p(z2)=1—¢1z—-—¢pz’ and 6(z)=1+612+ -+ 0,27

be the AR and MA polynomials obtained by replacing the backshift operator B in
(3.3) and (3.9) by a complex number z.

An ARMA(p, g) model is causal if and only if ¢(z) # O for |z| < 1. The
coefficients of the linear process given in (3.15) can be determined by solving (Yo = 1)

0(z)
¥(z) = Zw,zf—(p() |zl < 1

An ARMA(p, g) model is invertible if and only if 6(z) # O for |z| < 1. The
coefficients n; of m(B) given in (3.16) can be determined by solving (ng = 1)

N, L@ t
m(z) —jz:;)ﬂjzj =0 lz] < 1.

We demonstrate the property in the following example.

Example 3.6 Parameter Redundancy, Causality, Invertibility
Consider the process

Xy = Ax_1 + . 45x0 +wp + Wi + 25w0,
or, in operator form,
(1-.4B - .45B*)x, = (1 + B + .25B*)w;.

At first, x; appears to be an ARMA (2, 2) process. But notice that

* ¢(z) can’t be zero in here. .. you wouldn’t want to divide by zero, would you?
F 6(z) can’t be zero in here.
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#(B)=1-.4B - 45B> = (1 + .5B)(1 — .9B)

and
6(B) = (1 + B+ .25B%) = (1 + .5B)?

have a common factor that can be canceled. After cancellation, the operators are
¢(B) = (1 —.9B) and 8(B) = (1 + .5B), so the model is an ARMA(1, 1) model,
(1-9B)x; = (1 +.5B)w,, or

Xy = .9xt_1 + .SWt_l + wyg. (317)

The model is causal because ¢(z) = (1 —.9z) = 0 when z = 10/9, which
is outside the unit circle. The model is also invertible because the root of 6(z) =
(1 +.5z) is z = =2, which is outside the unit circle.

To write the model as a linear process, we can obtain the y-weights using
Property 3.1, ¢(2)y¥(z) = 6(z), or

(1 =9+ Y1z + ¢z + -+ gzl +--) = 1+ .52
Rearranging, we get
L+ W1 - 92+ Wo— YD+ + ;- .9tﬁj_1)zj +---=1+.5z.

The coeflicients of z on the left and right sides must be the same, so we get
Y1—.9=50ry; =14,andy; — .9¢;_; =0for j > 1. Thus, y; = 1.4(.9)/~! for
Jj = 1 and (3.17) can be written as

o -1
x,=w,+1.4Z, 97w
j=1

The values of ¢; may be calculated in R as follows:

ARMAtoMA(ar = .9, ma = .5, 10) # first 10 psi-weights
[1] 1.40 1.26 1.13 1.02 0.92 0.83 0.74 0.67 0.60 0.54

The invertible representation using Property 3.1 is obtained by matching coef-
ficients in 8(z)7(z) = ¢(2),

A+5)(l+mz+m?+mz +---)=1- 9z

In this case, the m-weights are given by ; = (=1) 1.4 (.57, for j > 1, and hence,
we can also write (3.17) as

Xy = —1.42;0:1(—.5)'1.71)%_/ + wy.

The values of ; may be calculated in R as follows by reversing the roles of w; and
X;; i.e., write the model as w; = —.5w;_1 + x; — .9x;_1:

ARMAtoMA(ar = -.5, ma = -.9, 10) # first 10 pi-weights

[1] -1.460 .700 -.350 .175 -.087 .044 -.022 .011 -.006 .003
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Causal Region of an AR(2)
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Fig. 3.3. Causal region for an AR(2) in terms of the parameters.

Example 3.7 Causal Conditions for an AR(2) Process

For an AR(1) model, (1 — ¢B)x; = wy, to be causal, we must have ¢(z) # 0 for
|z] < 1. If we solve ¢(z) = 1 — ¢z = 0, we find that the root (or zero) occurs at
z0 = 1/¢, so that |zg| > 1 only if |¢| < 1. For higher order models, the relationship
between roots and parameters is not so simple.

For example, the AR(2) model, (1 — ¢1B — ¢ZB2)xt = wy, is causal when the
two roots of ¢(z) = 1 — ¢1z — 2> lie outside of the unit circle. That is, if z;
and z, are the roots, then |z;| > 1 and |z2| > 1. Using the quadratic formula, this
requirement can be written as

P £\ + 46,

> 1.
—2¢

The roots of ¢(z) may be real and distinct, real and equal, or a complex conjugate
pair. In terms of the coefficients, the equivalent condition is

(/)1 +¢2 < 1, ¢2—¢1 < 1, and |¢2| < 1. (318)

This causality condition specifies a triangular region in the parameter space; see
Figure 3.3.

3.3 Autocorrelation and Partial Autocorrelation

We begin by exhibiting the ACF of an MA(g) process.

Example 3.8 ACF of an MA(g)
The model is x; = 8(B)w;, where (B) = 1 + 6B + --- + 6,B49. Because x; is a
finite linear combination of white noise terms, the process is stationary with mean



64 3 ARIMA Models

q
E(x) = ) 0;E(wj) =0,

J=0

where we have written 6y = 1, and with autocovariance function

q q
y(h) = cov (Xs4n, X) = COV( Z OiWrih—js Z Gsz—k)

=0 k=0
-h
_ 0'sz Z?:() 0i0isn, 0<h<gq (3.19)
0 h>gq.

Recall that y(h) = y(—h), so we will only display the values for # > 0. The cutting
off of y(h) after g lags is the signature of the MA(g) model. Dividing (3.19) by
v(0) yields the ACF of an MA(g):

q-h 5 n.
ijo 6;0j+n

———— 1<h<
P =T+ + -+ 63 1 (3.20)
0 h>q.
Example 3.9 ACF of an AR(p) and ARMA(p, ¢)
For an AR(p) or ARMA(p, g) model, ¢(B)x; = 6(B)w;, write it as
xi = ¢(B) ' 0(B)w; = Y (B)wr,
or -
x= ) wiwe. (3.21)
j=0

It follows immediately that E(x;) = 0. Also, the autocovariance function of x; can
be written as

Y = COV(Xran X)) = 00 " WiWjans 20, (3.22)
j=0

so that the ACF is given by

Z;io ¢j ‘ﬁ Jj+h
TR0¥;

Unlike the MA(q), the ACF of an AR(p) or an ARMA(p, ¢) does not cut off

at any lag, so using the ACF to help identify the order of an AR or ARMA is

difficult. Also, (3.23) is not appealing in that it provides little information about the
appearance of the ACF of various models.

o(h) = , h>0. (3.23)
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Example 3.10 The ACF of an AR(2) Process
Suppose x; = ¢1xs-1 + P2x;-2 + w; is a causal AR(2) process. Multiply each side
of the model by x,_j for & > 0, and take expectation:

E(xixi-p) = GrE(Xi—1X1-p) + G2 E(Xr—2X1-p) + E(Wr Xp—p).

The result is

y(h) =d1y(h—=1)+ ¢py(h=2), h=12.... (3.24)

In (3.24), we used the fact that E(x;) = 0 and for 2 > 0, E(w; x,_;,) = 0 because,
by causality, x;_j, does not depend on future errors. Divide (3.24) through by y(0)
to obtain a recursion for the ACF:

p(h)y—d1ph—=1)—op(h—=2)=0, h=12,.... (3.25)

The initial conditions are p(0) = 1 and p(—1) = ¢1/(1 — ¢2), which is obtained by
evaluating (3.25) for & = 1 and noting that p(1) = p(-1).

Equations such as (3.25) are called difference equations, and the solutions are
fairly simple expressions. First, the polynomial associated with (3.25) is

$(2) =1 -1z - $o2%,

where the power of z is the power of the backshift, B; i.e., (3.25) is (1 — ¢1B —

$2B%)p(h) = 0. In general, z is a complex number. Let z; and z; be the roots (or

zeros) of the associated polynomial, i.e., ¢(z1) = ¢(z2) = 0. For a causal model, the

roots are outside the unit circle: |z;| > 1 and |z| > 1. Now, consider the solutions:
(i) When z; and z; are distinct, then

-h -h
p(h) =C134 + 2%y s

so p(h) — 0 exponentially fast as 1 — oo. The constants ¢ and ¢; are obtained
by solving for them using the initial conditions given above. For example, when
h =0, we have 1 = ¢; + ¢, and so on.

(ii) When z; = z5 (= z¢) are equal (and hence real), then

p(h) = 75" (c1 + eah),

so p(h) — 0 exponentially fast as h — co.
In case (i) with complex roots, z, = Z; are a complex conjugate pair, and ¢; = ¢;
[because p(h) is real], and

p(h) = cizi" + & z".

Write ¢; and z; in polar coordinates, for example, z; = |z11€'?, where 6 is the
angle whose tangent is the ratio of the imaginary part and the real part of z;
(sometimes called arg(z;); the range of 6 is [—x, x]). Then, using the fact that
€'Y + ¢71% = 2 cos(a), the solution has the form
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p(h) = alzi|™" cos(h6 + b),

where a and b are determined by the initial conditions. Again, p(4) dampens to zero
exponentially fast as 7z — oo, but it does so in a sinusoidal fashion. The implication
of this result is shown in Example 3.11.

Example 3.11 An AR(2) with Complex Roots
Figure 3.4 shows n = 144 observations from the AR(2) model

Xy = 1.5xt,1 - .75xt72 + wy,

with 02, = 1, and with complex roots chosen so the process exhibits pseudo-
cyclic behavior at the rate of one cycle every 12 time points. The autoregressive
polynomial for this model is ¢(z) = 1—1.5z+.75z2. The roots of ¢(z) are 1 +i/V3,
and 6 = tan~!(1/ \/§) = 2n/12 radians per unit time. To convert the angle to cycles
per unit time, divide by 27 to get 1/12 cycles per unit time. The ACF for this model
is shown in §3.4, Figure 3.5.

To calculate the roots of the polynomial and solve for arg in R:
z =c(1,-1.5,.75) # coefficients of the polynomial
(a = polyroot(z)[1]) # print one root: 1+0.57735i = 1 + i/sqrt(3)
arg = Arg(a)/(2%pi) # arg in cycles/pt
1/arg # = 12, the pseudo period

To reproduce Figure 3.4:
set.seed(8675309)
ar2 = arima.sim(list(order=c(2,0,0), ar=c(1.5,-.75)), n = 144)
plot(ar2, axes=FALSE, xlab="Time")
axis(2); axis(l, at=seq(0®,144,by=12)); box(
abline(v=seq(®,144,by=12), 1lty=2)

To calculate and display the ACF for this model:
ACF = ARMAacf(ar=c(1.5,-.75), ma=0, 50)
plot(ACF, type="h", xlab="lag")
abline (h=0)

In general, the behavior of the ACF of an AR(p) or an ARMA(p, g) when p > 2
will be similar to the AR(2) case. When p = 1, the behavior is like the AR(1) case.

Example 3.12 The ACF of an ARMA(]1, 1)
Consider the ARMAC(1, 1) process x; = ¢px;—1 + Ow;_1 + wy, where |¢| < 1. Using
the theory of difference equations, we can show that the ACF is given by

_ (1 +08)(¢+6)

h) = =1 p>1. 3.26
ph) 1 +20¢ + 62 ¢ (3.26)

Notice that the general pattern of p(4) in (3.26) is not different from that of an
AR(1) given in (3.7). Hence, it is unlikely that we will be able to tell the difference
between an ARMA(1,1) and an AR(1) based solely on an ACF estimated from a
sample. This consideration will lead us to the partial autocorrelation function.
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Fig. 3.4. Simulated AR(2) model, n = 144 with ¢| = 1.5 and ¢ = —.75.

THE PArTIAL AUTOCORRELATION FUuncTiON (PACF)

In (3.20), we saw that for MA(g) models, the ACF will be zero for lags greater than g.
Moreover, because 6, # 0, the ACF will not be zero at lag g. Thus, the ACF provides
a considerable amount of information about the order of the dependence when the
process is a moving average process.

If the process, however, is ARMA or AR, the ACF alone tells us little about the
orders of dependence. Hence, it is worthwhile pursuing a function that will behave
like the ACF of MA models, but for AR models, namely, the partial autocorrelation
function (PACF).

Recall that if X, Y, and Z are random variables, then the partial correlation
between X and Y given Z is obtained by regressing X on Z to obtain the predictor
X, regressing Y on Z to obtain Y, and then calculating

pxy|z = corr{X — )?, Y - 17}.

The idea is that pxy|z measures the correlation between X and Y with the linear
effect of Z removed (or partialled out). If the variables are multivariate normal, then
this definition coincides with pxy|z = corr(X,Y | Z).

To motivate the idea of partial autocorrelation, consider a causal AR(1) model,
Xx; = ¢xy—1 + wy. Then,

Yx(2) = cov(xs, X;-2) = cov(@x;—1 + Wy, X;-2)

= COV(¢? X2 + PWy1 + Wy, X1—2) = ¢y (0).

This result follows from causality because x;_, involves {w;_o, w;_3, ...}, which are
all uncorrelated with w, and w;_;. The correlation between x; and x,_, is not zero,
as it would be for an MA(1), because x; is dependent on x,_, through x,_;. Suppose
we break this chain of dependence by removing (or partialling out) the effect of x,_;.
That is, we consider the correlation between x; — ¢x,_1 and x,_» — ¢x,_1, because
it is the correlation between x; and x,_, with the linear dependence of each on x,_;
removed. In this way, we have broken the dependence chain between x; and x;_;. In
fact,
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cov(xs — @xs_1, Xp—2 — Ppx;—1) = cov(wy, X, — px;1) = 0.

Hence, the tool we need is partial autocorrelation, which is the correlation between
xs and x, with the linear effect of everything “in the middle” removed.

Definition 3.5 The partial autocorrelation function (PACF) of a stationary process,
X;, denoted ¢y, for h = 1,2,...,is

¢11 = corr(xy, xo) = p(1) (3.27)
and
énn = corr(xp — 36\;,, X0 — fg), h>2, (3.28)
where X}, is the regression of xj on {x1, X2, ..., Xp_1} and X is the regression of xg
on {x1,X2, ..., Xp-1}.

Thus, due to the stationarity, the PACF, ¢y, is the correlation between x5, and x;
with the linear dependence of everything between them, namely {x;:1, ..., Xr+n-1},
on each, removed.

Example 3.13 The PACF of an AR(p)
The model can be written as

QjXtrh—j + Weh,

P
Xt+h =

Jj=1

where the roots of ¢(z) are outside the unit circle. When & > p, the regression of
Xe4h ONA{Xei 1, ooy X1}, 18

P
Xt+h = Z G Xprh—j-
—

J

Although we have not proved this result, it should be obvious that it is so. Thus,
when h > p,

Ghh = COIT( Xy 4 — Xphy Xy — X7) = COIT(Wyyp, X; — X;) =0,

because, by causality, x; — X; depends only on {w;4p_1, Wrrn—2,...}. When h < p,
¢pp is not zero, and @11, ..., ¢p_1,p—1 are not necessarily zero. We will see later
that, in fact, ¢,,, = ¢,,. Figure 3.5 shows the ACF and the PACF of the AR(2) model
presented in Example 3.11.
To reproduce Figure 3.5 in R, use the following commands:
ACF = ARMAacf(ar=c(1.5,-.75), ma=0, 24)[-1]
PACF = ARMAacf(ar=c(1.5,-.75), ma=0, 24, pacf=TRUE)
par (mfrow=c(1,2))
plot(ACF, type="h", xlab="lag", ylim=c(-.8,1))
abline (h=0)
plot(PACF, type="h", xlab="lag", ylim=c(-.8,1))
abline (h=0)

We also have the following large sample result for the PACF, which may be
compared to the similar result for the ACF given in Property 1.2.
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Fig. 3.5. The ACF and PACF of an AR(2) model with ¢; = 1.5 and ¢, = —.75.

Table 3.1. Behavior of the ACF and PACF for ARMA Models

AR(p) MA(g) ARMA(p, g)
ACF  Tails off Cuts off Tails off
after lag ¢
PACF Cuts off Tails off Tails off
after lag p

Property 3.2 Large Sample Distribution of the PACF

If the time series is a causal AR(p) process and the sample size n is large, then
Vn ahh is approximately N(O, 1), for h > p. This result also holds for p = 0, wherein
the process is white noise.

Example 3.14 The PACF of an MA(q)
For an MA(gq), we can write x; = — Z‘]’.":l 7jx;—j + w;. Moreover, no finite repre-
sentation exists. From this result, it should be apparent that the PACF will never cut
off, as in the case of an AR(p). For an MA(1), x; = w; + 0w, _1, with |6| < 1, it can
be shown that
(=6)"(1-6)

i Rl

Ohn =

We do not have to compute the PACF by performing numerous regressions first.
The computations are done via a recursive formula that we will discuss later in
Property 3.3.

The PACF for MA models behaves much like the ACF for AR models. Also,
the PACF for AR models behaves much like the ACF for MA models. Because an
invertible ARMA model has an infinite AR representation, the PACF will not cut off.
We may summarize these results in Table 3.1.
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Fig. 3.6. ACF and PACF of the Recruitment series. Note that the lag axes are in terms of season
(12 months in this case).

Example 3.15 Preliminary Analysis of the Recruitment Series

We consider the problem of modeling the Recruitment series shown in Figure 1.5.
There are 453 months of observed recruitment ranging over the years 1950-1987.
The ACF and the PACF given in Figure 3.6 are consistent with the behavior of
an AR(2). The ACF has cycles corresponding roughly to a 12-month period, and
the PACF has large values for # = 1,2 and then is essentially zero for higher
order lags. Based on Table 3.1, these results suggest that a second-order (p = 2)
autoregressive model might provide a good fit. Although we will discuss estimation
in detail in §3.6, we ran a regression (see §2.2) using the data triplets {(x; z1, 22) :
(x3; x2, x1), (x45 X3, X2), . . ., (X453; X452, X451)} to fit the model

Xy = Qo+ P1xi-1 + Poxp2 + Wy

for t = 3,4,...,453. The values of the estimates were 50 = 6.74(1.11),
51 = 1.35(_04),52 = —.46( 04y, and 5‘@ = 89.72, where the estimated standard
errors are in parentheses.

The following R code can be used for this analysis. We use the script acf2 to
print and plot the ACF and PACF; see Appendix R for details.
acf2(rec, 48) # will produce values and a graphic

(regr = ar.ols(rec, order=2, demean=FALSE, intercept=TRUE))
regr$asy.se.coef # standard errors of the estimates
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3.4 Estimation

Throughout this section, we assume we have n observations, x1, . . ., x,, from a causal
and invertible Gaussian ARMA(p, ¢) process in which, initially, the order parameters,
p and g, are known. Our goal is to estimate the parameters, ¢1,...,¢p, 01,...,0y,

and o2, We will discuss the problem of determining p and ¢ later in this section.

We begin with method of moments estimators. The idea behind these estimators
is that of equating population moments to sample moments and then solving for the
parameters in terms of the sample moments. We immediately see that, if E(x;) =
4, then the method of moments estimator of u is the sample average, x. Thus,
while discussing method of moments, we will assume u = 0. Although the method
of moments can produce good estimators, they can sometimes lead to suboptimal
estimators. We first consider the case in which the method leads to optimal (efficient)
estimators, that is, AR(p) models.

When the process is AR(p),

Xp = G1Xe—1+ -+ PpXp—p + Wy,
similar to Example 3.10, we have the following result:

Definition 3.6 The Yule-Walker equations are given by

pth) = ¢1p(h=1) +---+¢pp(h=p), h=12...p, (3.29)
o =y [1=¢1p(1) =+ = ¢pp(p)]. (3.30)

The estimators obtained by replacing y(0) with its estimate, ¥(0) and p(h)
with its estimate, p(h), are called the Yule—Walker estimators. For AR(p) models,
if the sample size is large, the Yule—Walker estimators are approximately normally
distributed, and 72, is close to the true value of o°2,.

Example 3.16 Yule—-Walker Estimation for an AR(2) Process
The data shown in Figure 3.4 were n = 144 simulated observations from the AR(2)
model x; = 1.5x;,_1—.75x;_o+w;, where w, ~iid N(0, 1). Using the same simulated
data, we have
ar.yw(ar2, order=2)
Coefficients:
1 2
1.4471 -0.7160
sigma*2 estimated as 1.561

Example 3.17 Yule-Walker Estimation of the Recruitment Series
In Example 3.15 we fit an AR(2) model to the recruitment series using regression.
Below are the results of fitting the same model using Yule-Walker estimation in R,
which are nearly identical to the value