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Preface

The EZ version can be used for an introductory time series course where the prerequi-
site is an understanding of linear regression analysis, although it assumes some basic
probability skills (expectation) and general high school math skills (trigonometry,
complex numbers, polynomials, calculus, and so on):

• A calculus based introduction to probability course is an essential co-requisite
for this course. Readers should be familiar with most of the content of basic
probability facts (a pdf file), which is a short introduction to the necessary
material.

• For readers who are a little rusty on the basic math skills, the WikiBook on
K-12 mathematics http://en.wikibooks.org/wiki/Subject:K-12_mathematics may
be a useful resource; in particular, we mention the book covering calculus.
We occasionally use matrix notation. For readers lacking this skill, see the high
school page on matrices. For Chapter 4, this primer on complex numbers may
be helpful.

The EZ version follows the basic outline of the blue version, but with the addition
of examples to take the place of entire sections. Appendix R has information regarding
the use of the R package for the text astsa. The code listing on the website for the
yellow text does not match the EZ version.

Two stars (∗∗) indicate that skills obtained in a course on basic mathematical
statistics are recommended and these parts may be skipped. Chapter 5 is a ∗∗-
ed chapter on some advanced time domain topics. In this version, the section on
regression with autocorrelated errors is in Chapter 3. In Chapter 3, there are two
estimation sections, one that uses only least squares and method of moments, and a
∗∗-ed section on MLE that comes after the section on forecasting.

Internal links are dark red, external links are magenta, R code is in blue, output
is purple and comments are # green.

http://www.stat.pitt.edu/stoffer/tsa3/intro_prob.pdf
http://www.stat.pitt.edu/stoffer/tsa3/intro_prob.pdf
http://en.wikibooks.org/wiki/Subject:K-12_mathematics
http://en.wikibooks.org/wiki/Calculus
http://en.wikibooks.org/wiki/High_School_Mathematics_Extensions/Matrices
http://tutorial.math.lamar.edu/pdf/Complex/ComplexNumbers.pdf
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Chapter 1

Time Series Characteristics

1.1 Introduction

The analysis of experimental data that have been observed at different points in time
leads to new and unique problems in statistical modeling and inference. The obvi-
ous correlation introduced by the sampling of adjacent points in time can severely
restrict the applicability of the many conventional statistical methods traditionally
dependent on the assumption that these adjacent observations are independent and
identically distributed. The systematic approach by which one goes about answer-
ing the mathematical and statistical questions posed by these time correlations is
commonly referred to as time series analysis.

Historically, time series methods were applied to problems in the physical and
environmental sciences. This fact accounts for the basic engineering flavor permeating
the language of time series analysis. In our view, the first step in any time series
investigation always involves careful scrutiny of the recorded data plotted over time.
Before looking more closely at the particular statistical methods, it is appropriate to
mention that two separate, but not necessarily mutually exclusive, approaches to time
series analysis exist, commonly identified as the time domain approach (Chapter 3)
and the frequency domain approach (Chapter 4).

1.2 Some Time Series Data

The following examples illustrate some of the common kinds of time series data as
well as some of the statistical questions that might be asked about such data.

Example 1.1 Johnson & Johnson Quarterly Earnings
Figure 1.1 shows quarterly earnings per share for the U.S. company Johnson &
Johnson. There are 84 quarters (21 years) measured from the first quarter of 1960
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Fig. 1.1. Johnson & Johnson quarterly earnings per share, 1960-I to 1980-IV.
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Fig. 1.2. Left: Quarterly value of initial deposits of $75, $100, $125, and $150 over 15 years,
with a quarterly growth rate of 5%; xt = (1 + .05)xt−1. Right: Logs of the quarterly values;
log(xt ) = log(1 + .05) + log(xt−1). When marked in terms of quarters, Figure 1.2 looks like
Figure 1.1.

to the last quarter of 1980. Modeling such series begins by observing the primary
patterns in the time history. In this case, note the increasing underlying trend and
variability, and a somewhat regular oscillation superimposed on the trend that seems
to repeat over quarters. Methods for analyzing data such as these are explored in
Chapter 2 (see Problem 2.1) using regression techniques. Also, compare Figure 1.1
with Figure 1.2. To use package astsa, and then plot the data for this example
using R, type the following (try plotting the logged the data yourself).
require(astsa) # ** SEE FOOTNOTE
plot(jj, type="o", ylab="Quarterly Earnings per Share")
plot(log(jj)) # not shown

Example 1.2 Global Warming
Consider the global temperature series record shown in Figure 1.3. The data are the
global mean land–ocean temperature index from 1880 to 2009, with the base period
1951-1980. In particular, the data are deviations, measured in degrees centigrade,
from the 1951-1980 average, and are an update of Hansen et al. (2006). We note an
apparent upward trend in the series during the latter part of the twentieth century

** Throughout the text, we assume that the R package for the book, astsa, has been downloaded and
installed. See Appendix R (Section R.2) for further details.
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Fig. 1.3. Yearly average global temperature deviations (1880–2009) in ◦C.

that has been used as an argument for the global warming hypothesis. Note also
the leveling off at about 1935 and then another rather sharp upward trend at about
1970. The question of interest for global warming proponents and opponents is
whether the overall trend is natural or whether it is caused by some human-induced
interface. The R code for this example is similar to the code in Example 1.1:
plot(gtemp, type="o", ylab="Global Temperature Deviations")

Example 1.3 New York Stock Exchange
As an example of financial time series data, Figure 1.4 shows the daily returns
(or percent change) of the New York Stock Exchange (NYSE) from February 2,
1984 to December 31, 1991. It is easy to spot the crash of October 19, 1987 in the
figure. The data shown in Figure 1.4 are typical of return data. The mean of the
series appears to be stable with an average return of approximately zero, however,
the volatility (or variability) of data changes over time. In fact, the data show
volatility clustering; that is, highly volatile periods tend to be clustered together. A
problem in the analysis of these type of financial data is to forecast the volatility of
future returns. For example, GARCH models have been developed to handle these
problems. The R code for this example is similar to the previous examples:
plot(nyse, ylab="NYSE Returns")
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Fig. 1.4. Daily weighted market returns from February 2, 1984 to December 31, 1991. The
crash of October 19, 1987 occurs at t = 938.
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Fig. 1.5.Monthly SOI and Recruitment (estimated new fish), 1950-1987.

Example 1.4 El Niño and Fish Population
We may also be interested in analyzing several time series at once. Figure 1.5
shows monthly values of an environmental series called the Southern Oscillation
Index (SOI) and associated Recruitment (an index of the number of new fish).
Both series are for a period of 453 months ranging over the years 1950–1987.
SOI measures changes in air pressure related to sea surface temperatures in the
central Pacific Ocean. The central Pacific warms every three to seven years due
to the El Niño effect, which has been blamed, in particular, for the 1997 floods
in the midwestern portions of the United States. Both series in Figure 1.5 tend to
exhibit repetitive behavior, with regularly repeating cycles that are easily visible.
This periodic behavior is of interest because underlying processes of interest may
be regular and the rate or frequency of oscillation characterizing the behavior of the
underlying series would help to identify them. The Recruitment series also shows
several kinds of oscillations. The study of the kinds of cycles and their strengths is
the subject of Chapter 4. The two series also tend to be somewhat related; it is easy
to imagine that somehow the fish population is dependent on the SOI.

The following R code will reproduce Figure 1.5:
par(mfrow = c(2,1)) # set up the graphics
plot(soi, ylab="", xlab="", main="Southern Oscillation Index")
plot(rec, ylab="", xlab="", main="Recruitment")

Example 1.5 fMRI Imaging
A fundamental problem in classical statistics occurs when we are given a collection
of independent series or vectors of series, generated under varying experimental
conditions or treatment configurations. Such a set of series is shown in Figure 1.6,
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Fig. 1.6. fMRI data from various locations in the cortex, thalamus, and cerebellum; n = 128
points, one observation taken every 2 seconds.

where we observe data collected from various locations in the brain via functional
magnetic resonance imaging (fMRI). In this example, a stimulus was applied for 32
seconds and then stopped for 32 seconds; thus, the signal period is 64 seconds. The
sampling rate was one observation every 2 seconds for 256 seconds (n = 128). The
series shown in Figure 1.6 are consecutive measures of blood oxygenation-level
dependent (bold) signal intensity, which measures areas of activation in the brain.
Notice that the periodicities appear strongly in the motor cortex series and less
strongly in the thalamus and cerebellum. The fact that one has series from different
areas of the brain suggests testing whether the areas are responding differently to
the brush stimulus. Use the following R commands to plot the data:
par(mfrow=c(2,1), mar=c(3,2,1,0)+.5, mgp=c(1.6,.6,0))
ts.plot(fmri1[,2:5], col=1:4, ylab="BOLD", xlab="", main="Cortex")
ts.plot(fmri1[,6:9], col=1:4, ylab="BOLD", xlab="", main="Thalam & Cereb")
mtext("Time (1 pt = 2 sec)", side=1, line=2)

1.3 Time Series Models

The primary objective of time series analysis is to develop mathematical models that
provide plausible descriptions for sample data, like that encountered in the previous
section.

The fundamental visual characteristic distinguishing the different series shown in
Example 1.1 – Example 1.5 is their differing degrees of smoothness. One possible
explanation for this smoothness is that adjacent points in time are correlated, so
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6 1 Time Series Characteristics

the value of the series at time t, say, xt , depends in some way on the past values
xt−1, xt−2, . . .. This model expresses a fundamental way in which we might think
about generating realistic-looking time series.

Example 1.6 White Noise (3 flavors)
A simple kind of generated series might be a collection of uncorrelated random
variables, wt , with mean 0 and finite variance σ2

w . The time series generated from
uncorrelated variables is used as amodel for noise in engineering applicationswhere
it is called white noise; we shall sometimes denote this process as wt ∼ wn(0, σ2

w )wt ∼ wn(0, σ2
w )wt ∼ wn(0, σ2
w ).

The designation white originates from the analogy with white light and indicates
that all possible periodic oscillations are present with equal strength.

We will, at times, also require the noise to be independent and identically
distributed (iid) random variables with mean 0 and variance σ2

w . We will distin-
guish this by saying white independent noise, or by writing wt ∼ iid(0, σ2

w )wt ∼ iid(0, σ2
w )wt ∼ iid(0, σ2
w ). A

particularly useful white noise series is Gaussian white noise, wherein the wt are
independent normal random variables, with mean 0 and variance σ2

w; or more suc-
cinctly, wt ∼ iid N(0, σ2

w )wt ∼ iid N(0, σ2
w )wt ∼ iid N(0, σ2
w ). Figure 1.7 shows in the upper panel a collection of 500

such random variables, with σ2
w = 1, plotted in the order in which they were drawn.

The resulting series bears a slight resemblance to portions of the NYSE returns in
Figure 1.4. The plot tends to show visually a mixture of many different kinds of
oscillations in the white noise series.

If the stochastic behavior of all time series could be explained in terms of the
white noise model, classical statistical methods would suffice. Two ways of intro-
ducing serial correlation and more smoothness into time series models are given in
Example 1.7 and Example 1.8.

Example 1.7 Moving Averages and Filtering
We might replace the white noise series wt by a moving average that smooths the
series. For example, consider replacing wt in Example 1.6 by an average of its
current value and its immediate neighbors in the past and future. That is, let

vt =
1
3
(
wt−1 + wt + wt+1

)
, (1.1)

which leads to the series shown in the lower panel of Figure 1.7. Inspecting the
series shows a smoother version of the first series, reflecting the fact that the slower
oscillations are more apparent and some of the faster oscillations are taken out. We
begin to notice a similarity to some of the non-cyclic fMRI series in Figure 1.6.

To reproduce Figure 1.7 in R use the following commands. A linear combination
of values in a time series such as in (1.1) is referred to, generically, as a filtered
series; hence the command filter.
w = rnorm(500,0,1) # 500 N(0,1) variates
v = filter(w, sides=2, rep(1/3,3)) # moving average
par(mfrow=c(2,1))
plot.ts(w, main="white noise")
plot.ts(v, ylim=c(-3,3), main="moving average")
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Fig. 1.7. Gaussian white noise series (top) and three-point moving average of the Gaussian
white noise series (bottom).

The SOI and Recruitment series in Figure 1.5, as well as some of the MRI series
in Figure 1.6, differ from the moving average series because one particular kind of
oscillatory behavior seems to predominate, producing a sinusoidal type of behavior.
A number of methods exist for generating series with this quasi-periodic behavior;
we illustrate a popular one based on the autoregressive model considered in Chapter
3.

Example 1.8 Autoregressions
Suppose we consider the white noise serieswt of Example 1.6 as input and calculate
the output using the second-order equation

xt = xt−1 − .9xt−2 + wt (1.2)

successively for t = 1, 2, . . . , 500. Equation (1.2) represents a regression or predic-
tion of the current value xt of a time series as a function of the past two values of the
series, and, hence, the term autoregression is suggested for this model. A problem
with startup values exists here because (1.2) also depends on the initial conditions x0
and x−1, but, for now, we assume that we are given these values and generate the suc-
ceeding values by substituting into (1.2). That is, givenw1,w2, . . . ,w500, and x0, x−1,
we start with x1 = x0 − .9x−1 + w1, then recursively compute x2 = x1 − .9x0 + w2,
then x3 = x2 − .9x1 + w3, and so on. The resulting output series is shown in
Figure 1.8, and we note the periodic behavior of the series, which is similar to
that displayed by the SOI and Recruitment in Figure 1.5 and some fMRI series
in Figure 1.6. The autoregressive model above and its generalizations can be used
as an underlying model for many observed series and will be studied in detail in
Chapter 3.
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8 1 Time Series Characteristics
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Fig. 1.8. Autoregressive series generated from model (1.2).

One way to simulate and plot data from the model (1.2) in R is to use the
following commands (another way is to use arima.sim). The initial conditions are
set equal to zero, so we let the filter run an extra 50 values to avoid startup problems.
w = rnorm(550,0,1) # 50 extra to avoid startup problems
x = filter(w, filter=c(1,-.9), method="recursive")[-(1:50)]
plot.ts(x, main="autoregression")

Example 1.9 RandomWalk with Drift
Amodel for analyzing trend such as seen in the global temperature data in Figure 1.3,
is the random walk with drift model given by

xt = δ + xt−1 + wt (1.3)

for t = 1, 2, . . ., with initial condition x0 = 0, and where wt is white noise. The
constant δ is called the drift, and when δ = 0, the model is called simply a random
walk because the value of the time series at time t is the value of the series at time
t − 1 plus a completely random movement determined by wt . Note that we may
rewrite (1.3) as a cumulative sum of white noise variates. That is,

xt = δ t +
t∑

j=1
w j (1.4)

for t = 1, 2, . . .; either use induction, or plug (1.4) into (1.3) to verify this statement.
Figure 1.9 shows 200 observations generated from the model with δ = 0 and .2,
and with σw = 1. For comparison, we also superimposed the straight lines δt on
the graph.

To reproduce Figure 1.9 in R use the following code (notice the use of multiple
commands per line using a semicolon).
set.seed(154) # so you can reproduce the results
w = rnorm(200,0,1); x = cumsum(w) # two commands in one line
wd = w +.2; xd = cumsum(wd)
plot.ts(xd, ylim=c(-5,55), main="random walk")
lines(x); lines(.2*(1:200), lty="dashed")
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random walk

Time
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20
30

40
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Fig. 1.9. Random walk, σw = 1, with drift δ = .2 (upper jagged line), without drift, δ = 0
(lower jagged line), and dashed lines showing the drifts.

Example 1.10 Signal in Noise
Many realistic models for generating time series assume an underlying signal with
some consistent periodic variation, contaminated by adding a random noise. For
example, it is easy to detect the regular cycle fMRI series displayed on the top of
Figure 1.6. Consider the model

xt = 2 cos(2π t+15
50 ) + wt (1.5)

for t = 1, 2, . . . , 500, where the first term is regarded as the signal, shown in the
upper panel of Figure 1.10. We note that a sinusoidal waveform can be written as

A cos(2πωt + φ), (1.6)

where A is the amplitude, ω is the frequency of oscillation, and φ is a phase shift.
In (1.5), A = 2, ω = 1/50 (one cycle every 50 time points), and φ = .6π.

An additive noise term was taken to be white noise with σw = 1 (middle
panel) and σw = 5 (bottom panel), drawn from a normal distribution. Adding the
two together obscures the signal, as shown in the lower panels of Figure 1.10. Of
course, the degree to which the signal is obscured depends on the amplitude of the
signal and the size of σw . The ratio of the amplitude of the signal to σw (or some
function of the ratio) is sometimes called the signal-to-noise ratio (SNR); the larger
the SNR, the easier it is to detect the signal. Note that the signal is easily discernible
in the middle panel of Figure 1.10, whereas the signal is obscured in the bottom
panel. Typically, we will not observe the signal but the signal obscured by noise.

To reproduce Figure 1.10 in R, use the following commands:
cs = 2*cos(2*pi*1:500/50 + .6*pi)
w = rnorm(500,0,1)
par(mfrow=c(3,1), mar=c(3,2,2,1), cex.main=1.5)
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10 1 Time Series Characteristics
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Fig. 1.10. Cosine wave with period 50 points (top panel) compared with the cosine wave
contaminated with additive white Gaussian noise, σw = 1 (middle panel) and σw = 5 (bottom
panel); see (1.5).

plot.ts(cs, main=expression(2*cos(2*pi*t/50+.6*pi)))
plot.ts(cs+w, main=expression(2*cos(2*pi*t/50+.6*pi) + N(0,1)))
plot.ts(cs+5*w, main=expression(2*cos(2*pi*t/50+.6*pi) + N(0,25)))

1.4 Measures of Dependence

We now discuss various measures that describe the general behavior of a process as
it evolves over time. A rather simple descriptive measure is the mean function.

Definition 1.1 The mean function is defined as

µxt = E(xt ) (1.7)

provided it exists, where E denotes the usual expected value operator.1 When no
confusion exists about which time series we are referring to, we will drop a subscript
and write µxt as µt .

1 Expectation is discussed in the third chapter of the basic probability facts pdf mentioned in the preface.
For continuous-valued finite variance processes, the mean is µt = E (xt ) =

∫ ∞
−∞

x ft (x) dx and the
variance isσ2

t = E (xt −µt )2 =
∫ ∞
−∞

(x−µt )2 ft (x) dx, where ft is the density of xt . If xt is Gaussian
with mean µt and variance σ2

t , abbreviated as xt ∼ N(µt, σ2
t ), the marginal density is given by

ft (x) = 1
σt
√

2π
exp

{
− 1

2σ2
t

(x − µt )2} for x ∈ R.

http://www.stat.pitt.edu/stoffer/tsa3/intro_prob.pdf
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1.4 Measures of Dependence 11

Example 1.11 Mean Function of a Moving Average Series
If wt denotes a white noise series, then µwt = E(wt ) = 0 for all t. The top series in
Figure 1.7 reflects this, as the series clearly fluctuates around a mean value of zero.
Smoothing the series as in Example 1.7 does not change the mean because we can
write

µvt = E(vt ) = 1
3 [E(wt−1) + E(wt ) + E(wt+1)] = 0.

Example 1.12 Mean Function of a RandomWalk with Drift
Consider the random walk with drift model given in (1.4),

xt = δ t +
t∑

j=1
w j, t = 1, 2, . . . .

Because E(wt ) = 0 for all t, and δ is a constant, we have

µxt = E(xt ) = δ t +
t∑

j=1
E(w j ) = δ t

which is a straight line with slope δ. A realization of a random walk with drift can
be compared to its mean function in Figure 1.9.

Example 1.13 Mean Function of Signal Plus Noise
A great many practical applications depend on assuming the observed data have
been generated by a fixed signal waveform superimposed on a zero-mean noise
process, leading to an additive signal model of the form (1.5). It is clear, because
the signal in (1.5) is a fixed function of time, we will have

µxt = E(xt ) = E
[
2 cos(2π t+15

50 ) + wt
]

= 2 cos(2π t+15
50 ) + E(wt )

= 2 cos(2π t+15
50 ),

and the mean function is just the cosine wave.

The mean function describes only the marginal behavior of a time series. The lack
of independence between two adjacent values xs and xt can be assessed numerically,
as in classical statistics, using the notions of covariance and correlation. Assuming
the variance of xt is finite, we have the following definition.

Definition 1.2 The autocovariance function is defined as the secondmoment product

γx (s, t) = cov(xs, xt ) = E[(xs − µs)(xt − µt )], (1.8)

for all s and t. When no possible confusion exists about which time series we are
referring to, we will drop the subscript and write γx (s, t) as γ(s, t).
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12 1 Time Series Characteristics

Note that γx (s, t) = γx (t, s) for all time points s and t. The autocovariance
measures the linear dependence between two points on the same series observed at
different times. Recall from classical statistics that if γx (s, t) = 0, xs and xt are not
linearly related, but there still may be some dependence structure between them. If,
however, xs and xt are bivariate normal, γx (s, t) = 0 ensures their independence. It
is clear that, for s = t, the autocovariance reduces to the (assumed finite) variance,
because

γx (t, t) = E[(xt − µt )2] = var(xt ). (1.9)

Example 1.14 Autocovariance of White Noise
The white noise series wt has E(wt ) = 0 and

γw (s, t) = cov(ws,wt ) =



σ2
w s = t,

0 s , t .
(1.10)

A realization of white noise with σ2
w = 1 is shown in the top panel of Figure 1.7.

We often have to calculate the autocovariance between filtered series. A useful
result is given in the following proposition.

Property 1.1 If the random variables

U =
m∑
j=1

a jX j and V =
r∑

k=1
bkYk

are linear filters of (finite variance) random variables {X j } and {Yk }, respectively,
then

cov(U,V ) =
m∑
j=1

r∑
k=1

a jbkcov(X j,Yk ). (1.11)

Furthermore, var(U) = cov(U,U).

An easy way to remember (1.11) is to treat it like multiplication:

(a1X1 + a2X2)(b1Y1) = a1b1X1Y1 + a2b1X2Y1 .

Example 1.15 Autocovariance of a Moving Average
Consider applying a three-point moving average to the white noise series wt of the
previous example as in Example 1.7. In this case,

γv (s, t) = cov(vs, vt ) = cov
{

1
3 (ws−1 + ws + ws+1) , 1

3 (wt−1 + wt + wt+1)
}
.

When s = t we have

γv (t, t) = 1
9 cov{(wt−1 + wt + wt+1), (wt−1 + wt + wt+1)}

= 1
9 [cov(wt−1,wt−1) + cov(wt,wt ) + cov(wt+1,wt+1)]

= 3
9σ

2
w .
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1.4 Measures of Dependence 13

When s = t + 1,

γv (t + 1, t) = 1
9 cov{(wt + wt+1 + wt+2), (wt−1 + wt + wt+1)}

= 1
9 [cov(wt,wt ) + cov(wt+1,wt+1)]

= 2
9σ

2
w,

using (1.10). Similar computations give γv (t − 1, t) = 2σ2
w/9, γv (t + 2, t) = γv (t −

2, t) = σ2
w/9, and 0 when |t − s | > 2. We summarize the values for all s and t as

γv (s, t) =




3
9σ

2
w s = t,

2
9σ

2
w |s − t | = 1,

1
9σ

2
w |s − t | = 2,

0 |s − t | > 2.

(1.12)

Example 1.15 shows clearly that the smoothing operation introduces a covariance
function that decreases as the separation between the two time points increases and
disappears completely when the time points are separated by three or more time
points. This particular autocovariance is interesting because it only depends on the
time separation or lag and not on the absolute location of the points along the series.
We shall see later that this dependence suggests a mathematical model for the concept
of weak stationarity.

Example 1.16 Autocovariance of a RandomWalk
For the random walk model, xt =

∑t
j=1 w j , we have

γx (s, t) = cov(xs, xt ) = cov *.
,

s∑
j=1

w j,

t∑
k=1

wk
+/
-
= min{s, t} σ2

w,

because the wt are uncorrelated random variables. Note that, as opposed to the
previous examples, the autocovariance function of a random walk depends on the
particular time values s and t, and not on the time separation or lag. Also, notice that
the variance of the randomwalk, var(xt ) = γx (t, t) = t σ2

w , increases without bound
as time t increases. The effect of this variance increase can be seen in Figure 1.9
where the processes start to move away from their mean functions δ t (note that
δ = 0 and .2 in that example).

As in classical statistics, it ismore convenient to deal with ameasure of association
between −1 and 1, and this leads to the following definition.

Definition 1.3 The autocorrelation function (ACF) is defined as

ρ(s, t) =
γ(s, t)√

γ(s, s)γ(t, t)
. (1.13)
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14 1 Time Series Characteristics

TheACFmeasures the linear predictability of the series at time t, say xt , using only
the value xs . We can show easily that −1 ≤ ρ(s, t) ≤ 1 using the Cauchy–Schwarz
inequality.2 If we can predict xt perfectly from xs through a linear relationship,
xt = β0 + β1xs, then the correlation will be +1 when β1 > 0, and −1 when β1 < 0.
Hence, we have a rough measure of the ability to forecast the series at time t from the
value at time s.

Often, we would like to measure the predictability of another series yt from the
series xs . Assuming both series have finite variances, we have the following definition.

Definition 1.4 The cross-covariance function between two series, xt and yt , is

γxy (s, t) = cov(xs, yt ) = E[(xs − µxs)(yt − µyt )]. (1.14)

The cross-covariance function can be scaled to live in [−1, 1]:

Definition 1.5 The cross-correlation function (CCF) is given by

ρxy (s, t) =
γxy (s, t)√

γx (s, s)γy (t, t)
. (1.15)

1.5 Stationary Time Series

The preceding definitions of the mean and autocovariance functions are completely
general. Although we have not made any special assumptions about the behavior of
the time series, many of the preceding examples have hinted that a sort of regularity
may exist over time in the behavior of a time series.

Definition 1.6 A strictly stationary time series is one for which the probabilistic
behavior of every collection of values

{xt1, xt2, . . . , xtk }

is identical to that of the time shifted set

{xt1+h, xt2+h, . . . , xtk+h },

for all k = 1, 2, ..., all time points t1, t2, . . . , tk , and all time shifts h = 0,±1,±2, ... .

It is difficult to assess strict stationarity fromdata. Rather than imposing conditions
on all possible distributions of a time series, we will use a milder version that imposes
conditions only on the first two moments of the series.

2 The Cauchy–Schwarz inequality implies |γ(s, t) |2 ≤ γ(s, s)γ(t, t).
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Definition 1.7 A weakly stationary time series is a finite variance process where

(i) the mean value function, µt , defined in (1.7) is constant and does not depend on
time t, and

(ii) the autocovariance function, γ(s, t), defined in (1.8) depends on s and t only
through their difference |s − t |.

Henceforth, we will use the term stationary to mean weakly stationary; if a process
is stationary in the strict sense, we will use the term strictly stationary.

Stationarity requires regularity in the mean and autocorrelation functions so that
these quantities (at least) may be estimated by averaging. It should be clear that a
strictly stationary, finite variance, time series is also stationary. The converse is not
true in general. One important case where stationarity implies strict stationarity is if
the time series is Gaussian [meaning all finite collections of the series are Gaussian].

Example 1.17 A RandomWalk is Not Stationary
A random walk is not stationary because its autocovariance function, γ(s, t) =
min{s, t}σ2

w , depends on time; see Example 1.16 and Problem 1.6. Also, the random
walk with drift violates both conditions of Definition 1.7 because, as shown in
Example 1.12, the mean function, µxt = δt, is also a function of time t.

Because the mean function, E(xt ) = µt , of a stationary time series is independent
of time t, we will write

µt = µ. (1.16)

Also, because the autocovariance function, γ(s, t), of a stationary time series, xt ,
depends on s and t only through their difference |s− t |, we may simplify the notation.
Let s = t + h, where h represents the time shift or lag. Then

γ(t + h, t) = cov(xt+h, xt ) = cov(xh, x0) = γ(h, 0)

because the time difference between times t+h and t is the same as the time difference
between times h and 0. Thus, the autocovariance function of a stationary time series
does not depend on the time argument t. Henceforth, for convenience, we will drop
the second argument of γ(h, 0).

Definition 1.8 The autocovariance function of a stationary time series will be
written as

γ(h) = cov(xt+h, xt ) = E[(xt+h − µ)(xt − µ)]. (1.17)

Definition 1.9 The autocorrelation function (ACF) of a stationary time series will
be written using (1.13) as

ρ(h) =
γ(h)
γ(0)

. (1.18)

The Cauchy–Schwarz inequality shows again that −1 ≤ ρ(h) ≤ 1 for all h,
enabling one to assess the relative importance of a given autocorrelation value by
comparing with the extreme values −1 and 1.



i
i

“tsa3EZ” — 2015/12/26 — 11:53 — page 16 — #22 i
i

i
i

i
i
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Fig. 1.11. Autocovariance function of a three-point moving average.

Example 1.18 Stationarity of White Noise
The mean and autocovariance functions of the white noise series discussed in
Example 1.6 and Example 1.14 are easily evaluated as µwt = 0 and

γw (h) = cov(wt+h,wt ) =



σ2
w h = 0,

0 h , 0.

Thus, white noise satisfies the conditions of Definition 1.7 and is weakly stationary
or stationary.

Example 1.19 Stationarity of a Moving Average
The three-point moving average process of Example 1.7 is stationary because, from
Example 1.11 and Example 1.15, the mean and autocovariance functions µvt = 0,
and

γv (h) =




3
9σ

2
w h = 0,

2
9σ

2
w h = ±1,

1
9σ

2
w h = ±2,

0 |h| > 2

are independent of time t, satisfying the conditions of Definition 1.7.
Note that the ACF is given by

ρv (h) =




1 h = 0,
2
3 h = ±1,
1
3 h = ±2,
0 |h| > 2

.

Figure 1.11 shows a plot of the autocorrelation as a function of lag h. Note that the
autocorrelation function is symmetric about lag zero and in this example, decays as
a function of lag.
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Example 1.20 Trend Stationarity
If xt = α + βt + wt , then the mean function is µx,t = E(xt ) = α + βt, which is
not independent of time. Therefore, the process is not stationary. The autocovari-
ance function, however, is independent of time, because γx (h) = cov(xt+h, xt ) =
E[(xt+h − µx,t+h)(xt − µx,t )] = E(wt+hwt ) = γw (h), which is given in Exam-
ple 1.18. Thus, the model may be considered as having stationary behavior around
a linear trend; this behavior is sometimes called trend stationarity.

The autocovariance function of a stationary process has several useful properties.
First, the value at h = 0, namely

γ(0) = E[(xt − µ)2] = var(xt ). (1.19)

Also, the Cauchy–Schwarz inequality implies |γ(h) | ≤ γ(0). Another useful property
is that the autocovariance function of a stationary series is symmetric around the
origin,

γ(h) = γ(−h) (1.20)

for all h. This property follows because

γ(h) = γ((t + h) − t) = E[(xt+h − µ)(xt − µ)]
= E[(xt − µ)(xt+h − µ)] = γ(t − (t + h)) = γ(−h),

which shows how to use the notation as well as proving the result.
When several series are available, a notion of stationarity still applies with addi-

tional conditions.

Definition 1.10 Two time series, say, xt and yt , are said to be jointly stationary if
they are each stationary, and the cross-covariance function

γxy (h) = cov(xt+h, yt ) = E[(xt+h − µx )(yt − µy )] (1.21)

is a function only of lag h.

Definition 1.11 The cross-correlation function (CCF) of jointly stationary time
series xt and yt is defined as

ρxy (h) =
γxy (h)√
γx (0)γy (0)

. (1.22)

Again, we have the result −1 ≤ ρxy (h) ≤ 1 which enables comparison with
the extreme values −1 and 1 when looking at the relation between xt+h and yt .
The cross-correlation function is not generally symmetric about zero [i.e., typically
ρxy (h) , ρxy (−h)]; however, it is the case that

ρxy (h) = ρyx (−h), (1.23)

which can be shown by manipulations similar to those used to show (1.20).
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Fig. 1.12. Demonstration of the results of Example 1.22 when ` = 5.

Example 1.21 Joint Stationarity
Consider the two series, xt and yt , formed from the sum and difference of two
successive values of a white noise process, say,

xt = wt + wt−1 and yt = wt − wt−1,

where wt are independent random variables with zero means and variance σ2
w . It

is easy to show that γx (0) = γy (0) = 2σ2
w and γx (1) = γx (−1) = σ2

w, γy (1) =
γy (−1) = −σ2

w . Also,

γxy (1) = cov(xt+1, yt ) = cov(wt+1 + wt,wt − wt−1) = σ2
w

because only one term is nonzero (recall Property 1.1 on page 12). Similarly,
γxy (0) = 0, γxy (−1) = −σ2

w . We obtain, using (1.22),

ρxy (h) =




0 h = 0,
1/2 h = 1,
−1/2 h = −1,

0 |h| ≥ 2.

Clearly, the autocovariance and cross-covariance functions depend only on the lag
separation, h, so the series are jointly stationary.

Example 1.22 Prediction Using Cross-Correlation
Consider the problem of determining possible leading or lagging relations between
two series xt and yt . If the model

yt = Axt−` + wt

holds, the series xt is said to lead yt for ` > 0 and is said to lag yt for ` < 0. Hence,
the analysis of leading and lagging relations might be important in predicting the
value of yt from xt . Assuming that the noise wt is uncorrelated with the xt series,
the cross-covariance function can be computed as

γxy (h) = cov(xt+h, yt ) = cov(xt+h, Axt−` + wt )
= cov(xt+h, Axt−` ) = Aγx (h + `).
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Since the largest value of γx (h+`) is γx (0), i.e., when h = −`, the cross-covariance
function will look like the autocovariance of the input series xt , and it will have a
peak on the negative side if xt leads yt and a peak on the positive side if xt lags yt .
Below is the R code of an example with ` = 5 and γ̂xy (h) is shown in Figure 1.12.
set.seed(90210); x = rnorm(100); y = lag(x,-5) + rnorm(100)
ccf(x,y, ylab='CCovF', type='covariance')

1.6 Estimation of Correlation

For data analysis, only the sample values, x1, x2, . . . , xn, are available for estimating
the mean, autocovariance, and autocorrelation functions. In this case, the assumption
of stationarity becomes critical and allows the use of averaging to estimate the
population means and covariance functions.

Accordingly, if a time series is stationary, the mean function (1.16) µt = µ is
constant so that we can estimate it by the sample mean,

x̄ =
1
n

n∑
t=1

xt . (1.24)

The standard error of the estimate is the square root of var( x̄), which can be computed
using first principles (recall Property 1.1), and is given by

var( x̄) =
1
n2 cov *.

,

n∑
t=1

xt,
n∑

s=1
xs

+/
-
=

1
n2

n∑
t=1

n∑
s=1

cov (xt, xs ) =
1
n

n∑
h=−n

(
1−
|h|
n

)
γx (h) ; (1.25)

see Figure 1.13.

1 2 3 4 5

1
2

3
4

5

s

t t − s = 0

t − s = − 1

t − s = − 2

t − s = + 1

t − s = + 2

summing over s and t

Fig. 1.13. Summing over s and t in (1.25) with n = 5.

If the process is white noise, (1.25) reduces to the familiar σ2
x/n recalling that

γx (0) = σ2
x . Note that, in the case of dependence, the standard error of x̄ may be
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smaller or larger than the white noise case depending on the nature of the correlation
structure (see Problem 1.13).

The theoretical autocovariance function, (1.17), is estimated by the sample auto-
covariance function defined as follows.

Definition 1.12 The sample autocovariance function is defined as

γ̂(h) = n−1
n−h∑
t=1

(xt+h − x̄)(xt − x̄), (1.26)

with γ̂(−h) = γ̂(h) for h = 0, 1, . . . , n − 1.

The sum in (1.26) runs over a restricted range because xt+h is not available for
t + h > n. The estimator in (1.26) is preferred to the one that would be obtained by
dividing by n − h because (1.26) is a non-negative definite function.

The autocovariance function, γ(h), of a stationary process is non-negative definite
ensuring that variances of linear combinations of the variates xt will never be negative.
That is, for any n ≥ 1, and constants a1, . . . , an,

0 ≤ var(a1x1 + · · · + anxn) =
n∑
j=1

n∑
k=1

a jakγ( j − k) ,

using Property 1.1. And, because a variance is never negative, the estimate of that
variance

v̂ar(a1x1 + · · · + anxn) =
n∑
j=1

n∑
k=1

a jak γ̂( j − k) ,

should also be non-negative. The estimator in (1.26) guarantees this result, but no
such guarantee exists if we divide by n − h. Note that neither dividing by n nor n − h
in (1.26) yields an unbiased estimator of γ(h).

Definition 1.13 The sample autocorrelation function is defined, analogously to
(1.18), as

ρ̂(h) =
γ̂(h)
γ̂(0)

. (1.27)

Example 1.23 Sample ACF and Scatterplots
Estimating autocorrelation is similar to estimating of correlation in the usual setup
where we have pairs of observations, say (xi, yi), for i = 1, . . . , n. For example,
if we have time series data xt for t = 1, . . . , n, then the pairs of observations for
estimating ρ(h) are the n−h pairs given by {(xt, xt+h); t = 1, . . . , n−h}. Figure 1.14
shows an example using the SOI series where ρ̂(1) = .604 and ρ̂(6) = −.187. The
following code was used for Figure 1.14.
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Fig. 1.14.Display for Example 1.23. For the SOI series, we have a scatterplot of pairs of values
one month apart (left) and six months apart (right). The estimated correlation is displayed in
the box.

(r = round(acf(soi, 6, plot=FALSE)$acf[-1], 3)) # first 6 sample acf values
[1] 0.604 0.374 0.214 0.050 -0.107 -0.187

par(mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(1.6,.6,0))
plot(lag(soi,-1), soi)
legend('topleft', legend=r[1])
plot(lag(soi,-6), soi)
legend('topleft', legend=r[6])

The sample autocorrelation function has a sampling distribution that allows us to
assess whether the data comes from a completely random or white series or whether
correlations are statistically significant at some lags.

Property 1.2 Large-Sample Distribution of the ACF
If xt is white noise, then for n large and under mild conditions, the sample ACF,

ρ̂x (h), for h = 1, 2, . . . , H , where H is fixed but arbitrary, is approximately normal
with zero mean and standard deviation given by of 1√

n
.

Based on Property 1.2, we obtain a rough method for assessing whether a series is
white noise by determining how many values of ρ̂(h) are outside the interval ±2/

√
n

(two standard errors); for white noise, approximately 95% of the sample ACFs should
be within these limits.3 The bounds do not hold in general and can be ignored if the
interest is other than assessing whiteness. The applications of this property develop
because many statistical modeling procedures depend on reducing a time series to
a white noise series using various kinds of transformations. Afterwards the plotted
ACF of the residuals behave as stated.

Example 1.24 A Simulated Time Series
To compare the sample ACF for various sample sizes to the theoretical ACF,
consider a contrived set of data generated by tossing a fair coin, letting xt = 1 when
a head is obtained and xt = −1 when a tail is obtained. Then, construct yt as

3 In this text, z.025 = 1.95996398454005423552 . . . of normal fame, which is often rounded to 1.96, is
rounded to 2.
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Time
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Fig. 1.15. Realization of (1.28), n = 10.

yt = 5 + xt − .7xt−1. (1.28)

To simulate data, we consider two cases, one with a small sample size (n = 10;
see Figure 1.15) and another with a moderate sample size (n = 100).
set.seed(101010)
x1 = 2*rbinom(11, 1, .5) - 1 # simulated sequence of coin tosses
x2 = 2*rbinom(101, 1, .5) - 1
y1 = 5 + filter(x1, sides=1, filter=c(1,-.7))[-1]
y2 = 5 + filter(x2, sides=1, filter=c(1,-.7))[-1]
plot.ts(y1, type='s'); plot.ts(y2, type='s') # only one shown

acf(y1, lag.max=4, plot=FALSE) # 1/
√

10 =.32
Autocorrelations of series 'y1', by lag

0 1 2 3 4
1.000 -0.688 0.425 -0.306 -0.007

acf(y2, lag.max=4, plot=FALSE) # 1/
√

100 =.1
Autocorrelations of series 'y2', by lag

0 1 2 3 4
1.000 -0.480 -0.002 -0.004 0.000
# Note that the sample ACF at lag zero is always 1 (Why?).

The theoretical ACF can be obtained from themodel (1.28) using first principles
so that

ρy (1) =
−.7

1 + .72 = −.47

and ρy (h) = 0 for |h| > 1 (Problem 1.18). It is interesting to compare the theoretical
ACF with sample ACFs for the realization where n = 10 and the other realization
where n = 100; note the increased variability in the smaller size sample.

Definition 1.14 The estimators for the cross-covariance function, γxy (h), as given
in (1.21) and the cross-correlation, ρxy (h), in (1.22) are given, respectively, by the
sample cross-covariance function

γ̂xy (h) = n−1
n−h∑
t=1

(xt+h − x̄)(yt − ȳ), (1.29)

where γ̂xy (−h) = γ̂yx (h) determines the function for negative lags, and the sample
cross-correlation function
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Fig. 1.16. Sample ACFs of the SOI series (top) and of the Recruitment series (middle), and
the sample CCF of the two series (bottom); negative lags indicate SOI leads Recruitment. The
lag axes are in terms of seasons (12 months).

ρ̂xy (h) =
γ̂xy (h)√
γ̂x (0)γ̂y (0)

. (1.30)

The sample cross-correlation function can be examined graphically as a function
of lag h to search for leading or lagging relations in the data using the property
mentioned in Example 1.22 for the theoretical cross-covariance function. Because
−1 ≤ ρ̂xy (h) ≤ 1, the practical importance of peaks can be assessed by comparing
their magnitudes with their theoretical maximum values. Furthermore, for xt and yt
independent processes, then under mild conditions, we have the following property.

Property 1.3 Large-Sample Distribution of Cross-Correlation
The large sample distribution of ρ̂xy (h) is normal with mean zero and standard

deviation 1√
n
if at least one of the processes is independent white noise.

Example 1.25 SOI and Recruitment Correlation Analysis
The autocorrelation and cross-correlation functions are also useful for analyzing
the joint behavior of two stationary series whose behavior may be related in some
unspecified way. In Example 1.4 (see Figure 1.5), we have considered simultaneous
monthly readings of the SOI and the number of new fish (Recruitment) computed
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from amodel. Figure 1.16 shows the autocorrelation and cross-correlation functions
(ACFs and CCF) for these two series.

Both of the ACFs exhibit periodicities corresponding to the correlation between
values separated by 12 units. Observations 12 months or one year apart are strongly
positively correlated, as are observations at multiples such as 24, 36, 48, . . . Obser-
vations separated by six months are negatively correlated, showing that positive
excursions tend to be associated with negative excursions six months removed.
This appearance is rather characteristic of the pattern that would be produced by a
sinusoidal component with a period of 12 months; see Example 1.26. The cross-
correlation function peaks at h = −6, showing that the SOI measured at time t − 6
months is associated with the Recruitment series at time t. We could say the SOI
leads the Recruitment series by six months. The sign of the CCF at h = −6 is
negative, leading to the conclusion that the two series move in different directions;
that is, increases in SOI lead to decreases in Recruitment and vice versa. Again,
note the periodicity of 12 months in the CCF.

The flat lines shown on the plots indicate ±2/
√

453, so that upper values would
be exceeded about 2.5% of the time if the noise were white as specified in Prop-
erty 1.2 and Property 1.3. Of course, neither series is noise, so we can ignore these
lines. To reproduce Figure 1.16 in R, use the following commands:
par(mfrow=c(3,1))
acf(soi, 48, main="Southern Oscillation Index")
acf(rec, 48, main="Recruitment")
ccf(soi, rec, 48, main="SOI vs Recruitment", ylab="CCF")

Example 1.26 Prewhitening and Cross Correlation Analysis
Although we do not have all the tools necessary yet, it is worthwhile to discuss the
idea of prewhitening a series prior to a cross-correlation analysis. The basic idea is
simple; in order to use Property 1.3, at least one of the series must be white noise.
If this is not the case, there is no simple way to tell if a cross-correlation estimate is
significantly different from zero. Hence, in Example 1.25, we were only guessing
at the linear dependence relationship between SOI and Recruitment.

For example, in Figure 1.17we generated two series, xt and yt , for t = 1, . . . , 120
independently as

xt = 2 cos(2π t 1
12 ) + wt1 and yt = 2 cos(2π [t + 5] 1

12 ) + wt2

where {wt1,wt2; t = 1, . . . , 120} are all independent standard normals. The series
are made to resemble SOI and Recruitment. The generated data are shown in the
top row of the figure. The middle row of Figure 1.17 show the sample ACF of each
series, each of which exhibits the cyclic nature of each series. The bottom row (left)
of Figure 1.17 shows the sample CCF between xt and yt , which appears to show
cross-correlation even though the series are independent. The bottom row (right)
also displays the sample CCF between xt and the prewhitened yt , which shows that
the two sequences are uncorrelated. By prewhtiening yt , we mean that the signal
has been removed from the data by running a regression of yt on cos(2πt) and
sin(2πt) [see Example 2.9] and then putting ỹt = yt − ŷt , where ŷt are the predicted
values from the regression.
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Fig. 1.17. Display for Example 1.26

The following code will reproduce Figure 1.17.
set.seed(1492)
num=120; t=1:num
X = ts(2*cos(2*pi*t/12) + rnorm(num), freq=12)
Y = ts(2*cos(2*pi*(t+5)/12) + rnorm(num), freq=12)
Yw = resid( lm(Y~ cos(2*pi*t/12) + sin(2*pi*t/12), na.action=NULL) )
par(mfrow=c(3,2), mgp=c(1.6,.6,0), mar=c(3,3,1,1) )
plot(X); plot(Y)
acf(X,48, ylab='ACF(X)'); acf(Y,48, ylab='ACF(Y)')
ccf(X,Y,24, ylab='CCF(X,Y)')
ccf(X,Yw,24, ylab='CCF(X,Yw)', ylim=c(-.6,.6))

Problems

1.1 In 25 words or less, and without using symbols, why is stationarity important?

1.2 (a) Generate n = 100 observations from the autoregression

xt = −.9xt−2 + wt

with σw = 1, using the method described in Example 1.8. Next, apply the moving
average filter

vt = (xt + xt−1 + xt−2 + xt−3)/4

to xt , the data you generated. Now plot xt as a line and superimpose vt as a dashed
line. Note: v = filter(x, rep(1/4, 4), sides = 1)
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(b) Repeat (a) but with
xt = 2 cos(2πt/4) + wt,

where wt ∼ iid N(0, 1).
(c) Repeat (a) but where xt is the log of the Johnson & Johnson data discussed in

Example 1.1.
(d) What is seasonal adjustment (you can do an internet search)?
(e) State your conclusions (in other words, what did you learn from this exercise).

1.3 Show that the autocovariance function can be written as

γ(s, t) = E[(xs − µs)(xt − µt )] = E(xsxt ) − µsµt,

where E[xt ] = µt .

1.4 Consider the time series

xt = β1 + β2t + wt,

where β1 and β2 are regression coefficients, and wt is a white noise process with
variance σ2

w .

(a) Determine whether xt is stationary.
(b) Show that the process yt = xt − xt−1 is stationary.
(c) Show that the mean of the moving average

vt =
1
3

(xt−1 + xt + xt+1)

is β1 + β2t.

1.5 For a moving average process of the form

xt = wt−1 + 2wt + wt+1,

where wt are independent with zero means and variance σ2
w , determine the autoco-

variance and autocorrelation functions as a function of lag h and sketch the ACF as
a function of h.

1.6 Consider the random walk with drift model

xt = δ + xt−1 + wt,

for t = 1, 2, . . . , with x0 = 0, where wt is white noise with variance σ2
w .

(a) Show that the model can be written as xt = δt +
∑t

k=1 wk .
(b) Find the mean function and the autocovariance function of xt .
(c) Argue that xt is not stationary.
(d) Show ρx (t − 1, t) =

√
t−1
t → 1 as t → ∞. What is the implication of this result?
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(e) Suggest a transformation to make the series stationary, and prove that the trans-
formed series is stationary. (Hint: See Problem 1.4b.)

1.7 Would you treat the global temperature data discussed in Example 1.2 and shown
in Figure 1.3 as stationary or non-stationary? Support your answer.

1.8 A time series with a periodic component can be constructed from

xt = U1 sin(2πω0t) +U2 cos(2πω0t),

where U1 and U2 are independent random variables with zero means and E(U2
1 ) =

E(U2
2 ) = σ2. The constant ω0 determines the period or time it takes the process to

make one complete cycle. Show that this series is weakly stationary with autocovari-
ance function

γ(h) = σ2 cos(2πω0h).

1.9 Suppose we would like to predict a single stationary series xt with zero mean and
autocorrelation function γ(h) at some time in the future, say, t + m, for m > 0.

(a) If we predict using only xt and some scalemultiplier A, show that themean-square
prediction error

MSE(A) = E[(xt+m − Axt )2]

is minimized by the value
A = ρ(m).

(b) Show that the minimum mean-square prediction error is

MSE(A) = γ(0)[1 − ρ2(m)].

(c) Show that if xt+m = Axt , then ρ(m) = 1 if A > 0, and ρ(m) = −1 if A < 0.

1.10 For two jointly stationary series xt and yt , verify (1.23).

1.11 Consider the two series
xt = wt

yt = wt − θwt−1 + ut,

where wt and ut are independent white noise series with variances σ2
w and σ2

u ,
respectively, and θ is an unspecified constant.

(a) Express the ACF, ρy (h), for h = 0,±1,±2, . . . of the series yt as a function of
σ2
w, σ

2
u , and θ.

(b) Determine the CCF, ρxy (h) relating xt and yt .
(c) Show that xt and yt are jointly stationary.

1.12 Let wt , for t = 0,±1,±2, . . . be a normal white noise process, and consider the
series

xt = wtwt−1.

Determine the mean and autocovariance function of xt , and state whether it is sta-
tionary.
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28 1 Time Series Characteristics

1.13 Suppose xt = µ + wt + θwt−1, where wt ∼ wn(0, σ2
w ).

(a) Show that mean function is E(xt ) = µ.
(b) Show that the autocovariance function of xt is given by γx (0) = σ2

w (1 + θ2),
γx (±1) = σ2

wθ, and γx (h) = 0 otherwise.
(c) Show that xt is stationary for all values of θ ∈ R.
(d) Use (1.25) to calculate var( x̄) for estimating µ when (i) θ = 1, (ii) θ = 0, and (iii)

θ = −1
(e) In time series, the sample size n is typically large, so that (n−1)

n ≈ 1. With this as
a consideration, comment on the results of part (d); in particular, how does the
accuracy in the estimate of the mean µ change for the three different cases?

1.14 (a) Simulate a series of n = 500 Gaussian white noise observations as in Exam-
ple 1.6 and compute the sample ACF, ρ̂(h), to lag 20. Compare the sample ACF
you obtain to the actual ACF, ρ(h). [Recall Example 1.18.]

(b) Repeat part (a) using only n = 50. How does changing n affect the results?

1.15 (a) Simulate a series of n = 500 moving average observations as in Example 1.7
and compute the sample ACF, ρ̂(h), to lag 20. Compare the sample ACF you
obtain to the actual ACF, ρ(h). [Recall Example 1.19.]

(b) Repeat part (a) using only n = 50. How does changing n affect the results?

1.16 Simulate 500 observations from the AR model specified in Example 1.8 and
then plot the sample ACF to lag 50. What does the sample ACF tell you about the
approximate cyclic behavior of the data? Hint: Recall Example 1.25.

1.17 Simulate a series of n = 500 observations from the signal-plus-noise model
presented in Example 1.10 with (a) σw = 0, (b) σw = 1 and (c) σw = 5. Compute
the sample ACF to lag 100 of the three series you generated and comment.

1.18 For the time series yt described in Example 1.24, verify the stated result that
ρy (1) = −.47 and ρy (h) = 0 for h > 1.
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Chapter 2

Time Series Regression and EDA

2.1 Classical Regression for Time Series

We begin our discussion of linear regression in the time series context by assuming
some output or dependent time series, say, xt , for t = 1, . . . , n, is being influenced by
a collection of possible inputs or independent series, say, zt1, zt2, . . . , ztq , where we
first regard the inputs as fixed and known. This assumption, necessary for applying
conventional linear regression, will be relaxed later on. We express this relation
through the linear regression model

xt = β0 + β1zt1 + β2zt2 + · · · + βq ztq + wt, (2.1)

where β0, β1, . . . , βq are unknown fixed regression coefficients, and {wt } is a random
error or noise process consisting of independent and identically distributed (iid)
normal variables with mean zero and variance σ2

w; we will relax the iid assumption
later.

Example 2.1 Estimating a Linear Trend
Consider the global temperature data, say xt , shown in Figure 1.3 and Figure 2.1.
As discussed in Example 1.2, there is an apparent upward trend in the series that
has been used to argue the global warming hypothesis. We might use simple linear
regression to estimate that trend by fitting the model

xt = β0 + β1zt + wt, zt = 1880, 1857, . . . , 2009.

This is in the form of the regression model (2.1) with q = 1. Note that we are
making the assumption that the errors, wt , are an iid normal sequence, which may
not be true; the problem of autocorrelated errors is discussed in detail in Chapter 3.
Also note that we could have used, for example, zt = 1, . . . , 130, without affecting
the interpretation of the slope coefficient, β1; only the intercept, β0, would change.

In ordinary least squares (OLS), we minimize the error sum of squares

Q =
n∑
t=1

w2
t =

n∑
t=1

(xt − [β0 + β1zt ])2
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Fig. 2.1. Global temperature deviations shown in Figure 1.3 with fitted linear trend line, which
SUCKS as an estimate of trend.

with respect to βi for i = 0, 1. In this case we can use simple calculus to evaluate
∂Q/∂ βi = 0 for i = 0, 1, to obtain two equations to solve for the βs. The OLS
estimates of the coefficients are explicit and given by

β̂1 =

∑n
t=1(xt − x̄)(zt − z̄t )∑n

t=1(zt − z̄)2 and β̂0 = x̄ − β̂1 z̄ ,

where x̄ =
∑

t xt/n and z̄t =
∑

t zt/n are the respective sample means. Note that we
could have used, for example, zt = 1, . . . , 130, without affecting the interpretation
of the slope coefficient, β1; only the intercept, β0, would change.

Using R, we obtained the estimated coefficients β̂0 = −11.2, and β̂1 = .006
(with a standard error of .0003) yielding a highly significant estimated increase
of .6 degrees centigrade per 100 years. We discuss the precise way in which
the solution was accomplished after the example. Finally, Figure 2.1 shows the
global temperature data, say xt , with the estimated trend, say x̂t = −11.2 + .006zt ,
superimposed. It is apparent that the estimated trend line obtained via simple linear
regression does not quite capture the trend of the data and better models will be
needed. To perform this analysis in R, use the following commands:
summary(fit <- lm(gtemp~time(gtemp))) # regress gtemp on time - view results
plot(gtemp, type="o", ylab="Global Temperature Deviation")
abline(fit) # add the fitted regression line to the plot

The multiple linear regression model described by (2.1) can be conveniently writ-
ten in amore general notation by defining the columnvectors zzzt = (1, zt1, zt2, . . . , ztq)′

and βββ = (β0, β1, . . . , βq)′, where ′ denotes transpose, so (2.1) can be written in the
alternate form

xt = β0 + β1zt1 + · · · + βq ztq + wt = βββ
′zzzt + wt . (2.2)

where wt ∼ iid N(0, σ2
w ). As in the previous example, OLS estimation finds the

coefficient vector βββ that minimizes the error sum of squares
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2.1 Classical Regression for Time Series 31

Q =
n∑
t=1

w2
t =

n∑
t=1

(xt − βββ′zzzt )2, (2.3)

with respect to β0, β1, . . . , βq . This minimization can be accomplished by solving
∂Q/∂ βi = 0 for i = 0, 1, . . . , q, which yields q + 1 equations with q + 1 unknowns.
In vector notation, this procedure gives the normal equations( n∑

t=1
zzzt zzz′t

)
β̂ββ =

n∑
t=1

zzzt xt . (2.4)

If
∑n

t=1 zzzt zzz′t is non-singular, the least squares estimate of βββ is

β̂ββ =
( n∑
t=1

zzzt zzz′t
)−1 n∑

t=1
zzzt xt .

The minimized error sum of squares (2.3), denoted SSE, can be written as

SSE =
n∑
t=1

(xt − β̂ββ
′
zzzt )2. (2.5)

The ordinary least squares estimators are unbiased, i.e., E( β̂ββ) = βββ, and have the
smallest variance within the class of linear unbiased estimators.

If the errors wt are normally distributed, β̂ββ is normally distributed with

cov( β̂ββ) = σ2
wC , (2.6)

where

C = *
,

n∑
t=1

zzzt zzz′t+
-

−1

(2.7)

is a convenient notation. An unbiased estimator for the variance σ2
w is

s2
w = MSE =

SSE
n − (q + 1)

, (2.8)

where MSE denotes the mean squared error. Under the normal assumption,

t =
( β̂i − βi)
sw
√

cii
(2.9)

has the t-distribution with n− (q+1) degrees of freedom; cii denotes the i-th diagonal
element of C, as defined in (2.7). This result is often used for individual tests of the
null hypothesis H0 : βi = 0 for i = 1, . . . , q.

Various competingmodels are often of interest to isolate or select the best subset of
independent variables. Suppose a proposed model specifies that only a subset r < q
independent variables, say, zt,1:r = {zt1, zt2, . . . , ztr } is influencing the dependent
variable xt . The reduced model is
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Table 2.1. Analysis of Variance for Regression

Source df Sum of Squares Mean Square F

zt,r+1:q q − r SSR = SSEr − SSE MSR = SSR/(q − r) F = MSR
MSE

Error n − (q + 1) SSE MSE = SSE/(n − q − 1)

xt = β0 + β1zt1 + · · · + βr ztr + wt (2.10)

where β1, β2, . . . , βr are a subset of coefficients of the original q variables.
The null hypothesis in this case is H0 : βr+1 = · · · = βq = 0. We can test the

reduced model (2.10) against the full model (2.2) by comparing the error sums of
squares under the two models using the F-statistic

F =
(SSEr − SSE)/(q − r)

SSE/(n − q − 1)
=

MSR
MSE

, (2.11)

where SSEr is the error sum of squares under the reduced model (2.10). Note that
SSEr ≥ SSE because the full model has more parameters. If H0 : βr+1 = · · · = βq =
0 is true, then SSEr ≈ SSE because the estimates of those βs will be close to 0.
Hence, we do not believe H0 if SSR = SSEr − SSE is big. Under the null hypothesis,
(2.11) has a central F-distribution with q − r and n − q − 1 degrees of freedom when
(2.10) is the correct model.

These results are often summarized in an Analysis of Variance (ANOVA) table
as given in Table 2.1 for this particular case. The difference in the numerator is often
called the regression sum of squares (SSR). The null hypothesis is rejected at level
α if F > Fq−r

n−q−1(α), the 1 − α percentile of the F distribution with q − r numerator
and n − q − 1 denominator degrees of freedom.

A special case of interest is the null hypothesis H0: β1 = · · · = βq = 0. In this
case r = 0, and the model in (2.10) becomes

xt = β0 + wt .

We may measure the proportion of variation accounted for by all the variables using

R2 =
SSE0 − SSE

SSE0
, (2.12)

where the residual sum of squares under the reduced model is

SSE0 =

n∑
t=1

(xt − x̄)2 . (2.13)

In this case SSE0 is the sum of squared deviations from the mean x̄ and is otherwise
known as the adjusted total sum of squares. The measure R2 is called the squared
multiple correlation between xt and the variables zt1, zt2, . . . , ztq .
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2.1 Classical Regression for Time Series 33

The techniques discussed in the previous paragraph can be used to test various
models against one another using the F test given in (2.11). These tests have been
used in the past in a stepwise manner, where variables are added or deleted when the
values from the F-test either exceed or fail to exceed some predetermined levels. The
procedure, called stepwise multiple regression, is useful in arriving at a set of useful
variables. An alternative is to focus on a procedure for model selection that does not
proceed sequentially, but simply evaluates each model on its own merits. Suppose
we consider a normal regression model with k coefficients and denote the maximum
likelihood estimator for the variance as

σ̂2
k =

SSE(k)
n

, (2.14)

where SSE(k) denotes the residual sum of squares under the model with k regression
coefficients. Then, Akaike (1969, 1973, 1974) suggested measuring the goodness of
fit for this particular model by balancing the error of the fit against the number of
parameters in the model; we define the following.

Definition 2.1 Akaike’s Information Criterion (AIC)

AIC = log σ̂2
k +

n + 2k
n

, (2.15)

where σ̂2
k
is given by (2.14) and k is the number of parameters in the model.

The value of k yielding the minimum AIC specifies the best model.1 The idea is
roughly that minimizing σ̂2

k
would be a reasonable objective, except that it decreases

monotonically as k increases. Therefore, we ought to penalize the error variance by a
term proportional to the number of parameters. The choice for the penalty term given
by (2.15) is not the only one, and a considerable literature is available advocating
different penalty terms. A corrected form, suggested by Sugiura (1978), and expanded
by Hurvich and Tsai (1989), can be based on small-sample distributional results for
the linear regression model. The corrected form is defined as follows.

Definition 2.2 AIC, Bias Corrected (AICc)

AICc = log σ̂2
k +

n + k
n − k − 2

, (2.16)

where σ̂2
k
is given by (2.14), k is the number of parameters in the model, and n is the

sample size.

Wemay also derive a correction term based on Bayesian arguments, as in Schwarz
(1978), which leads to the following.

1 Formally, AIC is defined as −2 log Lk + 2k where Lk is the maximum value of the likelihood and k is
the number of parameters in the model. For the normal regression problem, AIC can be reduced to the
form given by (2.15).
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Definition 2.3 Bayesian Information Criterion (BIC)

BIC = log σ̂2
k +

k log n
n

, (2.17)

using the same notation as in Definition 2.2.

BIC is also called the Schwarz Information Criterion (SIC); see also Rissanen
(1978) for an approach yielding the same statistic based on a minimum description
length argument. Various simulation studies have tended to verify that BIC does well
at getting the correct order in large samples, whereas AICc tends to be superior in
smaller samples where the relative number of parameters is large; see McQuarrie
and Tsai (1998) for detailed comparisons. In fitting regression models, two measures
that have been used in the past are adjusted R-squared, which is essentially s2

w , and
Mallows Cp , Mallows (1973), which we do not consider in this context.

Example 2.2 Pollution, Temperature and Mortality
The data shown in Figure 2.2 are extracted series from a study by Shumway et
al. (1988) of the possible effects of temperature and pollution on weekly mor-
tality in Los Angeles County. Note the strong seasonal components in all of the
series, corresponding to winter-summer variations and the downward trend in the
cardiovascular mortality over the 10-year period.

A scatterplot matrix, shown in Figure 2.3, indicates a possible linear relation
between mortality and the pollutant particulates and a possible relation to tempera-
ture. Note the curvilinear shape of the temperature mortality curve, indicating that
higher temperatures as well as lower temperatures are associated with increases in
cardiovascular mortality.

Based on the scatterplot matrix, we entertain, tentatively, four models where
Mt denotes cardiovascular mortality, Tt denotes temperature and Pt denotes the
particulate levels. They are

Mt = β1 + β2t + wt (2.18)
Mt = β1 + β2t + β3(Tt − T·) + wt (2.19)
Mt = β1 + β2t + β3(Tt − T·) + β4(Tt − T·)2 + wt (2.20)
Mt = β1 + β2t + β3(Tt − T·) + β4(Tt − T·)2 + β5Pt + wt (2.21)

where we adjust temperature for its mean, T· = 74.6, to avoid scaling problems.
It is clear that (2.18) is a trend only model, (2.19) is linear temperature, (2.20)
is curvilinear temperature and (2.21) is curvilinear temperature and pollution. We
summarize some of the statistics given for this particular case in Table 2.2. The
values of R2 were computed by noting that SSE1 = 50, 687 using (2.13).

We note that each model does substantially better than the one before it and that
the model including temperature, temperature squared, and particulates does the
best, accounting for some 60% of the variability and with the best value for AIC
and BIC (because of the large sample size, AIC and AICc are nearly the same).
Note that one can compare any two models using the residual sums of squares and
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Fig. 2.2. Average weekly cardiovascular mortality (top), temperature (middle) and particulate
pollution (bottom) in Los Angeles County. There are 508 six-day smoothed averages obtained
by filtering daily values over the 10 year period 1970-1979.

(2.11). Hence, a model with only trend could be compared to the full model using
q = 5, r = 2, n = 508, so

F3,503 =
(40, 020 − 20, 508)/3

20, 508/503
= 160,

which exceeds F3,503(.001) = 5.51. We obtain the best prediction model,

M̂t = 81.59 − .027(.002)t − .473(.032) (Tt − 74.6)
+ .023(.003) (Tt − 74.6)2 + .255(.019) Pt,

for mortality, where the standard errors, computed from (2.6)-(2.8), are given in
parentheses. As expected, a negative trend is present in time as well as a negative
coefficient for adjusted temperature. The quadratic effect of temperature can clearly
be seen in the scatterplots of Figure 2.3. Pollution weights positively and can be
interpreted as the incremental contribution to daily deaths per unit of particulate
pollution. It would still be essential to check the residuals ŵt = Mt − M̂t for
autocorrelation (of which there is a substantial amount), but we defer this question
to to §3.9 when we discuss regression with correlated errors.

Below is the R code to plot the series, display the scatterplot matrix, fit the final
regression model (2.21), and compute the corresponding values of AIC and BIC.
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Fig. 2.3. Scatterplot matrix showing plausible relations between mortality, temperature, and
pollution.

Table 2.2. Summary Statistics for Mortality Models

Model k SSE df MSE R2 AIC BIC
(2.18) 2 40,020 506 79.0 .21 5.38 5.40
(2.19) 3 31,413 505 62.2 .38 5.14 5.17
(2.20) 4 27,985 504 55.5 .45 5.03 5.07
(2.21) 5 20,508 503 40.8 .60 4.72 4.77

Finally, the use of na.action in lm() is to retain the time series attributes for the
residuals and fitted values.
par(mfrow=c(3,1))
plot(cmort, main="Cardiovascular Mortality", xlab="", ylab="")
plot(tempr, main="Temperature", xlab="", ylab="")
plot(part, main="Particulates", xlab="", ylab="")
dev.new() # open a new graphic device for the scatterplot matrix
pairs(cbind(Mortality=cmort, Temperature=tempr, Particulates=part))
temp = tempr-mean(tempr) # center temperature
temp2 = temp^2
trend = time(cmort) # time
fit = lm(cmort~ trend + temp + temp2 + part, na.action=NULL)
summary(fit) # regression results
summary(aov(fit)) # ANOVA table (compare to next line)
summary(aov(lm(cmort~cbind(trend, temp, temp2, part)))) # Table 2.1
num = length(cmort) # sample size
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AIC(fit)/num - log(2*pi) # AIC as in Def 2.1
BIC(fit)/num - log(2*pi) # BIC as in Def 2.3

As previously mentioned, it is possible to include lagged variables in time series
regression models and we will continue to discuss this type of problem throughout
the text. This concept is explored further in Problem 2.2. The following is a simple
example of lagged regression.

Example 2.3 Regression With Lagged Variables
In Example 1.25, we discovered that the Southern Oscillation Index (SOI) measured
at time t − 6 months is associated with the Recruitment series at time t, indicating
that the SOI leads the Recruitment series by sixmonths. Although there is strong ev-
idence that the relationship is NOT linear (this is discussed further in Example 2.7),
for demonstration purposes only, we consider the following regression,

Rt = β1 + β2St−6 + wt, (2.22)

where Rt denotes Recruitment for month t and St−6 denotes SOI six months prior.
Assuming the wt sequence is white, the fitted model is

R̂t = 65.79 − 44.28(2.78) St−6 (2.23)

with σ̂w = 22.5 on 445 degrees of freedom. This result indicates the strong
predictive ability of SOI for Recruitment six months in advance. Of course, it is
still essential to check the the model assumptions, but we defer this discussion until
later.

Performing lagged regression in R is a little difficult because the series must be
aligned prior to running the regression. The easiest way to do this is to create an
object that we call fish using ts.intersect, which aligns the lagged series.
fish = ts.intersect( rec, soiL6=lag(soi,-6) )
summary(fit1 <- lm(rec~ soiL6, data=fish, na.action=NULL))

The headache of aligning the lagged series can be avoided by using the R package
dynlm, which must be downloaded and installed.
require(dynlm)
summary(fit2 <- dynlm(rec~ L(soi,6)))

In the dynlm example, fit2 is similar to a lm object, but the time series attributes
are retained without any additional commands.

2.2 Exploratory Data Analysis

In general, it is necessary for time series data to be stationary so averaging lagged
products over time, as in the previous section, will be a sensible thing to do.With time
series data, it is the dependence between the values of the series that is important
to measure; we must, at least, be able to estimate autocorrelations with precision.
It would be difficult to measure that dependence if the dependence structure is not
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regular or is changing at every time point. Hence, to achieve any meaningful sta-
tistical analysis of time series data, it will be crucial that, if nothing else, the mean
and the autocovariance functions satisfy the conditions of stationarity (for at least
some reasonable stretch of time) stated in Definition 1.7. Often, this is not the case,
and we will mention some methods in this section for playing down the effects of
nonstationarity so the stationary properties of the series may be studied.

A number of our examples came from clearly nonstationary series. The Johnson
& Johnson series in Figure 1.1 has a mean that increases exponentially over time, and
the increase in the magnitude of the fluctuations around this trend causes changes in
the covariance function; the variance of the process, for example, clearly increases as
one progresses over the length of the series. Also, the global temperature series shown
in Figure 1.3 contains some evidence of a trend over time; human-induced global
warming advocates seize on this as empirical evidence to advance their hypothesis
that temperatures are increasing.

Perhaps the easiest form of nonstationarity to work with is the trend stationary
model wherein the process has stationary behavior around a trend. We may write this
type of model as

xt = µt + yt (2.24)

where xt are the observations, µt denotes the trend, and yt is a stationary process.
Quite often, strong trend, µt , will obscure the behavior of the stationary process, yt , as
we shall see in numerous examples. Hence, there is some advantage to removing the
trend as a first step in an exploratory analysis of such time series. The steps involved
are to obtain a reasonable estimate of the trend component, say µ̂t , and then work
with the residuals

ŷt = xt − µ̂t . (2.25)

Consider the following example.

Example 2.4 Detrending Global Temperature
Here we suppose the model is of the form of (2.24),

xt = µt + yt,

where, as we suggested in the analysis of the global temperature data presented in
Example 2.1, a straight line might be a reasonable model for the trend, i.e.,

µt = β1 + β2 t .

In that example, we estimated the trend using ordinary least squares2 and found

µ̂t = −11.2 + .006 t .

2 Because the error term, yt , is not assumed to be iid, the reader may feel that weighted least squares is
called for in this case. The problem is, we do not know the behavior of yt and that is precisely what
we are trying to assess at this stage. An important result by Grenander and Rosenblatt (1957, Ch 7),
however, is that under mild conditions, for polynomial or periodic regression, when the sample size is
large, ordinary least squares is equivalent to weighted least squares in that the standard errors of the
estimates are the approximately same.
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Fig. 2.4.Detrended (top) and differenced (bottom) global temperature series. The original data
are shown in Figure 1.3 and Figure 2.1.

Figure 2.1 shows the data with the estimated trend line superimposed. To obtain
the detrended series we simply subtract µ̂t from the observations, xt , to obtain the
detrended series

ŷt = xt + 11.2 − .006 t .

The top graph of Figure 2.4 shows the detrended series. Figure 2.5 shows the ACF
of the original data (top panel) as well as the ACF of the detrended data (middle
panel).

To detrend in the series in R, use the following commands.We also show how to
difference and plot the differenced data; we discuss differencing after this example.
In addition, we show how to generate the sample ACFs displayed in Figure 2.5.
fit = lm(gtemp~time(gtemp), na.action=NULL) # regress gtemp on time
par(mfrow=c(2,1))
plot(resid(fit), type="o", main="detrended")
plot(diff(gtemp), type="o", main="first difference")
par(mfrow=c(3,1)) # plot ACFs
acf(gtemp, 48, main="gtemp")
acf(resid(fit), 48, main="detrended")
acf(diff(gtemp), 48, main="first difference")

In Example 1.9 and the corresponding Figure 1.9 we saw that a random walk
might also be a good model for trend. That is, rather than modeling trend as fixed (as
in Example 2.4), we might model trend as a stochastic component using the random
walk with drift model,

µt = δ + µt−1 + wt, (2.26)
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where wt is white noise and is independent of yt . If the appropriate model is (2.24),
then differencing the data, xt , yields a stationary process; that is,

xt − xt−1 = (µt + yt ) − (µt−1 + yt−1) (2.27)
= δ + wt + yt − yt−1.

It is easy to show zt = yt − yt−1 is stationary using Property 1.1 of Chapter 1. That
is, because yt is stationary,

γz (h) = cov(zt+h, zt ) = cov(yt+h − yt+h−1, yt − yt−1)
= 2γy (h) − γy (h + 1) − γy (h − 1) (2.28)

is independent of time; we leave it as an exercise (Problem 2.5) to show that xt − xt−1
in (2.27) is stationary.

One advantage of differencing over detrending to remove trend is that no param-
eters are estimated in the differencing operation. One disadvantage, however, is that
differencing does not yield an estimate of the stationary process yt as can be seen in
(2.27). If an estimate of yt is essential, then detrending may be more appropriate. If
the goal is to coerce the data to stationarity, then differencing may be more appropri-
ate. Differencing is also a viable tool if the trend is fixed, as in Example 2.4. That is,
e.g., if µt = β1 + β2 t in the model (2.24), differencing the data produces stationarity
(see Problem 2.4):

xt − xt−1 = (µt + yt ) − (µt−1 + yt−1) = β2 + yt − yt−1.

Because differencing plays a central role in time series analysis, it receives its
own notation. The first difference is denoted as

∇xt = xt − xt−1. (2.29)

As we have seen, the first difference eliminates a linear trend. A second difference,
that is, the difference of (2.29), can eliminate a quadratic trend, and so on. In order
to define higher differences, we need a variation in notation that we will use often in
our discussion of ARIMA models in Chapter 3.

Definition 2.4 We define the backshift operator by

Bxt = xt−1

and extend it to powers B2xt = B(Bxt ) = Bxt−1 = xt−2, and so on. Thus,

Bk xt = xt−k . (2.30)

The idea of an inverse operator can also be given if we require B−1B = 1, so that

xt = B−1Bxt = B−1xt−1.

That is, B−1 is the forward-shift operator. In addition, it is clear that we may rewrite
(2.29) as
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Fig. 2.5. Sample ACFs of the global temperature (top), and of the detrended (middle) and the
differenced (bottom) series.

∇xt = (1 − B)xt, (2.31)

and we may extend the notion further. For example, the second difference becomes

∇2xt = (1 − B)2xt = (1 − 2B + B2)xt = xt − 2xt−1 + xt−2 (2.32)

by the linearity of the operator. To check, just take the difference of the first difference
∇(∇xt ) = ∇(xt − xt−1) = (xt − xt−1) − (xt−1 − xt−2).

Definition 2.5 Differences of order d are defined as

∇d = (1 − B)d, (2.33)

where we may expand the operator (1 − B)d algebraically to evaluate for higher
integer values of d. When d = 1, we drop it from the notation.

The first difference (2.29) is an example of a linear filter applied to eliminate a
trend. Other filters, formed by averaging values near xt , can produce adjusted series
that eliminate other kinds of unwanted fluctuations, as in Chapter 3. The differencing
technique is an important component of the ARIMA model discussed in Chapter 3.
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Example 2.5 Differencing Global Temperature
The first difference of the global temperature series, also shown in Figure 2.4,
produces different results than removing trend by detrending via regression. For
example, the differenced series does not contain the long middle cycle we observe
in the detrended series. The ACF of this series is also shown in Figure 2.5. In this
case it appears that the differenced process shows minimal autocorrelation, which
may imply the global temperature series is nearly a random walk with drift. It is
interesting to note that if the series is a random walk with drift, the mean of the
differenced series, which is an estimate of the drift, is about .0066 (but with a large
standard error):
mean(diff(gtemp)) # = 0.00659 (drift)
sd(diff(gtemp))/sqrt(length(diff(gtemp))) # = 0.00966 (SE)

Often, obvious aberrations are present that can contribute nonstationary as well
as nonlinear behavior in observed time series. In such cases, transformations may
be useful to equalize the variability over the length of a single series. A particularly
useful transformation is

yt = log xt, (2.34)

which tends to suppress larger fluctuations that occur over portions of the series where
the underlying values are larger. Other possibilities are power transformations in the
Box–Cox family of the form

yt =



(xλt − 1)/λ λ , 0,
log xt λ = 0.

(2.35)

Methods for choosing the power λ are available (see Johnson and Wichern, 1992,
§4.7) but we do not pursue them here. Often, transformations are also used to improve
the approximation to normality or to improve linearity in predicting the value of one
series from another.

Example 2.6 Paleoclimatic Glacial Varves
Melting glaciers deposit yearly layers of sand and silt during the spring melting
seasons, which can be reconstructed yearly over a period ranging from the time
deglaciation began in New England (about 12,600 years ago) to the time it ended
(about 6,000 years ago). Such sedimentary deposits, called varves, can be used as
proxies for paleoclimatic parameters, such as temperature, because, in a warm year,
more sand and silt are deposited from the receding glacier. Figure 2.6 shows the
thicknesses of the yearly varves collected from one location in Massachusetts for
634 years, beginning 11,834 years ago. For further information, see Shumway and
Verosub (1992). Because the variation in thicknesses increases in proportion to the
amount deposited, a logarithmic transformation could remove the nonstationarity
observable in the variance as a function of time. Figure 2.6 shows the original and
transformed varves, and it is clear that this improvement has occurred. We may also
plot the histogram of the original and transformed data, as in Problem 2.6, to argue
that the approximation to normality is improved. The ordinary first differences
(2.31) are also computed in Problem 2.6, and we note that the first differences have
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Fig. 2.6. Glacial varve thicknesses (top) from Massachusetts for n = 634 years compared with
log transformed thicknesses (bottom).

a significant negative correlation at lag h = 1. Later, in Chapter 5, we will show
that perhaps the varve series has long memory and will propose using fractional
differencing.

Figure 2.6 was generated in R as follows:
par(mfrow=c(2,1))
plot(varve, main="varve", ylab="")
plot(log(varve), main="log(varve)", ylab="" )

Next, we consider another preliminary data processing technique that is used for
the purpose of visualizing the relations between series at different lags, namely, scat-
terplot matrices. In the definition of the ACF, we are essentially interested in relations
between xt and xt−h; the autocorrelation function tells us whether a substantial linear
relation exists between the series and its own lagged values. The ACF gives a profile
of the linear correlation at all possible lags and shows which values of h lead to the
best predictability. The restriction of this idea to linear predictability, however, may
mask a possible nonlinear relation between current values, xt , and past values, xt−h .
This idea extends to two series where one may be interested in examining scatterplots
of yt versus xt−h .

Example 2.7 Scatterplot Matrices, SOI and Recruitment
To check for nonlinear relations of this form, it is convenient to display a lagged
scatterplot matrix, as in Figure 2.7, that displays values of the SOI, St , on the vertical
axis plotted against St−h on the horizontal axis. The sample autocorrelations are
displayed in the upper right-hand corner and superimposed on the scatterplots
are locally weighted scatterplot smoothing (lowess) lines that can be used to help
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Fig. 2.7. Scatterplot matrix relating current SOI values, St , to past SOI values, St−h , at lags
h = 1, 2, ..., 12. The values in the upper right corner are the sample autocorrelations and the
lines are a lowess fit.

discover any nonlinearities. We discuss smoothing in the next section, but for now,
think of lowess as a robust method for fitting nonlinear regression.

In Figure 2.7, we notice that the lowess fits are approximately linear, so that
the sample autocorrelations are meaningful. Also, we see strong positive linear
relations at lags h = 1, 2, 11, 12, that is, between St and St−1, St−2, St−11, St−12, and
a negative linear relation at lags h = 6, 7. These results match up well with peaks
noticed in the ACF in Figure 1.16.

Similarly, we might want to look at values of one series, say Recruitment,
denoted Rt plotted against another series at various lags, say the SOI, St−h , to look
for possible nonlinear relations between the two series. Because, for example, we
might wish to predict the Recruitment series, Rt , from current or past values of the
SOI series, St−h , for h = 0, 1, 2, ... it would be worthwhile to examine the scatterplot
matrix. Figure 2.8 shows the lagged scatterplot of the Recruitment series Rt on the
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Fig. 2.8. Scatterplot matrix of the Recruitment series, Rt , on the vertical axis plotted against
the SOI series, St−h , on the horizontal axis at lags h = 0, 1, . . . , 8. The values in the upper right
corner are the sample cross-correlations and the lines are a lowess fit.

vertical axis plotted against the SOI index St−h on the horizontal axis. In addition,
the figure exhibits the sample cross-correlations as well as lowess fits.

Figure 2.8 shows a fairly strong nonlinear relationship between Recruitment, Rt ,
and the SOI series at St−5, St−6, St−7, St−8, indicating the SOI series tends to lead
the Recruitment series and the coefficients are negative, implying that increases
in the SOI lead to decreases in the Recruitment. The nonlinearity observed in the
scatterplots (with the help of the superimposed lowess fits) indicate that the behavior
between Recruitment and the SOI is different for positive values of SOI than for
negative values of SOI.

Simple scatterplot matrices for one series can be obtained in R using the
lag.plot command. Figure 2.7 and Figure 2.8 may be reproduced using the fol-
lowing scripts provided with the text (see Appendix R for detials):
lag1.plot(soi, 12) # Figure 2.7
lag2.plot(soi, rec, 8) # Figure 2.8
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Fig. 2.9. Display for Example 2.8: Plot of Recruitment (Rt ) vs SOI lagged 6 months (St−6)
with the fitted values of the regression as points (+) and a lowess fit (—).

Example 2.8 Regression with Lagged Variables (cont)
In Example 2.3 we regressed Recruitment on lagged SOI,

Rt = β1 + β2St−6 + wt .

However, in Example 2.7, we saw that the relationship is nonlinear and different
when SOI is positive or negative. In this case, we may consider adding a dummy
variable to account for this change. In particular, we fit the model

Rt = β1 + β2St−6 + β3Dt−6 + β4Dt−6 St−6 + wt,

where Dt is a dummy variable that is 0 if St < 0 and 1 otherwise. The result of
the fit is given in the R code below. Figure 2.9 shows Rt vs St−6 with the fitted
values of the regression and a lowess fit superimposed. The piecewise regression
fit is similar to the lowess fit, but we note that the residuals are not white noise (see
the code below). This is followed up in Example 3.40.
dummy = ifelse(soi<0, 0, 1)
fish = ts.intersect(rec, soiL6=lag(soi,-6), dL6=lag(dummy,-6), dframe=TRUE)
summary(fit <- lm(rec~ soiL6*dL6, data=fish, na.action=NULL))

Coefficients:
Estimate Std.Error t.value p.value

(Intercept) 74.479 2.865 25.998 < 2e-16
soiL6 -15.358 7.401 -2.075 0.0386
dL6 -1.139 3.711 -0.307 0.7590
soiL6:dL6 -51.244 9.523 -5.381 1.2e-07
---
Residual standard error: 21.84 on 443 degrees of freedom
Multiple R-squared: 0.4024
F-statistic: 99.43 on 3 and 443 DF, p-value: < 2.2e-16

attach(fish)
plot(soiL6, rec)
lines(lowess(soiL6, rec), col=4, lwd=2)
points(soiL6, fitted(fit), pch='+', col=2)
plot(resid(fit)) # not shown ...
acf(resid(fit)) # ... but obviously not noise
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Fig. 2.10. Data generated by (2.36) [top] and the fitted line (2.38) superimposed on the data
[bottom].

As a final exploratory tool, we discuss assessing periodic behavior in time series
data using regression analysis and the periodogram; this material may be thought
of as an introduction to spectral analysis, which we discuss in detail in Chapter 4.
In Example 1.10, we briefly discussed the problem of identifying cyclic or periodic
signals in time series. A number of the time series we have seen so far exhibit periodic
behavior. For example, the data from the pollution study example shown in Figure 2.2
exhibit strong yearly cycles. Also, the Johnson & Johnson data shown in Figure 1.1
make one cycle every year (four quarters) on top of an increasing trend and the speech
data in Figure 1.3 is highly repetitive. The monthly SOI and Recruitment series in
Figure 1.6 show strong yearly cycles, but hidden in the series are clues to the El Niño
cycle.

Example 2.9 Using Regression to Discover a Signal in Noise
In Example 1.10, we generated n = 500 observations from the model

xt = A cos(2πωt + φ) + wt, (2.36)

where ω = 1/50, A = 2, φ = .6π, and σw = 5; the data are shown on the
bottom panel of Figure 1.10 on page 10. At this point we assume the frequency
of oscillation ω = 1/50 is known, but A and φ are unknown parameters. In this
case the parameters appear in (2.36) in a nonlinear way, so we use a trigonometric
identity3 and write

A cos(2πωt + φ) = β1 cos(2πωt) + β2 sin(2πωt),

where β1 = A cos(φ) and β2 = −A sin(φ). Now the model (2.36) can be written in
the usual linear regression form given by (no intercept term is needed here)

3 cos(α ± β) = cos(α) cos(β) ∓ sin(α) sin(β).



i
i

“tsa3EZ” — 2015/12/26 — 11:53 — page 48 — #54 i
i

i
i

i
i

48 2 Time Series Regression and EDA

xt = β1 cos(2πt/50) + β2 sin(2πt/50) + wt . (2.37)

Using linear regression on the generated data, the fitted model is

x̂t = −.71(.30) cos(2πt/50) − 2.55(.30) sin(2πt/50) (2.38)

with σ̂w = 4.68, where the values in parentheses are the standard errors. We note
the actual values of the coefficients for this example are β1 = 2 cos(.6π) = −.62
and β2 = −2 sin(.6π) = −1.90. Because the parameter estimates are significant and
close to the actual values, it is clear that we are able to detect the signal in the noise
using regression, even though the signal appears to be obscured by the noise in the
bottom panel of Figure 1.10. Figure 2.10 shows data generated by (2.36) with the
fitted line, (2.38), superimposed.

To reproduce the analysis and Figure 2.10 in R, use the following:
set.seed(1000) # so you can reproduce these results
x = 2*cos(2*pi*1:500/50 + .6*pi) + rnorm(500,0,5)
z1 = cos(2*pi*1:500/50)
z2 = sin(2*pi*1:500/50)
summary(fit <- lm(x~0+z1+z2)) # zero to exclude the intercept
par(mfrow=c(2,1), mar=c(3,3,1,1), mgp=c(1.6,.6,0))
plot.ts(x)
plot.ts(x, col=8, ylab=expression(hat(x)))
lines(fitted(fit), col=2)

We will discuss this and related approaches in more detail in Chapter 4.

2.3 Smoothing Time Series

In §1.4, we introduced the concept of smoothing a time series, and in Example 1.7,
we discussed using a moving average to smooth white noise. This method is useful for
discovering certain traits in a time series, such as long-term trend and seasonal com-
ponents (see Section 4.7 for details). In particular, if xt represents the observations,
then

mt =

k∑
j=−k

a j xt−j, (2.39)

where a j = a−j ≥ 0 and
∑k

j=−k a j = 1 is a symmetric moving average of the data.

Example 2.10 Moving Average Smoother
For example, Figure 2.11 shows the monthly SOI series discussed in Example 1.4
smoothed using (2.39) with weights a0 = a±1 = · · · = a±5 = 1/12, and a±6 = 1/24;
k = 6. This particular method removes (filters out) the obvious annual temperature
cycle and helps emphasize the El Niño cycle.

To reproduce Figure 2.11 in R:
wgts = c(.5, rep(1,11), .5)/12
soif = filter(soi, sides=2, filter=wgts)
plot(soi)
lines(soif, lwd=2, col=4)
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Fig. 2.11. The SOI series smoothed using (2.39) with k = 6 (and half-weights at the ends). The
insert shows the shape of the moving average (“boxcar”) kernel [not drawn to scale] described
in (2.41).
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Fig. 2.12. Kernel smoother of the SOI. The insert shows the shape of the normal kernel [not
drawn to scale].

Although the moving average smoother does a good job in highlighting the El
Niño effect, it might be considered too choppy. We can obtain a smoother fit using
the normal distribution for the weights, instead of boxcar-type weights of (2.39).

Example 2.11 Kernel Smoothing
Kernel smoothing is a moving average smoother that uses a weight function, or
kernel, to average the observations. Figure 2.12 shows kernel smoothing of the
mortality series, where mt is now

mt =

n∑
i=1

wi (t)xi, (2.40)

where
wi (t) = K

(
t−i
b

) / ∑n
j=1 K

(
t−j
b

)
(2.41)

are the weights and K (·) is a kernel function. This estimator, which was originally
explored by Parzen (1962) and Rosenblatt (1956b), is often called the Nadaraya–
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Fig. 2.13. Locally weighted scatterplot smoothers (lowess) of the SOI series.

Watson estimator (Watson, 1966). In this example, and typically, the normal kernel,
K (z) = 1√

2π
exp(−z2/2), is used.

To implement this in R, use the ksmooth function where a bandwidth can be
chosen. The wider the bandwidth, b, the smoother the result. From the R ksmooth
help file: The kernels are scaled so that their quartiles (viewed as probability densities) are
at ± 0.25∗bandwidth. For the standard normal distribution, the quartiles are ±.674.

In our case, we are smoothing over time, which is of the form t/12 for the
SOI time series. In Figure 2.12, we used the value of b = 1 to correspond to
approximately smoothing over one year (recall that SOI has freq = 12 so that the
time scale is t/12). Figure 2.12 can be reproduced in R as follows.
plot(soi)
lines(ksmooth(time(soi), soi, "normal", bandwidth=1), lwd=2, col=4)

Example 2.12 Lowess
Another approach to smoothing a time plot is nearest neighbor regression. The
technique is based on k-nearest neighbors regression, wherein one uses only the
data {xt−k/2, . . . , xt, . . . , xt+k/2} to predict xt via regression, and then sets mt = x̂t .

Lowess is a method of smoothing that is rather complex, but the basic idea
is close to nearest neighbor regression. Figure 2.13 shows smoothing of mortality
using the R function lowess (see Cleveland, 1979). First, a certain proportion of
nearest neighbors to xt are included in a weighting scheme; values closer to xt
in time get more weight. Then, a robust weighted regression is used to predict xt
and obtain the smoothed values mt . The larger the fraction of nearest neighbors
included, the smoother the fit will be. In Figure 2.13, one smoother uses 5% of
the data to obtain an estimate of the El Niño cycle of the data. In addition, a
(negative) trend in SOI would indicate the long-term warming of the Pacific Ocean.
To investigate this, we used a lowess with the default smoother span of f=2/3 of the
data.

Figure 2.13 can be reproduced in R or S-PLUS as follows.
plot(soi)
lines(lowess(soi, f=.05), lwd=2, col=4) # El Nino cycle
lines(lowess(soi), lty=2, lwd=2, col=2) # trend (using default span)
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Fig. 2.14. Smooth of mortality as a function of temperature using lowess.

Example 2.13 Smoothing One Series as a Function of Another
In addition to smoothing time plots, smoothing techniques can be applied to smooth-
ing a time series as a function of another time series. We already used this idea in
Example 2.7 to visualize the nonlinearity between Recruitment and SOI at various
lags via lowess. In this example, we smooth the scatterplot of two contemporane-
ously measured time series, mortality as a function of temperature. In Example 2.2,
we discovered a nonlinear relationship between mortality and temperature. Con-
tinuing along these lines, Figure 2.14 shows scatterplots of mortality, Mt , and
temperature, Tt , along with Mt smoothed as a function of Tt using lowess Note that
mortality increases at extreme temperatures, but in an asymmetric way; mortality is
higher at colder temperatures than at hotter temperatures. The minimum mortality
rate seems to occur at approximately 80◦ F.

Figure 2.14 can be reproduced in R as follows using the defaults.
plot(tempr, cmort, xlab="Temperature", ylab="Mortality")
lines(lowess(tempr, cmort))

Problems

2.1 (StructuralModel) For the Johnson& Johnson data, say yt , shown in Figure 1.1,
let xt = log(yt ). In this problem, we are going to fit a special type of structural model,
xt = Tt + St + Nt where Tt is a trend component, St is a seasonal component, and Nt

is noise. In our case, time t is in quarters (1960.00, 1960.25, . . . ) so one unit of time
is a year.

(a) Fit the regression model

xt = βt︸︷︷︸
trend

+ α1Q1(t) + α2Q2(t) + α3Q3(t) + α4Q4(t)︸                                                 ︷︷                                                 ︸
seasonal

+ wt︸︷︷︸
noise

where Qi (t) = 1 if time t corresponds to quarter i = 1, 2, 3, 4, and zero otherwise.
The Qi (t)’s are called indicator variables. We will assume for now that wt is a
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Gaussian white noise sequence. Hint: Detailed code is given in Appendix R on
page 186.

(b) If the model is correct, what is the estimated average annual increase in the logged
earnings per share?

(c) If the model is correct, does the average logged earnings rate increase or decrease
from the third quarter to the fourth quarter? And, by what percentage does it
increase or decrease?

(d) What happens if you include an intercept term in the model in (a)? Explain why
there was a problem.

(e) Graph the data, xt , and superimpose the fitted values, say x̂t , on the graph.
Examine the residuals, xt − x̂t , and state your conclusions. Does it appear that the
model fits the data well (do the residuals look white)?

2.2 For the mortality data examined in Example 2.2:

(a) Add another component to the regression in (2.21) that accounts for the particulate
count four weeks prior; that is, add Pt−4 to the regression in (2.21). State your
conclusion.

(b) Using AIC and BIC, is the model in (a) an improvement over the final model in
Example 2.2?

2.3 Read the entire problem before you start because you can do parts (a) and (b) at
the same time.

(a) Generate four series that are random walk with drift, (1.4), of length n = 100
with δ = .01 and σw = 1. Call the data xt for t = 1, . . . , 100. Fit the regression
xt = βt + wt using least squares. Plot the data, the true mean function (i.e.,
µt = .01 t) and the fitted line, x̂t = β̂ t, on the same graph.

(b) Generate four series of length n = 100 that are linear trend plus noise, say
yt = .01 t + wt , where t and wt are as in part (a). Fit the regression yt = βt + wt

using least squares. Plot the data, the true mean function (i.e., µt = .01 t) and the
fitted line, ŷt = β̂ t, on the same graph.

(c) Comment (what did you learn from this assignment).

The following R code may be useful for doing (a) and (b) at the same time.
par(mfrow=c(4,2), mar=c(2.5,2.5,0,0)+.5, mgp=c(1.6,.6,0)) # set up
for (i in 1:4){
x = ts(cumsum(rnorm(100,.01,1))) # data
y = ts(.01*1:100 + rnorm(100))
regx = lm(x~0+time(x), na.action=NULL) # regressions
regy = lm(y~0+time(y), na.action=NULL)
plot(x) # plots
lines(.01*time(x), col="red", lty="dashed") # true mean
abline(regx, col="blue") # fitted line
plot(y)
lines(.01*time(y), col="red", lty="dashed")
abline(regy, col="blue")

}
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2.4 Consider a process consisting of a linear trend with an additive noise term con-
sisting of independent random variables wt with zero means and variances σ2

w , that
is,

xt = β0 + β1t + wt,

where β0, β1 are fixed constants.

(a) Prove xt is nonstationary.
(b) Prove that the first difference series ∇xt = xt − xt−1 is stationary by finding its

mean and autocovariance function.
(c) Repeat part (b) if wt is replaced by a general stationary process, say yt , with mean

function µy and autocovariance function γy (h). [Hint: See (2.28).]

2.5 Show (2.27) is stationary.

2.6 The glacial varve record plotted in Figure 2.6 exhibits some nonstationarity that
can be improved by transforming to logarithms and some additional nonstationarity
that can be corrected by differencing the logarithms.

(a) Argue that the glacial varves series, say xt , exhibits heteroscedasticity by com-
puting the sample variance over the first half and the second half of the data.
Argue that the transformation yt = log xt stabilizes the variance over the series.
Plot the histograms of xt and yt to see whether the approximation to normality is
improved by transforming the data.

(b) Plot the series yt . Do any time intervals, of the order 100 years, exist where
one can observe behavior comparable to that observed in the global temperature
records in Figure 1.3?

(c) Examine the sample ACF of yt and comment.
(d) Compute the difference ut = yt − yt−1, examine its time plot and sample ACF,

and argue that differencing the logged varve data produces a reasonably stationary
series. Can you think of a practical interpretation for ut? Hint: For |p| close to
zero, log(1 + p) ≈ p; let p = (yt − yt−1)/yt−1.

2.7 Use the three different smoothing techniques described in Example 2.10, Exam-
ple 2.11, and Example 2.12, to estimate the trend in the global temperature series
displayed in Figure 1.3. Comment.
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Chapter 3

ARIMAModels

3.1 Introduction

In Chapters 1 and 2, we introduced autocorrelation and cross-correlation functions
(ACFs and CCFs) as tools for clarifying relations that may occur within and between
time series at various lags. In addition, we explained how to build linear models based
on classical regression theory for exploiting the associations indicated by large values
of the ACF or CCF.

Classical regression is often insufficient for explaining all of the interesting dy-
namics of a time series. For example, the ACF of the residuals of the simple linear
regression fit to the global temperature data (see Example 2.4 of Chapter 2) reveals
additional structure in the data that the regression did not capture. Instead, the in-
troduction of correlation as a phenomenon that may be generated through lagged
linear relations leads to proposing the autoregressive (AR) and moving average (MA)
models. Often, these models are combined to form the autoregressive moving average
(ARMA) model. Adding nonstationary models to the mix leads to the autoregressive
integratedmoving average (ARIMA)model popularized in the landmarkwork by Box
and Jenkins (1970). Seasonal data, such as the data discussed in Example 1.1 and
Example 1.4 lead to seasonal autoregressive integrated moving average (SARIMA)
models. The Box–Jenkins method for identifying a plausible models is given in this
chapter along with techniques for parameter estimation and forecasting for these
models.

3.2 Autoregressive Moving Average Models

Autoregressive models are based on the idea that the current value of the series,
xt , can be explained as a function of p past values, xt−1, xt−2, . . . , xt−p , where p
determines the number of steps into the past needed to forecast the current value. As
a typical case, recall Example 1.8 in which data were generated using the model

xt = xt−1 − .90xt−2 + wt,
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where wt is white Gaussian noise with σ2
w = 1. We have now assumed the current

value is a particular linear function of past values. The regularity that persists in
Figure 1.8 gives an indication that forecasting for such a model might be a distinct
possibility, say, through some version such as

xnn+1 = xn − .90xn−1,

where the quantity on the left-hand side denotes the forecast at the next period
n + 1 based on the observed data, x1, x2, . . . , xn. For example, the lagged scatterplot
matrix for the Southern Oscillation Index (SOI), shown in Figure 2.7, gives a distinct
indication that the values at lags 1, 2, and 12, are linearly associated with the current
value. We will make this notion more precise in our discussion of forecasting.

Definition 3.1 An autoregressive model of order p, abbreviated AR(p), is of the
form

xt = φ1xt−1 + φ2xt−2 + · · · + φpxt−p + wt, (3.1)

where xt is stationary, and φ1, φ2, . . . , φp are constants (φp , 0). Although it is not
necessary yet, we assume that wt is a Gaussian white noise series with mean zero and
variance σ2

w , unless otherwise stated. The mean of xt in (3.1) is zero. If the mean, µ,
of xt is not zero, replace xt by xt − µ in (3.1),

xt − µ = φ1(xt−1 − µ) + φ2(xt−2 − µ) + · · · + φp (xt−p − µ) + wt,

or write
xt = α + φ1xt−1 + φ2xt−2 + · · · + φpxt−p + wt, (3.2)

where α = µ(1 − φ1 − · · · − φp).

We note that (3.2) is similar to the regression model of §2.2, and hence the term
auto (or self) regression. Some technical difficulties, however, develop from applying
that model because the regressors, xt−1, . . . , xt−p , are random components, whereas
zzzt was assumed to be fixed. A useful form follows by using the backshift operator
(2.30) to write the AR(p) model, (3.1), as

(1 − φ1B − φ2B2 − · · · − φpBp)xt = wt, (3.3)

or even more concisely as
φ(B)xt = wt . (3.4)
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Example 3.1 The AR(1) Model
Consider the first-order model, AR(1), given by xt = φxt−1 + wt . Provided that
|φ| < 1 we can represent an AR(1) model as a linear process given by1

xt =
∞∑
j=0

φ jwt−j . (3.5)

Representation (3.5) is called the stationary solution of the model. In fact, by simple
substitution,

∞∑
j=0

φ jwt−j︸       ︷︷       ︸
xt

= φ
( ∞∑
k=0

φkwt−1−k︸          ︷︷          ︸
xt−1

)
+ wt .

Using (3.5), it is easy to see that the AR(1) process is stationary with mean

E(xt ) =
∞∑
j=0

φ jE(wt−j ) = 0,

and autocovariance function (h ≥ 0),

γ(h) = cov(xt+h, xt ) = E


( ∞∑
j=0

φ jwt+h−j

)
*
,

∞∑
k=0

φkwt−k
+
-


= E

[(
wt+h + · · · + φ

hwt + φ
h+1wt−1 + · · ·

)
(wt + φwt−1 + · · · )

]

= σ2
w

∞∑
j=0

φh+jφ j = σ2
wφ

h
∞∑
j=0

φ2j =
σ2
wφ

h

1 − φ2 , h ≥ 0.

(3.6)

Recall that γ(h) = γ(−h), so we will only exhibit the autocovariance function for
h ≥ 0. From (3.6), the ACF of an AR(1) is

ρ(h) =
γ(h)
γ(0)

= φh, h ≥ 0. (3.7)

Example 3.2 The Sample Path of an AR(1) Process
Figure 3.1 shows a time plot of two AR(1) processes, one with φ = .9 and one
with φ = −.9; in both cases, σ2

w = 1. In the first case, ρ(h) = .9h , for h ≥ 0, so
observations close together in time are positively correlated with each other. This
result means that observations at contiguous time points will tend to be close in
value to each other; this fact shows up in the top of Figure 3.1 as a very smooth
sample path for xt . Now, contrast this with the case in which φ = −.9, so that

1 Iterate backward, xt = φxt−1 + wt = φ(φxt−2 + wt−1) + wt = φ
2xt−2 + φwt−1 + wt = · · · =

φk xt−k +
∑k−1

j=0 φ
jwt− j . If |φ | < 1 and supt E (x2

t ) < ∞, then limk→∞ E
(
xt −

∑k−1
j=0 φ

jwt− j

)2
=

limk→∞ φ
2kE

(
x2
t−k

)
= 0.
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AR(1)   = +.9
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Fig. 3.1. Simulated AR(1) models: φ = .9 (top); φ = −.9 (bottom).

ρ(h) = (−.9)h , for h ≥ 0. This result means that observations at contiguous time
points are negatively correlated but observations two time points apart are positively
correlated. This fact shows up in the bottom of Figure 3.1, where, for example, if
an observation, xt , is positive, the next observation, xt+1, is typically negative, and
the next observation, xt+2, is typically positive. Thus, in this case, the sample path
is very choppy.

The following R code can be used to obtain a figure similar to Figure 3.1:
par(mfrow=c(2,1))
plot(arima.sim(list(order=c(1,0,0), ar=.9), n=100), ylab="x",

main=(expression(AR(1)~~~phi==+.9)))
plot(arima.sim(list(order=c(1,0,0), ar=-.9), n=100), ylab="x",

main=(expression(AR(1)~~~phi==-.9)))

As an alternative to the autoregressive representation in which the xt on the left-
hand side of the equation are assumed to be combined linearly, the moving average
model of order q, abbreviated asMA(q), assumes thewhite noisewt on the right-hand
side of the defining equation are combined linearly to form the observed data.

Definition 3.2 The moving average model of order q, or MA(q) model, is defined
to be

xt = wt + θ1wt−1 + θ2wt−2 + · · · + θqwt−q, (3.8)

where there are q lags in the moving average and θ1, θ2, . . . , θq (θq , 0) are param-
eters.2 Although it is not necessary yet, we assume that wt is a Gaussian white noise
series with mean zero and variance σ2

w , unless otherwise stated.

2 Some texts and software packages write the MA model with negative coefficients; that is, xt =
wt − θ1wt−1 − θ2wt−2 − · · · − θqwt−q .
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MA(1)   = +.5
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Fig. 3.2. Simulated MA(1) models: θ = .5 (top); θ = −.5 (bottom).

As in the AR(p) case, the MA(q) model may be written as

xt = (1 + θ1B + θ2B2 + · · · + θqBq)wt, (3.9)

or more concisely as
xt = θ(B)wt, (3.10)

Unlike the autoregressive process, the moving average process is stationary for any
values of the parameters θ1, . . . , θq .

Example 3.3 The MA(1) Process
Consider the MA(1) model xt = wt + θwt−1. Then, E(xt ) = 0,

γ(h) =




(1 + θ2)σ2
w h = 0,

θσ2
w h = 1,

0 h > 1,

and the ACF is

ρ(h) =



θ

(1+θ2)
h = 1,

0 h > 1.

Note |ρ(1) | ≤ 1/2 for all values of θ (Problem 3.1). Also, xt is correlated with
xt−1, but not with xt−2, xt−3, . . . . Contrast this with the case of the AR(1) model in
which the correlation between xt and xt−k is never zero. When θ = .5, for example,
xt and xt−1 are positively correlated, and ρ(1) = .4. When θ = −.5, xt and xt−1
are negatively correlated, ρ(1) = −.4. Figure 3.2 shows a time plot of these two
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processes with σ2
w = 1. The series where θ = .5 is smoother than the series where

θ = −.5.
A figure similar to Figure 3.2 can be created in R as follows:

par(mfrow = c(2,1))
plot(arima.sim(list(order=c(0,0,1), ma=.5), n=100), ylab="x",

main=(expression(MA(1)~~~theta==+.5)))
plot(arima.sim(list(order=c(0,0,1), ma=-.5), n=100), ylab="x",

main=(expression(MA(1)~~~theta==-.5)))

We now proceed with the general development of mixed autoregressive moving
average (ARMA) models for stationary time series.

Definition 3.3 A time series {xt ; t = 0,±1,±2, . . .} is ARMA(p, q) if it is stationary
and

xt = φ1xt−1 + · · · + φpxt−p + wt + θ1wt−1 + · · · + θqwt−q, (3.11)

with φp , 0, θq , 0, and σ2
w > 0. The parameters p and q are called the autoregres-

sive and the moving average orders, respectively. If xt has a nonzero mean µ, we set
α = µ(1 − φ1 − · · · − φp) and write the model as

xt = α + φ1xt−1 + · · · + φpxt−p + wt + θ1wt−1 + · · · + θqwt−q . (3.12)

Although it is not necessary yet, we assume that wt is a Gaussian white noise series
with mean zero and variance σ2

w , unless otherwise stated.

The ARMA model may be seen as a regression of the present outcome (xt ) on
the past outcomes (xt−1, . . . , xt−p), with correlated errors. That is,

xt = β0 + β1xt−1 + · · · + βpxt−p + ε t,

where ε t = wt + θ1wt−1 + · · · + θqwt−q , although we call the regression parameters
φ instead of β.

As previously noted, when q = 0, the model is called an autoregressive model of
order p, AR(p), and when p = 0, the model is called a moving average model of order
q, MA(q). Using (3.3) and (3.9), the ARMA(p, q) model in (3.11) may be written in
concise form as

φ(B)xt = θ(B)wt . (3.13)

The concise form of an ARMA model points to a potential problem in that we can
unnecessarily complicate the model by multiplying both sides by another operator,
say

η(B)φ(B)xt = η(B)θ(B)wt ,

without changing the dynamics. Consider the following example.

Example 3.4 Parameter Redundancy
Consider a white noise process xt = wt . Equivalently, we can write this as .5xt−1 =

.5wt−1 by shifting back one unit of time and multiplying by .5. Now, subtract the
two representations to obtain
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xt − .5xt−1 = wt − .5wt−1,

or
xt = .5xt−1 − .5wt−1 + wt, (3.14)

which looks like an ARMA(1, 1) model. Of course, xt is still white noise; nothing
has changed in this regard [i.e., xt = wt is the solution to (3.14)], but we have
hidden the fact that xt is white noise because of the parameter redundancy or
over-parameterization. Write the parameter redundant model in operator form as
φ(B)xt = θ(B)wt , or

(1 − .5B)xt = (1 − .5B)wt .

Apply the operator φ(B)−1 = (1 − .5B)−1 to both sides to obtain

xt = (1 − .5B)−1(1 − .5B)xt = (1 − .5B)−1(1 − .5B)wt = wt,

which is the original model.

Example 3.4 points out the need to be careful when fitting ARMA models to
data. For example, if a process is truly white noise, it is possible to fit a significant
ARMA(k, k) model to the data. That is, it is possible to obtain a seemingly compli-
cated dynamic description of simple white noise. Consider the following example.

Example 3.5 Parameter Redundancy (cont)
Although we have not yet discussed estimation, we present the following example
demonstrating the problem of over parameterization.We generated 150 iid standard
normals and then fit anARMA(1, 1) to the data. Note that φ̂ = −.96 and θ̂ = .95, and
both are significant. Below is the R code (note that the estimate called ‘intercept’
is really the estimate of the mean).
set.seed(8675309) # Jenny, I got your number
x = rnorm(150) # generate iid N(0,1)s
arima(x, order=c(1,0,1)) # estimation
Coefficients:

ar1 ma1 intercept <- misnomer
-0.9595 0.9527 0.0462

s.e. 0.1688 0.1750 0.0727

Thus, forgetting the (non-significant) mean estimate, the fitted model looks like

(1 + .96B)xt = (1 + .95B)wt

Definition 3.4 Causality and Invertibility
The causality and invertibility conditions are conditions on the parameters that

ensure the present will not depend on the future. These conditions are obviously
crucial for forecasting.

The causal form of the model is given by

xt = φ(B)−1θ(B)wt = ψ(B)wt =

∞∑
j=0

ψ jwt−j, (3.15)

where ψ(B) =
∑∞

j=0 ψ jB j (ψ0 = 1). Note that the parameters ψ j may be obtained by
matching coefficients of B in φ(B)ψ(B) = θ(B).
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The invertible form of the model is given by

wt = θ(B)−1φ(B)xt = π(B)xt =
∞∑
j=0

πj xt−j . (3.16)

where π(B) =
∑∞

j=0 πjB
j (π0 = 1), assuming the representations are well-defined.

Likewise, the parameters πj may be obtained by matching coefficients of B in φ(B) =
π(B)θ(B).

We note that it is not always possible to solve these relationships and some
restrictions apply, as follows.

Property 3.1 Causality and Invertibility (existence)
Let

φ(z) = 1 − φ1z − · · · − φp zp and θ(z) = 1 + θ1z + · · · + θq zq

be the AR and MA polynomials obtained by replacing the backshift operator B in
(3.3) and (3.9) by a complex number z.

An ARMA(p, q) model is causal if and only if φ(z) , 0 for |z | ≤ 1. The
coefficients of the linear process given in (3.15) can be determined by solving (ψ0 = 1)

ψ(z) =
∞∑
j=0

ψ j z j =
θ(z)
φ(z)

, |z | ≤ 1.∗

An ARMA(p, q) model is invertible if and only if θ(z) , 0 for |z | ≤ 1. The
coefficients πj of π(B) given in (3.16) can be determined by solving (π0 = 1)

π(z) =
∞∑
j=0

πj z j =
φ(z)
θ(z)

, |z | ≤ 1.†

We demonstrate the property in the following example.

Example 3.6 Parameter Redundancy, Causality, Invertibility
Consider the process

xt = .4xt−1 + .45xt−2 + wt + wt−1 + .25wt−2,

or, in operator form,

(1 − .4B − .45B2)xt = (1 + B + .25B2)wt .

At first, xt appears to be an ARMA(2, 2) process. But notice that

* φ(z) can’t be zero in here. . . you wouldn’t want to divide by zero, would you?
† θ (z) can’t be zero in here.
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φ(B) = 1 − .4B − .45B2 = (1 + .5B)(1 − .9B)

and
θ(B) = (1 + B + .25B2) = (1 + .5B)2

have a common factor that can be canceled. After cancellation, the operators are
φ(B) = (1 − .9B) and θ(B) = (1 + .5B), so the model is an ARMA(1, 1) model,
(1 − .9B)xt = (1 + .5B)wt , or

xt = .9xt−1 + .5wt−1 + wt . (3.17)

The model is causal because φ(z) = (1 − .9z) = 0 when z = 10/9, which
is outside the unit circle. The model is also invertible because the root of θ(z) =
(1 + .5z) is z = −2, which is outside the unit circle.

To write the model as a linear process, we can obtain the ψ-weights using
Property 3.1, φ(z)ψ(z) = θ(z), or

(1 − .9z)(1 + ψ1z + ψ2z2 + · · · + ψ j z j + · · · ) = 1 + .5z.

Rearranging, we get

1 + (ψ1 − .9)z + (ψ2 − .9ψ1)z2 + · · · + (ψ j − .9ψ j−1)z j + · · · = 1 + .5z.

The coefficients of z on the left and right sides must be the same, so we get
ψ1 − .9 = .5 or ψ1 = 1.4, and ψ j − .9ψ j−1 = 0 for j > 1. Thus, ψ j = 1.4(.9) j−1 for
j ≥ 1 and (3.17) can be written as

xt = wt + 1.4
∑∞

j=1
.9j−1wt−j .

The values of ψ j may be calculated in R as follows:
ARMAtoMA(ar = .9, ma = .5, 10) # first 10 psi-weights
[1] 1.40 1.26 1.13 1.02 0.92 0.83 0.74 0.67 0.60 0.54

The invertible representation using Property 3.1 is obtained by matching coef-
ficients in θ(z)π(z) = φ(z),

(1 + .5z)(1 + π1z + π2z2 + π3z3 + · · · ) = 1 − .9z.

In this case, the π-weights are given by πj = (−1) j 1.4 (.5) j−1, for j ≥ 1, and hence,
we can also write (3.17) as

xt = −1.4
∑∞

j=1(−.5) j−1xt−j + wt .

The values of πj may be calculated in R as follows by reversing the roles of wt and
xt ; i.e., write the model as wt = −.5wt−1 + xt − .9xt−1:
ARMAtoMA(ar = -.5, ma = -.9, 10) # first 10 pi-weights
[1] -1.400 .700 -.350 .175 -.087 .044 -.022 .011 -.006 .003
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Fig. 3.3. Causal region for an AR(2) in terms of the parameters.

Example 3.7 Causal Conditions for an AR(2) Process
For an AR(1) model, (1 − φB)xt = wt , to be causal, we must have φ(z) , 0 for
|z | ≤ 1. If we solve φ(z) = 1 − φz = 0, we find that the root (or zero) occurs at
z0 = 1/φ, so that |z0 | > 1 only if |φ| < 1. For higher order models, the relationship
between roots and parameters is not so simple.

For example, the AR(2) model, (1 − φ1B − φ2B2)xt = wt , is causal when the
two roots of φ(z) = 1 − φ1z − φ2z2 lie outside of the unit circle. That is, if z1
and z2 are the roots, then |z1 | > 1 and |z2 | > 1. Using the quadratic formula, this
requirement can be written as

��������

φ1 ±
√
φ2

1 + 4φ2

−2φ2

��������
> 1.

The roots of φ(z) may be real and distinct, real and equal, or a complex conjugate
pair. In terms of the coefficients, the equivalent condition is

φ1 + φ2 < 1, φ2 − φ1 < 1, and |φ2 | < 1. (3.18)

This causality condition specifies a triangular region in the parameter space; see
Figure 3.3.

3.3 Autocorrelation and Partial Autocorrelation

We begin by exhibiting the ACF of an MA(q) process.

Example 3.8 ACF of an MA(q)
The model is xt = θ(B)wt , where θ(B) = 1 + θ1B + · · · + θqBq . Because xt is a
finite linear combination of white noise terms, the process is stationary with mean
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E(xt ) =
q∑
j=0

θ jE(wt−j ) = 0,

where we have written θ0 = 1, and with autocovariance function

γ(h) = cov (xt+h, xt ) = cov
( q∑
j=0

θ jwt+h−j,

q∑
k=0

θkwt−k

)

=



σ2
w

∑q−h
j=0 θ jθ j+h, 0 ≤ h ≤ q

0 h > q.
(3.19)

Recall that γ(h) = γ(−h), so we will only display the values for h ≥ 0. The cutting
off of γ(h) after q lags is the signature of the MA(q) model. Dividing (3.19) by
γ(0) yields the ACF of an MA(q):

ρ(h) =




∑q−h
j=0 θ jθ j+h

1 + θ2
1 + · · · + θ

2
q

1 ≤ h ≤ q

0 h > q.

(3.20)

Example 3.9 ACF of an AR(p) and ARMA(p, q)
For an AR(p) or ARMA(p, q) model, φ(B)xt = θ(B)wt , write it as

xt = φ(B)−1θ(B)wt = ψ(B)wt,

or

xt =
∞∑
j=0

ψ jwt−j . (3.21)

It follows immediately that E(xt ) = 0. Also, the autocovariance function of xt can
be written as

γ(h) = cov(xt+h, xt ) = σ2
w

∞∑
j=0

ψ jψ j+h, h ≥ 0, (3.22)

so that the ACF is given by

ρ(h) =

∑∞
j=0 ψ jψ j+h∑∞

j=0 ψ
2
j

, h ≥ 0. (3.23)

Unlike the MA(q), the ACF of an AR(p) or an ARMA(p, q) does not cut off
at any lag, so using the ACF to help identify the order of an AR or ARMA is
difficult. Also, (3.23) is not appealing in that it provides little information about the
appearance of the ACF of various models.
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Example 3.10 The ACF of an AR(2) Process
Suppose xt = φ1xt−1 + φ2xt−2 + wt is a causal AR(2) process. Multiply each side
of the model by xt−h for h > 0, and take expectation:

E(xt xt−h) = φ1E(xt−1xt−h) + φ2E(xt−2xt−h) + E(wt xt−h).

The result is

γ(h) = φ1γ(h − 1) + φ2γ(h − 2), h = 1, 2, . . . . (3.24)

In (3.24), we used the fact that E(xt ) = 0 and for h > 0, E(wt xt−h) = 0 because,
by causality, xt−h does not depend on future errors. Divide (3.24) through by γ(0)
to obtain a recursion for the ACF:

ρ(h) − φ1ρ(h − 1) − φ2ρ(h − 2) = 0, h = 1, 2, . . . . (3.25)

The initial conditions are ρ(0) = 1 and ρ(−1) = φ1/(1 − φ2), which is obtained by
evaluating (3.25) for h = 1 and noting that ρ(1) = ρ(−1).

Equations such as (3.25) are called difference equations, and the solutions are
fairly simple expressions. First, the polynomial associated with (3.25) is

φ(z) = 1 − φ1z − φ2z2,

where the power of z is the power of the backshift, B; i.e., (3.25) is (1 − φ1B −
φ2B2)ρ(h) = 0. In general, z is a complex number. Let z1 and z2 be the roots (or
zeros) of the associated polynomial, i.e., φ(z1) = φ(z2) = 0. For a causal model, the
roots are outside the unit circle: |z1 | > 1 and |z2 | > 1. Now, consider the solutions:
(i) When z1 and z2 are distinct, then

ρ(h) = c1z−h1 + c2z−h2 ,

so ρ(h) → 0 exponentially fast as h → ∞. The constants c1 and c2 are obtained
by solving for them using the initial conditions given above. For example, when
h = 0, we have 1 = c1 + c2, and so on.

(ii) When z1 = z2 (= z0) are equal (and hence real), then

ρ(h) = z−h0 (c1 + c2h),

so ρ(h) → 0 exponentially fast as h → ∞.
In case (i) with complex roots, z2 = z̄1 are a complex conjugate pair, and c2 = c̄1

[because ρ(h) is real], and

ρ(h) = c1z−h1 + c̄1 z̄−h1 .

Write c1 and z1 in polar coordinates, for example, z1 = |z1 |eiθ , where θ is the
angle whose tangent is the ratio of the imaginary part and the real part of z1
(sometimes called arg(z1); the range of θ is [−π, π]). Then, using the fact that
eiα + e−iα = 2 cos(α), the solution has the form
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ρ(h) = a |z1 |
−h cos(hθ + b),

where a and b are determined by the initial conditions. Again, ρ(h) dampens to zero
exponentially fast as h → ∞, but it does so in a sinusoidal fashion. The implication
of this result is shown in Example 3.11.

Example 3.11 An AR(2) with Complex Roots
Figure 3.4 shows n = 144 observations from the AR(2) model

xt = 1.5xt−1 − .75xt−2 + wt,

with σ2
w = 1, and with complex roots chosen so the process exhibits pseudo-

cyclic behavior at the rate of one cycle every 12 time points. The autoregressive
polynomial for this model is φ(z) = 1−1.5z+ .75z2. The roots of φ(z) are 1± i/

√
3,

and θ = tan−1(1/
√

3) = 2π/12 radians per unit time. To convert the angle to cycles
per unit time, divide by 2π to get 1/12 cycles per unit time. The ACF for this model
is shown in §3.4, Figure 3.5.
To calculate the roots of the polynomial and solve for arg in R:
z = c(1,-1.5,.75) # coefficients of the polynomial
(a = polyroot(z)[1]) # print one root: 1+0.57735i = 1 + i/sqrt(3)
arg = Arg(a)/(2*pi) # arg in cycles/pt
1/arg # = 12, the pseudo period

To reproduce Figure 3.4:
set.seed(8675309)
ar2 = arima.sim(list(order=c(2,0,0), ar=c(1.5,-.75)), n = 144)
plot(ar2, axes=FALSE, xlab="Time")
axis(2); axis(1, at=seq(0,144,by=12)); box()
abline(v=seq(0,144,by=12), lty=2)

To calculate and display the ACF for this model:
ACF = ARMAacf(ar=c(1.5,-.75), ma=0, 50)
plot(ACF, type="h", xlab="lag")
abline(h=0)

In general, the behavior of the ACF of an AR(p) or an ARMA(p, q) when p ≥ 2
will be similar to the AR(2) case. When p = 1, the behavior is like the AR(1) case.

Example 3.12 The ACF of an ARMA(1, 1)
Consider the ARMA(1, 1) process xt = φxt−1 + θwt−1 + wt, where |φ| < 1. Using
the theory of difference equations, we can show that the ACF is given by

ρ(h) =
(1 + θφ)(φ + θ)

1 + 2θφ + θ2 φh−1, h ≥ 1. (3.26)

Notice that the general pattern of ρ(h) in (3.26) is not different from that of an
AR(1) given in (3.7). Hence, it is unlikely that we will be able to tell the difference
between an ARMA(1,1) and an AR(1) based solely on an ACF estimated from a
sample. This consideration will lead us to the partial autocorrelation function.
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Fig. 3.4. Simulated AR(2) model, n = 144 with φ1 = 1.5 and φ2 = −.75.

The Partial Autocorrelation Function (PACF)

In (3.20), we saw that for MA(q) models, the ACF will be zero for lags greater than q.
Moreover, because θq , 0, the ACF will not be zero at lag q. Thus, the ACF provides
a considerable amount of information about the order of the dependence when the
process is a moving average process.

If the process, however, is ARMA or AR, the ACF alone tells us little about the
orders of dependence. Hence, it is worthwhile pursuing a function that will behave
like the ACF of MA models, but for AR models, namely, the partial autocorrelation
function (PACF).

Recall that if X , Y , and Z are random variables, then the partial correlation
between X and Y given Z is obtained by regressing X on Z to obtain the predictor
X̂ , regressing Y on Z to obtain Ŷ , and then calculating

ρXY |Z = corr{X − X̂, Y − Ŷ }.

The idea is that ρXY |Z measures the correlation between X and Y with the linear
effect of Z removed (or partialled out). If the variables are multivariate normal, then
this definition coincides with ρXY |Z = corr(X,Y | Z ).

To motivate the idea of partial autocorrelation, consider a causal AR(1) model,
xt = φxt−1 + wt . Then,

γx (2) = cov(xt, xt−2) = cov(φxt−1 + wt, xt−2)
= cov(φ2xt−2 + φwt−1 + wt, xt−2) = φ2γx (0).

This result follows from causality because xt−2 involves {wt−2,wt−3, . . .}, which are
all uncorrelated with wt and wt−1. The correlation between xt and xt−2 is not zero,
as it would be for an MA(1), because xt is dependent on xt−2 through xt−1. Suppose
we break this chain of dependence by removing (or partialling out) the effect of xt−1.
That is, we consider the correlation between xt − φxt−1 and xt−2 − φxt−1, because
it is the correlation between xt and xt−2 with the linear dependence of each on xt−1
removed. In this way, we have broken the dependence chain between xt and xt−2. In
fact,
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cov(xt − φxt−1, xt−2 − φxt−1) = cov(wt, xt−2 − φxt−1) = 0.

Hence, the tool we need is partial autocorrelation, which is the correlation between
xs and xt with the linear effect of everything “in the middle” removed.

Definition 3.5 Thepartial autocorrelation function (PACF) of a stationary process,
xt , denoted φhh , for h = 1, 2, . . . , is

φ11 = corr(x1, x0) = ρ(1) (3.27)

and
φhh = corr(xh − x̂h, x0 − x̂0), h ≥ 2, (3.28)

where x̂h is the regression of xh on {x1, x2, . . . , xh−1} and x̂0 is the regression of x0
on {x1, x2, . . . , xh−1}.

Thus, due to the stationarity, the PACF, φhh , is the correlation between xt+h and xt
with the linear dependence of everything between them, namely {xt+1, . . . , xt+h−1},
on each, removed.

Example 3.13 The PACF of an AR(p)
The model can be written as

xt+h =
p∑
j=1

φ j xt+h−j + wt+h,

where the roots of φ(z) are outside the unit circle. When h > p, the regression of
xt+h on {xt+1, . . . , xt+h−1}, is

x̂t+h =
p∑
j=1

φ j xt+h−j .

Although we have not proved this result, it should be obvious that it is so. Thus,
when h > p,

φhh = corr(xt+h − x̂t+h, xt − x̂t ) = corr(wt+h, xt − x̂t ) = 0,

because, by causality, xt − x̂t depends only on {wt+h−1,wt+h−2, . . .}. When h ≤ p,
φpp is not zero, and φ11, . . . , φp−1,p−1 are not necessarily zero. We will see later
that, in fact, φpp = φp . Figure 3.5 shows the ACF and the PACF of the AR(2) model
presented in Example 3.11.

To reproduce Figure 3.5 in R, use the following commands:
ACF = ARMAacf(ar=c(1.5,-.75), ma=0, 24)[-1]
PACF = ARMAacf(ar=c(1.5,-.75), ma=0, 24, pacf=TRUE)
par(mfrow=c(1,2))
plot(ACF, type="h", xlab="lag", ylim=c(-.8,1))
abline(h=0)
plot(PACF, type="h", xlab="lag", ylim=c(-.8,1))
abline(h=0)

We also have the following large sample result for the PACF, which may be
compared to the similar result for the ACF given in Property 1.2.



i
i

“tsa3EZ” — 2015/12/26 — 11:53 — page 69 — #75 i
i

i
i

i
i

3.3 Autocorrelation and Partial Autocorrelation 69

5 10 15 20

−0
.5

0.
0

0.
5

1.
0

lag

AC
F

5 10 15 20

−0
.5

0.
0

0.
5

1.
0

lag

PA
CF

Fig. 3.5. The ACF and PACF of an AR(2) model with φ1 = 1.5 and φ2 = −.75.

Table 3.1. Behavior of the ACF and PACF for ARMA Models

AR(p) MA(q) ARMA(p, q)
ACF Tails off Cuts off Tails off

after lag q

PACF Cuts off Tails off Tails off
after lag p

Property 3.2 Large Sample Distribution of the PACF
If the time series is a causal AR(p) process and the sample size n is large, then

√
n φ̂hh is approximately N(0, 1), for h > p. This result also holds for p = 0, wherein

the process is white noise.

Example 3.14 The PACF of an MA(q)
For an MA(q), we can write xt = −

∑∞
j=1 πj xt−j + wt . Moreover, no finite repre-

sentation exists. From this result, it should be apparent that the PACF will never cut
off, as in the case of an AR(p). For an MA(1), xt = wt + θwt−1, with |θ | < 1, it can
be shown that

φhh = −
(−θ)h (1 − θ2)

1 − θ2(h+1)
, h ≥ 1.

We do not have to compute the PACF by performing numerous regressions first.
The computations are done via a recursive formula that we will discuss later in
Property 3.3.

The PACF for MA models behaves much like the ACF for AR models. Also,
the PACF for AR models behaves much like the ACF for MA models. Because an
invertible ARMAmodel has an infinite AR representation, the PACF will not cut off.
We may summarize these results in Table 3.1.
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Fig. 3.6.ACF and PACF of the Recruitment series. Note that the lag axes are in terms of season
(12 months in this case).

Example 3.15 Preliminary Analysis of the Recruitment Series
We consider the problem of modeling the Recruitment series shown in Figure 1.5.
There are 453 months of observed recruitment ranging over the years 1950-1987.
The ACF and the PACF given in Figure 3.6 are consistent with the behavior of
an AR(2). The ACF has cycles corresponding roughly to a 12-month period, and
the PACF has large values for h = 1, 2 and then is essentially zero for higher
order lags. Based on Table 3.1, these results suggest that a second-order (p = 2)
autoregressive model might provide a good fit. Although we will discuss estimation
in detail in §3.6, we ran a regression (see §2.2) using the data triplets {(x; z1, z2) :
(x3; x2, x1), (x4; x3, x2), . . . , (x453; x452, x451)} to fit the model

xt = φ0 + φ1xt−1 + φ2xt−2 + wt

for t = 3, 4, . . . , 453. The values of the estimates were φ̂0 = 6.74(1.11) ,
φ̂1 = 1.35(.04), φ̂2 = −.46(.04) , and σ̂2

w = 89.72, where the estimated standard
errors are in parentheses.

The following R code can be used for this analysis. We use the script acf2 to
print and plot the ACF and PACF; see Appendix R for details.
acf2(rec, 48) # will produce values and a graphic
(regr = ar.ols(rec, order=2, demean=FALSE, intercept=TRUE))
regr$asy.se.coef # standard errors of the estimates
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3.4 Estimation

Throughout this section, we assume we have n observations, x1, . . . , xn, from a causal
and invertible Gaussian ARMA(p, q) process in which, initially, the order parameters,
p and q, are known. Our goal is to estimate the parameters, φ1, . . . , φp , θ1, . . . , θq,
and σ2

w . We will discuss the problem of determining p and q later in this section.
We begin with method of moments estimators. The idea behind these estimators

is that of equating population moments to sample moments and then solving for the
parameters in terms of the sample moments. We immediately see that, if E(xt ) =
µ, then the method of moments estimator of µ is the sample average, x̄. Thus,
while discussing method of moments, we will assume µ = 0. Although the method
of moments can produce good estimators, they can sometimes lead to suboptimal
estimators. We first consider the case in which the method leads to optimal (efficient)
estimators, that is, AR(p) models.

When the process is AR(p),

xt = φ1xt−1 + · · · + φpxt−p + wt,

similar to Example 3.10, we have the following result:

Definition 3.6 The Yule–Walker equations are given by

ρ(h) = φ1ρ(h − 1) + · · · + φp ρ(h − p), h = 1, 2, . . . , p, (3.29)
σ2
w = γ(0) [1 − φ1ρ(1) − · · · − φp ρ(p)]. (3.30)

The estimators obtained by replacing γ(0) with its estimate, γ̂(0) and ρ(h)
with its estimate, ρ̂(h), are called the Yule–Walker estimators. For AR(p) models,
if the sample size is large, the Yule–Walker estimators are approximately normally
distributed, and σ̂2

w is close to the true value of σ2
w .

Example 3.16 Yule–Walker Estimation for an AR(2) Process
The data shown in Figure 3.4 were n = 144 simulated observations from the AR(2)
model xt = 1.5xt−1−.75xt−2+wt,wherewt ∼ iidN(0, 1). Using the same simulated
data, we have
ar.yw(ar2, order=2)
Coefficients:

1 2
1.4471 -0.7160
sigma^2 estimated as 1.561

Example 3.17 Yule–Walker Estimation of the Recruitment Series
In Example 3.15 we fit an AR(2) model to the recruitment series using regression.
Below are the results of fitting the same model using Yule-Walker estimation in R,
which are nearly identical to the values in Example 3.15.
rec.yw = ar.yw(rec, order=2)
rec.yw$x.mean # = 62.26 (mean estimate)
rec.yw$ar # = 1.33, -.44 (parameter estimates)
sqrt(diag(rec.yw$asy.var.coef)) # = .04, .04 (standard errors)
rec.yw$var.pred # = 94.80 (error variance estimate)
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In the case of AR(p) models, the Yule–Walker estimators are optimal estimators,
but this is not true for MA(q) or ARMA(p, q) models. AR(p) models are linear
models, and the Yule–Walker estimators are essentially least squares estimators. If
we use method of moments for MA or ARMA models, we will not get optimal
estimators because such processes are nonlinear in the parameters.

Example 3.18 Method of Moments Estimation for an MA(1)
Consider the MA(1) model, xt = wt + θwt−1, where |θ | < 1. The model can then
be written as

xt = −
∞∑
j=1

(−θ) j xt−j + wt,

which is nonlinear in θ. The first two population autocovariances are γ(0) =
σ2
w (1 + θ2) and γ(1) = σ2

wθ, so the estimate of θ is found by solving:

ρ̂(1) =
γ̂(1)
γ̂(0)

=
θ̂

1 + θ̂2
.

Two solutions exist, so we would pick the invertible one. If | ρ̂(1) | ≤ 1
2 , the solutions

are real, otherwise, a real solution does not exist. Even though |ρ(1) | < 1
2 for an

invertible MA(1), it may happen that | ρ̂(1) | ≥ 1
2 because it is an estimator. For

example, the following simulation in R produces a value of ρ̂(1) = .507 when the
true value is ρ(1) = .9/(1 + .92) = .497.
set.seed(2)
ma1 = arima.sim(list(order = c(0,0,1), ma = 0.9), n = 50)
acf(ma1, plot=FALSE)[1] # = .507 (lag 1 sample ACF)

The preferred method of estimation is maximum likelihood estimation (MLE),
which determines the values of the parameters that are most likely to have produced
the observations. MLE is discussed in Section 3.6. For ARMAmodels, this is closely
related to least squares.

Least Squares Estimation

We now discuss least squares for ARMA(p, q) models via Gauss–Newton. Write
the model parameters as βββ = (φ1, . . . , φp, θ1, . . . , θq)′, and for the ease of discussion,
we will put µ = 0. Now, write the model in terms of the errors

wt (βββ) = xt −
p∑
j=1

φ j xt−j −
q∑

k=1
θkwt−k (βββ), (3.31)

emphasizing the dependence of the errors on the parameters (recall that wt =∑∞
j=0 πj xt−j by invertibilty, and the πj are complicated functions of βββ).
For conditional least squares, we approximate the residual sum of squares by

conditioning on x1, . . . , xp (if p > 0) and wp = wp−1 = wp−2 = · · · = w1−q = 0 (if
q > 0), in which case, given βββ, we may evaluate (3.31) for t = p + 1, p + 2, . . . , n.
Using this conditioning argument, the conditional error sum of squares is
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Sc (βββ) =
n∑

t=p+1
w2
t (βββ). (3.32)

Minimizing Sc (βββ) with respect to βββ yields the conditional least squares estimates.
If q = 0, the problem is linear regression and no iterative technique is needed to

minimize Sc (φ1, . . . , φp). For example, for an AR(1), xt = φxt−1+wt , the conditional
sum of squares is

Sc (φ) =
n∑
t=2

w2
t (φ) =

n∑
t=2

(xt − φxt−1)2.

Note that we have to start at t = 2 because x0 is not observed. The conditional least
squares estimate of φ follows from simple linear regression wherein,

φ̂ =

∑n
t=2 xt xt−1∑n
t=2 x2

t−1
,

which is nearly ρ̂(1).
If q > 0, the problem becomes nonlinear regression and we will have to rely

on numerical optimization. Gauss–Newton uses an iterative method for solving the
problem of minimizing (3.32). We demonstrate the method for an MA(1).

Example 3.19 Gauss–Newton for an MA(1)
Consider an MA(1) process, xt = wt + θwt−1. Write the truncated errors as

wt (θ) = xt − θwt−1(θ), t = 1, . . . , n, (3.33)

where we condition on w0(θ) = 0. Our goal is to find the value of θ that minimizes
Sc (θ) =

∑n
t=1 w

2
t (θ), which is a nonlinear function of θ.

Let θ(0) be an initial estimate of θ. For example, we could use method of
moments. The first-order Taylor expansion3 of wt (θ) at θ(0) is

wt (θ) ≈ wt (θ(0)) −
(
θ − θ(0)

)
zt (θ(0)), (3.34)

where
zt (θ(0)) = −

∂wt (θ)
∂θ

����θ=θ(0)

.

Taking derivatives in (3.33),

∂wt (θ)
∂θ

= −wt−1(θ) − θ
∂wt−1(θ)

∂θ
, t = 1, . . . , n, (3.35)

where ∂w0(θ)/∂θ = 0. Using the notation of (3.34), we can also write (3.35) as

zt (θ) = wt−1(θ) − θzt−1(θ), t = 1, . . . , n, (3.36)

3 Newton’s method and Taylor expansion (links to WikiBooks K-12 calculus book).

http://en.wikibooks.org/wiki/Calculus/Newton's_Method
http://en.wikibooks.org/wiki/Calculus/Taylor_series
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Fig. 3.7. ACF and PACF of transformed glacial varves.

where z0(θ) = 0. This implies that the derivative sequence is an AR process, which
we may easily compute given a value of θ.

The linear approximation of Sc (θ) is found by replacing wt (θ) by its linear
approximation in (3.34),

Q(θ) =
n∑
t=1

[
wt (θ(0))︸   ︷︷   ︸

yt

−
(
θ − θ(0)

)︸     ︷︷     ︸
β

zt (θ(0))︸  ︷︷  ︸
zt

]2
(3.37)

and this is the quantity that we will minimize. The problem is now simple linear
regression (“yt = βzt + ε t”), so that

̂(θ − θ(0)) =
∑n

t=1 zt (θ(0))wt (θ(0))
/ ∑n

t=1 z2
t (θ(0)),

or
θ̂ = θ(0) +

∑n
t=1 zt (θ(0))wt (θ(0))

/ ∑n
t=1 z2

t (θ(0)).

Consequently, the Gauss–Newton procedure in this case is, on iteration j + 1, set

θ( j+1) = θ( j) +

∑n
t=1 zt (θ( j))wt (θ( j))∑n

t=1 z2
t (θ( j))

, j = 0, 1, 2, . . . , (3.38)

where the values in (3.38) are calculated recursively using (3.33) and (3.36). The
calculations are stopped when |θ( j+1) − θ( j) |, or |Q(θ( j+1)) − Q(θ( j)) |, are smaller
than some preset amount.
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Fig. 3.8. Conditional sum of squares versus values of the moving average parameter for
the glacial varve example, Example 3.20. Vertical lines indicate the values of the parameter
obtained via Gauss–Newton; see Table 3.2 for the actual values.

Example 3.20 Fitting the Glacial Varve Series
Consider the glacial varve series (n = 634 years) analyzed in Example 2.6 and
in Problem 2.6. It was argued that a first-order moving average model might fit
the logarithmically transformed and differenced series, ∇ log(xt ), which can be
interpreted as being approximately the percentage annual change in the thickness.

The sample ACF and PACF, shown in Figure 3.7, confirm the tendency of
∇ log(xt ) to behave as a first-order moving average process as the ACF has only a
significant peak at lag one and the PACF decreases exponentially. Using Table 3.1,
this sample behavior fits that of the MA(1) very well.

Because ρ̂(1) = −.4, it should be clear that θ̂ is negative. Recalling Example 3.3,
the method of moments estimate is found by setting −.4 = θ̂/(1+ θ̂2), which yields
two solutions θ̂ = −.5 and−2. Since−.5 is the invertible solution, we could initialize
the Gauss–Newton procedure at this value. However, for most ARMA models, it
is not necessary to be so precise as long as the procedure is started in a causal
and invertible region. For demonstration purposes, we will start the procedure at
θ(0) = −.1.

The results of eleven iterations of the Gauss–Newton procedure, (3.38), are
given in Table 3.2. The final estimate is θ̂ = θ(11) = −.773; interim values and
the corresponding value of the conditional sum of squares, Sc (θ) given in (3.32),
are also displayed in the table. The final estimate of the error variance is σ̂2

w =

148.98/632 = .236 with 632 degrees of freedom (one is lost in differencing). The
value of the sum of the squared derivatives at convergence is

∑n
t=1 z2

t (θ(11)) =
369.73, and consequently, the estimated standard error of θ̂ is

√
.236/369.73 =

.025;4 this leads to a t-value of −.773/.025 = −30.92 with 632 degrees of freedom.

4 To estimate the standard error, we are using the standard regression results from (2.6) as an approxi-
mation
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Table 3.2. Gauss–Newton Results for Example 3.20

j θ( j ) Sc (θ( j ) )
∑n

t=1 z
2
t (θ( j ) )

0 −0.100 195.0010 183.3464
1 −0.250 177.7614 163.3038
2 −0.400 165.0027 161.6279
3 −0.550 155.6723 182.6432
4 −0.684 150.2896 247.4942
5 −0.736 149.2283 304.3125
6 −0.757 149.0272 337.9200
7 −0.766 148.9885 355.0465
8 −0.770 148.9812 363.2813
9 −0.771 148.9804 365.4045
10 −0.772 148.9799 367.5544
11 −0.773 148.9799 369.7314

Figure 3.8 displays the conditional sum of squares, Sc (θ) as a function of θ,
as well as indicating the values of each step of the Gauss–Newton algorithm. Note
that the Gauss–Newton procedure takes large steps toward the minimum initially,
and then takes very small steps as it gets close to the minimizing value. When there
is only one parameter, as in this case, it would be easy to evaluate Sc (θ) on a grid
of points, and then choose the appropriate value of θ from the grid search. It would
be difficult, however, to perform grid searches when there are many parameters.

In the general case of causal and invertible ARMA(p, q) models, maximum likeli-
hood estimation and nonlinear least squares estimation (and Yule–Walker estimation
in the case of AR models) all lead to optimal estimators.

Example 3.21 Some Specific Asymptotic Distributions 5
AR(1):

φ̂ ∼ AN
[
φ, n−1(1 − φ2)

]
. (3.39)

AR(2): (
φ̂1
φ̂2

)
∼ AN

[(
φ1
φ2

)
, n−1

(
1 − φ2

2 − φ1(1 + φ2)
sym 1 − φ2

2

)]
. (3.40)

MA(1):
θ̂ ∼ AN

[
θ, n−1(1 − θ2)

]
. (3.41)

MA(2): (
θ̂1
θ̂2

)
∼ AN

[(
θ1
θ2

)
, n−1

(
1 − θ2

2 θ1(1 + θ2)
sym 1 − θ2

2

)]
. (3.42)

ARMA(1,1): (
φ̂

θ̂

)
∼ AN



(
φ
θ

)
, n−1

[
(1 − φ2)−1 (1 + φθ)−1

sym (1 − θ2)−1

]−1
. (3.43)

5 Xn ∼ AN(µn, σ2
n ) if Pr{(Xn − µn )/σn ≤ z } → Pr{Z ≤ z } as n→ ∞, where Z ∼ N(0, 1).
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Example 3.22 Overfitting Caveat
The asymptotic behavior of the parameter estimators gives us an additional insight
into the problem of fitting ARMA models to data. For example, suppose a time
series follows an AR(1) process and we decide to fit an AR(2) to the data. Do
any problems occur in doing this? More generally, why not simply fit large-order
AR models to make sure that we capture the dynamics of the process? After all,
if the process is truly an AR(1), the other autoregressive parameters will not be
significant. The answer is that if we overfit, we obtain less efficient, or less precise
parameter estimates. For example, if we fit an AR(1) to an AR(1) process, for large
n, var(φ̂1) ≈ n−1(1 − φ2

1). But, if we fit an AR(2) to the AR(1) process, for large n,
var(φ̂1) ≈ n−1(1 − φ2

2) = n−1 because φ2 = 0. Thus, the variance of φ1 has been
inflated, making the estimator less precise.

We dowant tomention, however, that overfitting can be used as a diagnostic tool.
For example, if we fit an AR(2) model to the data and are satisfied with that model,
then adding one more parameter and fitting an AR(3) should lead to approximately
the same model as in the AR(2) fit. We will discuss model diagnostics in more
detail in §3.8.

3.5 Forecasting

In forecasting, the goal is to predict future values of a time series, xn+m, m = 1, 2, . . .,
based on the data collected to the present. Throughout this section, we will assume xt
is stationary and themodel parameters are known.When the parameters are unknown,
we replace them with their estimates.

First, consider one-step-ahead prediction. That is, given {x1, . . . , xn}, we wish
to forecast the value of the time series at the next time point, xn+1. The best linear
predictor (BLP) of xn+1 is of the form

xnn+1 = φn1xn + φn2xn−1 + · · · + φnnx1, (3.44)

and we must solve for the coefficients to minimize the mean squared prediction error
(MSPE) given by

Pn
n+1 = E

[
xn+1 − xnn+1

]2
= E

[
xn+1 − (φn1xn + · · · + φnnx1)

]2 .

Generally, the coefficients depend on the sample size n, and this is made explicit. The
second subscript indicates the distance between the future and the data values. For
example, φnj is the coefficient of xn+1−j because it is j time periods away from xn+1.

The coefficients {φn1, φn2, . . . , φnn} satisfy
n∑
j=1

φnjγ(k − j) = γ(k), k = 1, . . . , n, (3.45)

which is similar to the normal equations obtained in least squares regression. If n
is large (which is typical in time series), solving (3.45) directly is computationally
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prohibitive. There are, however, iterative solutions that do not require any matrix
inversion. In particular, we mention the recursive solution due to Levinson (1947)
and Durbin (1960).

Property 3.3 The Durbin–Levinson Algorithm
The coefficients in (3.44) and the corresponding MSPE can be solved iteratively

as follows:
φ00 = 0, P0

1 = γ(0). (3.46)
For n ≥ 1,

φnn =
ρ(n) −

∑n−1
k=1 φn−1,k ρ(n − k)

1 −
∑n−1

k=1 φn−1,k ρ(k)
, Pn

n+1 = Pn−1
n (1 − φ2

nn), (3.47)

where, for n ≥ 2, φnk = φn−1,k − φnnφn−1,n−k , k = 1, 2, . . . , n − 1.

An important consequence of the Durbin–Levinson algorithm is as follows.

Property 3.4 Iterative Solution for the PACF
The PACF of a stationary process xt , can be obtained iteratively via (3.47) as

φnn, for n = 1, 2, . . . .

Property 3.4 follows from the fact that, in (3.44), φnn is the (auto)regression
coefficient of xn+1 on x1, and so it measures the effect of x1 on xn+1 with everything
in the middle being held constant. The fact that we are regressing xt on itself, makes
the regression coefficient φnn a partial correlation.

We note that given data from a stationary process, we could substitute γ̂(k) for
γ(k) in (3.45) and then solve for the φs to obtain their estimates and consequently the
sample-based forecasts and the sample PACF values (without having to run repeated
regressions). For AR models, forecasting simplifies.

Example 3.23 Prediction for an AR(2)
Suppose we have a causal AR(2) process xt = φ1xt−1 + φ2xt−2 + wt , and one
observation x1. Then, using equation (3.45), φ11γ(0) = γ(1), the one-step-ahead
prediction of x2 based on x1 is

x1
2 = φ11x1 =

γ(1)
γ(0)

x1 = ρ(1)x1.

Now, suppose we want the one-step-ahead prediction of x3 based on two observa-
tions x1 and x2; i.e., x2

3 = φ21x2 + φ22x1. We could use (3.45)

φ21γ(0) + φ22γ(1) = γ(1)
φ21γ(1) + φ22γ(0) = γ(2)

to solve for φ21 and φ22, but it should be apparent from the model that x2
3 =

φ1x2 + φ2x1. It is easy to verify that, for n ≥ 2,

xnn+1 = φ1xn + φ2xn−1.

That is, φn1 = φ1, φn2 = φ2, and φnj = 0, for j = 3, 4, . . . , n.
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In general, if the time series is an AR(p) process, then, for n ≥ p,

xnn+1 = φ1xn + φ2xn−1 + · · · + φpxn−p+1. (3.48)

So far, we have concentrated on one-step-ahead prediction, but m-step-ahead
prediction is similar. The BLP of xn+m for any m ≥ 1 given data {x1, . . . , xn} yields
the m-step-ahead predictor

xnn+m = φ
(m)
n1 xn + φ

(m)
n2 xn−1 + · · · + φ

(m)
nn x1, (3.49)

where {φ(m)
n1 , φ

(m)
n2 , . . . , φ

(m)
nn } satisfy

n∑
j=1

φ(m)
nj γ(k − j) = γ(m + k − 1), k = 1, . . . , n. (3.50)

The mean square m-step-ahead prediction error is Pn
n+m = E

(
xn+m − xnn+m

)2.

Forecasting ARMA Processes

Because ARMAmodels are invertible; i.e., wt = xt +
∑∞

j=1 πj xt−j , we may write

xn+m = −
∞∑
j=1

πj xn+m−j + wn+m.

If we had the infinite history {xn, xn−1, . . . , x1, x0, x−1, . . .}, of the data available, we
would predict xn+m by

xnn+m = −
∞∑
j=1

πj xnn+m−j,

successively for m = 1, 2, . . . . In this case, xnt = xt for t = n, n− 1, . . . . We only have
the actual data {xn, xn−1, . . . , x1} available, but a practical solution is to truncate the
forecasts as

xnn+m = −
n+m−1∑
j=1

πj xnn+m−j,

with xnt = xt for 1 ≤ t ≤ n. As displayed in (3.48), for AR(p) models, truncated
forecasts are exact when n > p. For ARMAmodels in general, as long as n is large, the
approximation works well because the π-weights are going to zero exponentially fast.
For ARMA models, truncated forecasts can be obtained fairly simply as discussed in
the following example.

Example 3.24 Forecasting an ARMA(1, 1) Series
Given data x1, . . . , xn, for forecasting purposes, write the model as

xn+1 = φxn + wn+1 + θwn.
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80 3 ARIMA Models

Note that wn is the current error, which is a function of the data. But wn+1 is a future
error that is not a function of the data. The one-step-ahead truncated forecast is

xnn+1 = φxn + 0 + θwn
n,

where wn
n is the estimate of wn given the data. For m ≥ 2, we have

xnn+m = φxnn+m−1,

which can be calculated recursively, m = 2, 3, . . . .
To calculatewn

n , which is needed to initialize the successive forecasts, the model
can be written as wt = xt −φxt−1−θwt−1 for t = 1, . . . , n. For truncated forecasting
put wn

0 = 0, x0 = 0, and then iterate the errors forward in time

wn
t = xt − φxt−1 − θw

n
t−1, t = 1, . . . , n.

For large n, it can be shown that themean squared prediction error forARMA(p, q)
models is approximately6

Pn
n+m = σ

2
w

m−1∑
j=0

ψ2
j . (3.51)

To assess the precision of the forecasts, prediction intervals are typically calculated
along with the forecasts. In general, (1 − α) prediction intervals are of the form

xnn+m ± c α
2

√
Pn
n+m, (3.52)

where cα/2 is chosen to get the desired degree of confidence. For example, if the
process is Gaussian, then choosing cα/2 = 2will yield an approximate 95% prediction
interval for xn+m. If we are interested in establishing prediction intervals over more
than one time period, then cα/2 should be adjusted appropriately, for example, by
using Bonferroni’s inequality [see Johnson and Wichern, 1992, Chapter 5].

Example 3.25 Forecasting the Recruitment Series
In Example 3.15 we fit an AR(2) model to the Recruitment series using OLS. Here,
we use MLE:
sarima(rec,2,0,0) # fit model
Coefficients:

ar1 ar2 xmean
1.3512 -0.4612 61.8585

s.e. 0.0416 0.0417 4.0039
sigma^2 estimated as 89.33
61.8585*(1-1.3512+.4612) # get constant
[1] 6.804435

6 To establish (3.51), by invertibility, the wn, wn−1, . . . are functions of the observations xn, xn−1, . . ..
Letting wn

n+k
= E (wn+k | xn, xn−1, . . .), we have wn

n+k
= wn+k for k ≤ 0, but for future errors,

wn
n+k
= Ewn+k = 0 for k ≥ 1. Thus

xn+m =

∞∑
j=0

ψjwm+n− j and xnn+m =

∞∑
j=0

ψjw
n
m+n− j =

∞∑
j=m

ψjwm+n− j,

so that E[xn+m − xnn+m]2 = E
[∑m−1

j=0 ψjwn+m− j

]2
, which is (3.51).
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Fig. 3.9. Twenty-four month forecasts for the Recruitment series. The actual data shown are
from about January 1980 to September 1987, and then the forecasts plus and minus one
standard error are displayed.

The results are nearly the same as using OLS. Using the parameter estimates as the
actual parameter values, the forecasts are calculated as

xnn+m = 6.80 + 1.35xnn+m−1 − .46xnn+m−2

for n = 453 and m = 1, 2, . . . , 12. Recall that xst = xt when t ≤ s. The forecasts
errors Pn

n+m are calculated using (3.51). Here, σ̂2
w = 89.33, and the ψ-weights

satisfy ψ j = 1.35ψ j−1 − .46ψ j−2 for j ≥ 2, where ψ0 = 1 and ψ1 = 1.35. Thus, for
n = 453,

Pn
n+1 = 89.33, Pn

n+2 = 89.33(1 + 1.352), Pn
n+3 = 89.33(1 + 1.352 + [1.352 − .46]2),

and so on.
Figure 3.9 shows the result of forecasting theRecruitment series over a 24-month

horizon, m = 1, 2, . . . , 24, obtained in R as
sarima.for(rec, 24, 2, 0, 0)

Note how the forecast levels off to the mean quickly and the prediction intervals
are wide and become constant. That is, because of the short memory, the forecasts
settle to the mean, µx , of the process, and the MSPE becomes γx (0) = var(xt ).

We complete this section with a brief discussion of backcasting. In backcasting,
we want to predict x1−m, for m = 1, 2, . . ., based on the data {x1, . . . , xn}. Write the
backcast as

xn1−m =
n∑
j=1

α(m)
nj x j . (3.53)

Analogous to (3.50), the prediction equations (assuming µx = 0) are
n∑
j=1

α(m)
nj γ(k − j) = γ(m + k − 1), k = 1, . . . , n. (3.54)
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Backcasting

Time

X
 t

0 20 40 60 80 100

−
2

0
2

4
6

8

●●●●
●

●
●

●

●

●

Fig. 3.10. Display for Example 3.26; backcasts from a simulated ARMA(1, 1).

These equations are precisely the prediction equations for forward prediction. That
is, α(m)

nj ≡ φ(m)
nj , for j = 1, . . . , n, where the φ(m)

nj are given by (3.50). Finally, the
backcasts are given by

xn1−m = φ
(m)
n1 x1 + · · · + φ

(m)
nn xn, m = 1, 2, . . . . (3.55)

The implication of this result is that to backcast, you simply reverse the order of the
data and forecast the reversed data set.

Example 3.26 Backcasting an ARMA Process
In the following R code, we backcast an ARMA(1, 1) by reversing simulated data,
fitting the model and then predicting the reversed data; see Figure 3.10.
set.seed(90210)
x = arima.sim(list(order = c(1,0,1), ar =.9, ma=.5), n = 100)
xr = replace(x, TRUE, rev(x)) # xr is the reversed data
pxr = predict(arima(xr, order=c(1,0,1)), 10) # predict the reversed data
pxrp = rev(pxr$pred) # reorder the predictors (for plotting)
pxrse = rev(pxr$se) # reorder the SEs
nx = ts(c(pxrp, x), start=-9) # attach the backcasts to the data
plot(nx, ylab=expression(X[~t]), main='Backcasting')
lines(-9:0, nx[1:10], col=2, type='o', pch=20)
lines(-9:0, nx[1:10] + pxrse, col=4, lty=2)
lines(-9:0, nx[1:10] - pxrse, col=4, lty=2)

3.6 Maximum Likelihood Estimation **

For a normal ARMA(p, q) model, the optimal way to estimate the parameters is to
use either maximum likelihood estimation, or unconditional least squares estimation.
Without going into general details, we describe the technique for an AR(1) model.

** This section may be skipped without harming any living things.
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Example 3.27 Estimation for an AR(1)
Let

xt = µ + φ(xt−1 − µ) + wt (3.56)

where |φ| < 1 and wt ∼ iid N(0, σ2
w ). Given data x1, x2, . . . , xn, we seek the

likelihood
L(µ, φ, σ2

w ) = f
(
x1, x2, . . . , xn �� µ, φ, σ2

w

)
.

In the case of an AR(1), we may write the likelihood as

L(µ, φ, σ2
w ) = f (x1) f (x2 �� x1) · · · f (xn �� xn−1),

where we have dropped the parameters in the densities, f (·), to ease the notation.
Because, for t > 1, xt �� xt−1 ∼ N

(
µ + φ(xt−1 − µ), σ2

w

)
, we have

f (xt �� xt−1) = fw[(xt − µ) − φ(xt−1 − µ)],

where fw (·) is the density of wt , that is, the normal density with mean zero and
variance σ2

w . We may then write the likelihood as

L(µ, φ, σw ) = f (x1)
n∏
t=2

fw
[
(xt − µ) − φ(xt−1 − µ)

]
.

To find f (x1), we can use the causal representation

x1 = µ +

∞∑
j=0

φ jw1−j

to see that x1 is normal, with mean µ and variance σ2
w/(1 − φ2). Finally, for an

AR(1), the likelihood is

L(µ, φ, σ2
w ) = (2πσ2

w )−n/2(1 − φ2)1/2 exp
[
−

S(µ, φ)
2σ2

w

]
, (3.57)

where

S(µ, φ) = (1 − φ2)(x1 − µ)2 +

n∑
t=2

[
(xt − µ) − φ(xt−1 − µ)

]2 . (3.58)

Typically, S(µ, φ) is called the unconditional sum of squares. We could have also
considered the estimation of µ and φ using unconditional least squares, that is,
estimation by minimizing S(µ, φ).

Taking the partial derivative of the log of (3.57) with respect to σ2
w and setting

the result equal to zero, we see that for any given values of µ and φ in the parameter
space, σ2

w = n−1S(µ, φ) maximizes the likelihood. Thus, the maximum likelihood
estimate of σ2

w is
σ̂2
w = n−1S( µ̂, φ̂), (3.59)



i
i

“tsa3EZ” — 2015/12/26 — 11:53 — page 84 — #90 i
i

i
i

i
i

84 3 ARIMA Models

where µ̂ and φ̂ are the MLEs of µ and φ, respectively. If we replace n in (3.59) by
n − 2, we would obtain the unconditional least squares estimate of σ2

w .
If, in (3.57), we take logs, replace σ2

w by σ̂2
w , and ignore constants, µ̂ and φ̂ are

the values that minimize the criterion function

l (µ, φ) = log
[
n−1S(µ, φ)

]
− n−1 log(1 − φ2); (3.60)

that is, l (µ, φ) ∝ −2 log L(µ, φ, σ̂2
w ).7 Because (3.58) and (3.60) are complicated

functions of the parameters, the minimization of l (µ, φ) or S(µ, φ) is accomplished
numerically. In the case of AR models, we have the advantage that, conditional on
initial values, they are linear models. That is, we can drop the term in the likelihood
that causes the nonlinearity. Conditioning on x1, the conditional likelihood becomes

L(µ, φ, σ2
w

�� x1) =
n∏
t=2

fw
[
(xt − µ) − φ(xt−1 − µ)

]
= (2πσ2

w )−(n−1)/2 exp
[
−

Sc (µ, φ)
2σ2

w

]
, (3.61)

where the conditional sum of squares is

Sc (µ, φ) =
n∑
t=2

[
(xt − µ) − φ(xt−1 − µ)

]2 . (3.62)

The conditional MLE of σ2
w is

σ̂2
w = Sc ( µ̂, φ̂)/(n − 1), (3.63)

and µ̂ and φ̂ are the values that minimize the conditional sum of squares, Sc (µ, φ).
Letting α = µ(1 − φ), the conditional sum of squares can be written as

Sc (µ, φ) =
n∑
t=2

[
xt − (α + φxt−1)

]2 . (3.64)

The problem is now the linear regression problem stated in §2.2. Following the
results from least squares estimation, we have α̂ = x̄ (2) − φ̂x̄ (1) , where x̄ (1) =

(n − 1)−1 ∑n−1
t=1 xt , and x̄ (2) = (n − 1)−1 ∑n

t=2 xt , and the conditional estimates are
then

µ̂ =
x̄ (2) − φ̂x̄ (1)

1 − φ̂
(3.65)

φ̂ =

∑n
t=2(xt − x̄ (2))(xt−1 − x̄ (1))∑n

t=2(xt−1 − x̄ (1))2 . (3.66)

From (3.65) and (3.66), we see that µ̂ ≈ x̄ and φ̂ ≈ ρ̂(1). That is, the Yule–Walker
estimators and the conditional least squares estimators are approximately the same.

7 The criterion function is sometimes called the profile or concentrated likelihood.
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The only difference is the inclusion or exclusion of terms involving the endpoints,
x1 and xn. We can also adjust the estimate of σ2

w in (3.63) to be equivalent to the
least squares estimator, that is, divide Sc ( µ̂, φ̂) by (n−3) instead of (n−1) in (3.63).

For general AR(p) models, maximum likelihood estimation, unconditional least
squares, and conditional least squares follow analogously to the AR(1) example. For
ARMA models in general, the densities f (xt | x1, . . . , xt−1) that form the likelihood
are obtained using the forecasting methods discussed in the previous section; details
are in the blue version of the text.

3.7 Integrated Models

In Chapters 1 and 2, we saw that if xt is a random walk, xt = xt−1 + wt , then
by differencing xt , we find that ∇xt = wt is stationary. In many situations, time
series can be thought of as being composed of two components, a nonstationary
trend component and a zero-mean stationary component. For example, in §2.2 we
considered the model

xt = µt + yt, (3.67)

where µt = β0 + β1t and yt is stationary. Differencing such a process will lead to a
stationary process:

∇xt = xt − xt−1 = β1 + yt − yt−1 = β1 + ∇yt .

Another model that leads to first differencing is the case in which µt in (3.67) is
stochastic and slowly varying according to a random walk. That is,

µt = µt−1 + vt

where vt is stationary. In this case,

∇xt = vt + ∇yt,

is stationary. If µt in (3.67) is quadratic, µt = β0 + β1t + β2t2, then the differ-
enced series ∇2yt is stationary. Stochastic trend models can also lead to higher order
differencing. For example, suppose

µt = µt−1 + vt and vt = vt−1 + et,

where et is stationary. Then, ∇xt = vt + ∇yt is not stationary, but

∇2xt = et + ∇2yt

is stationary.
The integrated ARMA, or ARIMA, model is a broadening of the class of ARMA

models to include differencing. The basic idea is that if differencing the data at some
order d produces an ARMA process, then the original process is said to be ARIMA.
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Definition 3.7 A process xt is said to be ARIMA(p, d, q) if

∇dxt = (1 − B)dxt

is ARMA(p, q). In general, we will write the model as

φ(B)(1 − B)dxt = θ(B)wt . (3.68)

If E(∇dxt ) = µ, we write the model as

φ(B)(1 − B)dxt = δ + θ(B)wt,

where δ = µ(1 − φ1 − · · · − φp).

It should be clear that, since yt = ∇
dxt is ARMA, we can use §3.5 methods to

obtain forecasts of yt , which in turn lead to forecasts for xt . For example, if d = 1,
given forecasts ynn+m for m = 1, 2, . . ., we have ynn+m = xnn+m − xn

n+m−1, so that

xnn+m = ynn+m + xnn+m−1

with initial condition xn
n+1 = yn

n+1 + xn (noting xnn = xn).
It is a little more difficult to obtain the prediction errors Pn

n+m, but for large n, the
approximation used in §3.5, equation (3.51), works well. That is, the mean-squared
prediction error can be approximated by

Pn
n+m = σ

2
w

m−1∑
j=0

ψ∗2j , (3.69)

where ψ∗j is the coefficient of z j in ψ∗(z) = θ(z)/φ(z)(1 − z)d .
To better understand forecasting integrated models, we examine the properties of

some simple cases.

Example 3.28 RandomWalk with Drift
To fix ideas, we begin by considering the random walk with drift model first
presented in Example 1.9, that is,

xt = δ + xt−1 + wt,

for t = 1, 2, . . ., and x0 = 0. Technically, the model is not ARIMA, but we could
include it trivially as an ARIMA(0, 1, 0) model. Given data x1, . . . , xn, the one-
step-ahead forecast is given by

xnn+1 = E(xn+1 �� xn, . . . , x1) = E(δ + xn + wn+1 �� xn, . . . , x1) = δ + xn.

The two-step-ahead forecast is given by xn
n+2 = δ+xn

n+1 = 2δ+xn, and consequently,
the m-step-ahead forecast, for m = 1, 2, . . ., is

xnn+m = m δ + xn, (3.70)
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To obtain the forecast errors, it is convenient to recall equation (1.4), i.e.,
xn = n δ +

∑n
j=1 w j , in which case we may write

xn+m = (n + m) δ +
n+m∑
j=1

w j = m δ + xn +
n+m∑
j=n+1

w j .

From this it follows that the m-step-ahead prediction error is given by

Pn
n+m = E(xn+m − xnn+m)2 = E

( n+m∑
j=n+1

w j

)2
= mσ2

w . (3.71)

Unlike the stationary case, as the forecast horizon grows, the prediction errors,
(3.71), increase without bound and the forecasts follow a straight line with slope δ
emanating from xn.

Example 3.29 IMA(1, 1) and EWMA
The ARIMA(0,1,1), or IMA(1,1) model is of interest because many economic time
series can be successfully modeled this way. The model leads to a frequently used
forecasting method called exponentially weighted moving averages (EWMA). We
will write the model as

xt = xt−1 + wt − λwt−1, (3.72)

with |λ | < 1, for t = 1, 2, . . . , and x0 = 0, because this model formulation is easier
to work with here, and it leads to the standard representation for EWMA. We could
have included a drift term in (3.72), as was done in the previous example, but for
the sake of simplicity, we leave it out of the discussion. If we write

yt = wt − λwt−1,

we may write (3.72) as xt = xt−1 + yt . Because |λ | < 1, yt has an invertible
representation, yt +

∑∞
j=1 λ

j yt−j = wt , and substituting yt = xt − xt−1, we may
write

xt =
∞∑
j=1

(1 − λ)λ j−1xt−j + wt . (3.73)

as an approximation for large t (put xt = 0 for t ≤ 0). Verification of (3.73) is
left to the reader (Problem 3.11). Using the approximation (3.73), we have that the
approximate one-step-ahead predictor is

xnn+1 = (1 − λ)xn + λxn−1
n , (3.74)

because xn−1
n =

∑∞
j=1(1 − λ)λ j−1xn−j and wn

n+1 = 0. From (3.74), we see that the
new forecast is a linear combination of the old forecast and the new observation.
The mean-square prediction error can be approximated using (3.69) by noting that
ψ∗(z) = (1 − λz)/(1 − z) = 1 + (1 − λ)

∑∞
j=1 z j for |z | < 1; consequently, for large

n, (3.69) leads to
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Fig. 3.11. Output for Example 3.29: Simulated data with an EWMA superimposed.

Pn
n+m ≈ σ

2
w[1 + (m − 1)(1 − λ)2].

In EWMA, the parameter 1 − λ is often called the smoothing parameter and
is restricted to be between zero and one. Larger values of λ lead to smoother
forecasts. This method of forecasting is popular because it is easy to use; we need
only retain the previous forecast value and the current observation to forecast the
next time period. In the following, we show how to generate 100 observations from
an IMA(1,1) model with λ = −θ = .8 and then calculate and display the fitted
EWMA superimposed on the data. This is accomplished using the Holt-Winters
command in R (see the help file ?HoltWinters for details). The results are displayed
in Figure 3.11
set.seed(666)
x = arima.sim(list(order = c(0,1,1), ma = -0.8), n = 100)
(x.ima = HoltWinters(x, beta=FALSE, gamma=FALSE)) # α below is 1 − λ
Smoothing parameter: alpha: 0.1663072

plot(x.ima, main='EWMA')

3.8 Building ARIMAModels

There are a few basic steps to fitting ARIMA models to time series data. These steps
involve (i) plotting the data, (ii) possibly transforming the data, (iii) identifying the
dependence orders of the model, (iv) parameter estimation, (v) diagnostics, (vi) and
model choice. First, as with any data analysis, we should construct a time plot of
the data, and inspect the graph for any anomalies. If, for example, the variability in
the data grows with time, it will be necessary to transform the data to stabilize the
variance. In such cases, the Box–Cox class of power transformations, equation (2.35),
could be employed. Also, the particular application might suggest an appropriate
transformation. For example, suppose a process evolves as a fairly small and stable
percent-change, such as an investment. Then a reasonable model is

xt = (1 + pt )xt−1,

where xt is the value of the investment at time t and pt is the percentage-change from
period t − 1 to t, which may be negative. Recall Figure 1.2 where pt ≡ .05and was
compared to Figure 1.1. Taking logs we have
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Fig. 3.12. Quarterly U.S. GNP from 1947(1) to 2002(3).

log(xt ) = log(1 + pt ) + log(xt−1),

or
∇ log(xt ) = log(1 + pt ).

If the percent change pt stays relatively small in magnitude, then log(1 + pt ) ≈ pt 8
and, thus,

∇ log(xt ) ≈ pt,

will be a relatively stable process. Frequently, ∇ log(xt ) is called the return or growth
rate. This general idea was used in Example 3.20, and we will use it again in Exam-
ple 3.30.

After suitably transforming the data, the next step is to identify preliminary values
of the autoregressive order, p, the order of differencing, d, and the moving average
order, q. We have already addressed, in part, the problem of selecting d. A time plot
of the data will typically suggest whether any differencing is needed. If differencing
is called for, then difference the data once, d = 1, and inspect the time plot of ∇xt .
If additional differencing is necessary, then try differencing again and inspect a time
plot of ∇2xt . Be careful not to overdifference because this may introduce dependence
where none exists. In addition to time plots, the sample ACF can help in indicating
whether differencing is needed. Recall that the ACF of an ARMAmodel should decay
exponentially fast to zero. Slow decay in the sample ACF may be an indication that
differencing is needed.

The next step is to look at the sample ACF and PACF of (possibly differenced)
data. Using Table 3.1 as a guide, preliminary values of p and q are chosen. Recall
that two models that are seemingly different can actually be very similar. With this in
mind, we should not worry about being so precise at this stage of the model fitting.
At this stage, a few preliminary values of (p, d, q) should be at hand, and we can start
fitting models.

8 log(1+ p) = p −
p2

2 +
p3

3 − · · · for −1 < p ≤ 1. If p is a small percent-change, then the higher-order
terms in the expansion are negligible.
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Fig. 3.13. Sample ACF of the GNP data. Lag is in terms of years.
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Fig. 3.14. First difference of the U.S. GNP data.

Example 3.30 Analysis of GNP Data
In this example, we consider the analysis of quarterly U.S. GNP from 1947(1) to
2002(3), n = 223 observations. The data are real U.S. gross national product in
billions of chained 1996 dollars and have been seasonally adjusted. The data were
obtained from the Federal Reserve Bank of St. Louis (http://research.stlouisfed.
org/). Figure 3.12 shows a plot of the data, say, yt . Because strong trend hides any
other effect, it is not clear from Figure 3.12 that the variance is increasing with
time. For the purpose of demonstration, the sample ACF of the data is displayed in
Figure 3.13. Figure 3.14 shows the first difference of the data, ∇yt , and now that the
trend has been removed we are able to notice that the variability in the second half
of the data is larger than in the first half of the data. Also, it appears as though a trend
is still present after differencing. The growth rate, say, xt = ∇ log(yt ), is plotted in
Figure 3.15, and, appears to be a stable process. Moreover, we may interpret the
values of xt as the percentage quarterly growth of U.S. GNP.

The sample ACF and PACF of the quarterly growth rate are plotted in Fig-
ure 3.16. Inspecting the sample ACF and PACF, we might feel that the ACF is
cutting off at lag 2 and the PACF is tailing off. This would suggest the GNP growth
rate follows an MA(2) process, or log GNP follows an ARIMA(0, 1, 2) model.

http://research.stlouisfed.org/
http://research.stlouisfed.org/
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Fig. 3.15. U.S. GNP quarterly growth rate.

Rather than focus on one model, we will also suggest that it appears that the ACF
is tailing off and the PACF is cutting off at lag 1. This suggests an AR(1) model for
the growth rate, or ARIMA(1, 1, 0) for log GNP. As a preliminary analysis, we will
fit both models.

Using MLE to fit the MA(2) model for the growth rate, xt , the estimated model
is

xt = .008(.001) + .303(.065)ŵt−1 + .204(.064)ŵt−2 + ŵt, (3.75)

where σ̂w = .0094 is based on 219 degrees of freedom. The values in parentheses
are the corresponding estimated standard errors. All of the regression coefficients
are significant, including the constant. We make a special note of this because, as
a default, some computer packages do not fit a constant in a differenced model.
That is, these packages assume, by default, that there is no drift. In this example,
not including a constant leads to the wrong conclusions about the nature of the
U.S. economy. Not including a constant assumes the average quarterly growth rate
is zero, whereas the U.S. GNP average quarterly growth rate is about 1% (which
can be seen easily in Figure 3.15). We leave it to the reader to investigate what
happens when the constant is not included.

The estimated AR(1) model is

xt = .008(.001) (1 − .347) + .347(.063) xt−1 + ŵt, (3.76)

where σ̂w = .0095 on 220 degrees of freedom; note that the constant in (3.76) is
.008 (1 − .347) = .005.

We will discuss diagnostics next, but assuming both of these models fit well,
how are we to reconcile the apparent differences of the estimated models (3.75)
and (3.76)? In fact, the fitted models are nearly the same. To show this, consider an
AR(1) model of the form in (3.76) without a constant term; that is,

xt = .35xt−1 + wt,

and write it in its causal form, xt =
∑∞

j=0 ψ jwt−j , where we recall ψ j = .35j . Thus,
ψ0 = 1, ψ1 = .350, ψ2 = .123, ψ3 = .043, ψ4 = .015, ψ5 = .005, ψ6 = .002, ψ7 =

.001, ψ8 = 0, ψ9 = 0, ψ10 = 0, and so forth. Thus,
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Fig. 3.16. Sample ACF and PACF of the GNP quarterly growth rate. Lag is in terms of years.

xt ≈ .35wt−1 + .12wt−2 + wt,

which is similar to the fitted MA(2) model in (3.75).
The analysis can be performed in R as follows.9

plot(gnp)
acf2(gnp, 50)
gnpgr = diff(log(gnp)) # growth rate
plot(gnpgr)
acf2(gnpgr, 24)
sarima(gnpgr, 1, 0, 0) # AR(1)
sarima(gnpgr, 0, 0, 2) # MA(2)
ARMAtoMA(ar=.35, ma=0, 10) # prints psi-weights

The next step in model fitting is diagnostics. This investigation includes the
analysis of the residuals as well as model comparisons. Again, the first step involves a
time plot of the innovations (or residuals), xt − x̂t−1

t , or of the standardized innovations

et =
(
xt − x̂t−1

t

) / √
P̂t−1
t , (3.77)

where x̂t−1
t is the one-step-ahead prediction of xt based on the fitted model and P̂t−1

t

is the estimated one-step-ahead error variance. If the model fits well, the standardized
residuals should behave as an iid sequence with mean zero and variance one. The
time plot should be inspected for any obvious departures from this assumption.
Unless the time series is Gaussian, it is not enough that the residuals are uncorrelated.
It is possible in the non-Gaussian case to have an uncorrelated process for which
contiguous values are highly dependent. As an example, we mention the family of
GARCH models.

Investigation of marginal normality can be accomplished visually by looking at a
histogram of the residuals. In addition to this, a normal probability plot or a Q-Q plot
can help in identifying departures from normality. See Johnson and Wichern (1992,
Chapter 4) for details of this test as well as additional tests for multivariate normality.

9 If you’re addicted to p-values, see page 187 in Appendix R.
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There are several tests of randomness, for example the runs test, that could be
applied to the residuals. We could also inspect the sample autocorrelations of the
residuals, say, ρ̂e (h), for any patterns or large values. Recall that, for a white noise
sequence, the sample autocorrelations are approximately independently and normally
distributedwith zeromeans and variances 1/n. Hence, a good check on the correlation
structure of the residuals is to plot ρ̂e (h) versus h along with the error bounds of
±2/
√

n. The residuals from a model fit, however, will not quite have the properties
of a white noise sequence and the variance of ρ̂e (h) can be much less than 1/n.
Details can be found in Box and Pierce (1970) and McLeod (1978). This part of the
diagnostics can be viewed as a visual inspection of ρ̂e (h) with the main concern
being the detection of obvious departures from the independence assumption.

In addition to plotting ρ̂e (h), we can perform a general test of whiteness that
takes into consideration the magnitudes of ρ̂e (h) as a group. The Ljung–Box–Pierce
Q-statistic given by

Q = n(n + 2)
H∑
h=1

ρ̂2
e (h)

n − h
(3.78)

can be used to perform such a test. The value H in (3.78) is chosen somewhat arbitrar-
ily, typically, H = 20. Under the null hypothesis of model adequacy, asymptotically
(n → ∞), Q ∼ χ2

H−p−q . Thus, we would reject the null hypothesis at level α if the
value of Q exceeds the (1 − α)-quantile of the χ2

H−p−q distribution. Details can be
found in Box and Pierce (1970), Ljung and Box (1978), and Davies et al. (1977). The
basic idea is that if wt is white noise, then by Property 1.2, n ρ̂2

w (h), for h = 1, . . . , H ,
are asymptotically independent χ2

1 random variables. This means that n
∑H

h=1 ρ̂
2
w (h)

is approximately a χ2
H random variable. Because the test involves the ACF of resid-

uals from a model fit, there is a loss of p + q degrees of freedom; the other values
in (3.78) are used to adjust the statistic to better match the asymptotic chi-squared
distribution.

Example 3.31 Diagnostics for GNP Growth Rate Example
We will focus on the MA(2) fit from Example 3.30; the analysis of the AR(1)
residuals is similar. Figure 3.17 displays a plot of the standardized residuals, theACF
of the residuals, a boxplot of the standardized residuals, and the p-values associated
with the Q-statistic, (3.78), at lags H = 3 through H = 20 (with corresponding
degrees of freedom H − 2).

Inspection of the time plot of the standardized residuals in Figure 3.17 shows no
obvious patterns. Notice that there are outliers, however, with a few values exceeding
3 standard deviations in magnitude. The ACF of the standardized residuals shows
no apparent departure from the model assumptions, and the Q-statistic is never
significant at the lags shown. The normal Q-Q plot of the residuals shows departure
from normality at the tails due to the outliers that occurred primarily in the 1950s
and the early 1980s.

The model appears to fit well except for the fact that a distribution with heavier
tails than the normal distribution should be employed. The diagnostics shown in
Figure 3.17 are a by-product of the sarima command from the previous example.
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Fig. 3.17. Diagnostics of the residuals from MA(2) fit on GNP growth rate.

Example 3.32 Diagnostics for the Glacial Varve Series
In Example 3.20, we fit an ARIMA(0, 1, 1) model to the logarithms of the glacial
varve data and there appears to be a small amount of autocorrelation left in the
residuals and the Q-tests are all significant; see Figure 3.18.

To adjust for this problem, we fit an ARIMA(1, 1, 1) to the logged varve data
and obtained the estimates

φ̂ = .23(.05), θ̂ = −.89(.03), σ̂
2
w = .23.

Hence the AR term is significant. The Q-statistic p-values for this model are also
displayed in Figure 3.18, and it appears this model fits the data well.

As previously stated, the diagnostics are byproducts of the individual sarima
runs. We note that we did not fit a constant in either model because there is no
apparent drift in the differenced, logged varve series. This fact can be verified
by noting the constant is not significant when the command no.constant=TRUE is
removed in the code:



i
i

“tsa3EZ” — 2015/12/26 — 11:53 — page 95 — #101 i
i

i
i

i
i

3.8 Building ARIMA Models 95

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20
0.

0
0.

4
0.

8

p values for Ljung−Box statistic

lag

p 
va

lu
e

●

●

●
●

● ●
●

●
●

●

● ●
●

●
●

●

●
●

5 10 15 20

0.
0

0.
4

0.
8

p values for Ljung−Box statistic

lag

p 
va

lu
e

Fig. 3.18. Q-statistic p-values for the ARIMA(0, 1, 1) fit [top] and the ARIMA(1, 1, 1) fit
[bottom] to the logged varve data.

sarima(log(varve), 0, 1, 1, no.constant=TRUE) # ARIMA(0,1,1)
sarima(log(varve), 1, 1, 1, no.constant=TRUE) # ARIMA(1,1,1)

In Example 3.30, we have two competing models, an AR(1) and an MA(2) on
the GNP growth rate, that each appear to fit the data well. In addition, we might
also consider that an AR(2) or an MA(3) might do better for forecasting. Perhaps
combining both models, that is, fitting an ARMA(1, 2) to the GNP growth rate, would
be the best. As previously mentioned, we have to be concerned with overfitting the
model; it is not always the case that more is better. Overfitting leads to less-precise
estimators, and adding more parameters may fit the data better but may also lead to
bad forecasts. This result is illustrated in the following example.

Example 3.33 A Problem with Overfitting
Figure 3.19 shows the U.S. population by official census, every ten years from 1910
to 1990, as points. If we use these nine observations to predict the future population,
we can use an eight-degree polynomial so the fit to the nine observations is perfect.
The model in this case is

xt = β0 + β1t + β2t2 + · · · + β8t8 + wt .

The fitted line, which is plotted in the figure, passes through the nine observations.
The model predicts that the population of the United States will be close to zero in
the year 2000, and will cross zero sometime in the year 2002!

The final step of model fitting is model choice or model selection. That is, we
must decide which model we will retain for forecasting. The most popular techniques,
AIC, AICc, and BIC, were described in §2.2 in the context of regression models.

Example 3.34 Model Choice for the U.S. GNP Series
Returning to the analysis of the U.S. GNP data presented in Example 3.30 and
Example 3.31, recall that two models, an AR(1) and an MA(2), fit the GNP growth
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Fig. 3.19. A perfect fit and a terrible forecast.

rate well. To choose the final model, we compare the AIC, the AICc, and the BIC
for both models. These values are a byproduct of the sarima runs displayed at the
end of Example 3.30, but for convenience, we display them again here (recall the
growth rate data are in gnpgr):
sarima(gnpgr, 1, 0, 0) # AR(1)
$AIC: -8.294403 $AICc: -8.284898 $BIC: -9.263748

sarima(gnpgr, 0, 0, 2) # MA(2)
$AIC: -8.297693 $AICc: -8.287854 $BIC: -9.251711

The AIC and AICc both prefer the MA(2) fit, whereas the BIC prefers the
simpler AR(1) model. It is often the case that the BIC will select a model of smaller
order than the AIC or AICc. In this case, it is reasonable to retain the AR(1) because
pure autoregressive models are easier to work with.

3.9 Regression with Autocorrelated Errors

In §2.2, we covered the classical regression model with uncorrelated errors wt . In
this section, we discuss the modifications that might be considered when the errors
are correlated. That is, consider the regression model

yt = β1zt1 + · · · + βr ztr + xt =
r∑
j=1

β j zt j + xt (3.79)

where xt is a processwith some covariance function γx (s, t). In ordinary least squares,
the assumption is that xt is white Gaussian noise, in which case γx (s, t) = 0 for s , t
and γx (t, t) = σ2, independent of t. If this is not the case, then weighted least squares
should be used.10

10 Write the model in vector notation as yyy = Zβββ + xxx, and let Γ = {γx (s, t) }. Then Γ−1/2yyy = Γ−1/2Zβββ +
Γ−1/2xxx, so that we can write the model as yyy∗ = Z∗βββ + δδδ, where the covariance matrix of δδδ is the
identity. It follows that the weighted estimate of βββ is β̂ββw = (Z′Γ−1Z)−1Z′Γ−1yyy, and the variance-
covariance matrix of the estimator is var(β̂ββw ) = (Z′Γ−1Z)−1. If xt is white noise, then Γ = σ2I and
these results reduce to the usual least squares results.
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In the time series case, it is often possible to assume a stationary covariance
structure for the error process xt that corresponds to a linear process and try to find
an ARMA representation for xt . For example, if we have a pure AR(p) error, then

φ(B)xt = wt,

and φ(B) = 1 − φ1B − · · · − φpBp is the linear transformation that, when applied to
the error process, produces the white noise wt . Multiplying the regression equation
through by the transformation φ(B) yields,

φ(B)yt︸  ︷︷  ︸
y∗t

=

r∑
j=1

β j φ(B)zt j︸   ︷︷   ︸
z∗t j

+ φ(B)xt︸  ︷︷  ︸
wt

,

and we are back to the linear regression model where the observations have been
transformed so that y∗t = φ(B)yt is the dependent variable, z∗t j = φ(B)zt j for j =
1, . . . , r , are the independent variables, but the βs are the same as in the original
model. For example, if p = 1, then y∗t = yt − φyt−1 and z∗t j = zt j − φzt−1, j .

In the AR case, we may set up the least squares problem as minimizing the error
sum of squares

S(φφφ, βββ) =
n∑
t=1

w2
t =

n∑
t=1

[
φ(B)yt −

r∑
j=1

β jφ(B)zt j
]2

with respect to all the parameters, φφφ = {φ1, . . . , φp } and βββ = {β1, . . . , βr }. Of course,
this is done using numerical methods.

If the error process is ARMA(p, q), i.e., φ(B)xt = θ(B)wt , then in the above dis-
cussion, we transform by π(B)xt = wt , where, recalling (3.16), π(B) = θ(B)−1φ(B).
In this case the error sum of squares also depends on θθθ = {θ1, . . . , θq }:

S(φφφ, θθθ, βββ) =
n∑
t=1

w2
t =

n∑
t=1

[
π(B)yt −

r∑
j=1

β jπ(B)zt j
]2

At this point, the main problem is that we do not typically know the behavior
of the noise xt prior to the analysis. An easy way to tackle this problem was first
presented in Cochrane and Orcutt (1949), and with the advent of cheap computing is
modernized below:

(i) First, run an ordinary regression of yt on zt1, . . . , ztr (acting as if the errors are
uncorrelated). Retain the residuals, x̂t = yt −

∑r
j=1 β̂ j zt j .

(ii) Identify ARMA model(s) for the residuals x̂t .
(iii) Run weighted least squares (or MLE) on the regression model with autocorre-

lated errors using the model specified in step (ii).
(iv) Inspect the residuals ŵt for whiteness, and adjust the model if necessary.
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Fig. 3.20. Sample ACF and PACF of the mortality residuals indicating an AR(2) process.

Example 3.35 Mortality, Temperature and Pollution
We consider the analyses presented in Example 2.2, relating mean adjusted tem-
perature Tt , and particulate levels Pt to cardiovascular mortality Mt . We consider
the regression model

Mt = β1 + β2t + β3Tt + β4T2
t + β5Pt + xt, (3.80)

where, for now, we assume that xt is white noise. The sample ACF and PACF of
the residuals from the ordinary least squares fit of (3.80) are shown in Figure 3.20,
and the results suggest an AR(2) model for the residuals.

Our next step is to fit the correlated error model (3.80), but where xt is AR(2),

xt = φ1xt−1 + φ2xt−2 + wt

and wt is white noise. The model can be fit using the arima function as follows
(partial output shown).
trend = time(cmort); temp = tempr - mean(tempr); temp2 = temp^2
fit = lm(cmort~trend + temp + temp2 + part, na.action=NULL)
acf2(resid(fit), 52) # implies AR2
sarima(cmort, 2,0,0, xreg=cbind(trend,temp,temp2,part))
Coefficients:

ar1 ar2 intercept trend temp temp2 part
0.3848 0.4326 80.2116 -1.5165 -0.0190 0.0154 0.1545

s.e. 0.0436 0.0400 1.8072 0.4226 0.0495 0.0020 0.0272
sigma^2 estimated as 26.01: loglikelihood = -1549.04, aic = 3114.07

The residual analysis output from sarima (not shown) shows no obvious departure
of the residuals from whiteness.
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3.10 Seasonal ARIMAModels

In this section, we introduce several modifications made to the ARIMA model to
account for seasonal and nonstationary behavior. Often, the dependence on the past
tends to occur most strongly at multiples of some underlying seasonal lag s. For
example, with monthly economic data, there is a strong yearly component occurring
at lags that are multiples of s = 12, because of the strong connections of all activity
to the calendar year. Data taken quarterly will exhibit the yearly repetitive period at
s = 4 quarters. Natural phenomena such as temperature also have strong components
corresponding to seasons. Hence, the natural variability of many physical, biological,
and economic processes tends to match with seasonal fluctuations. Because of this,
it is appropriate to introduce autoregressive and moving average polynomials that
identify with the seasonal lags. The resulting pure seasonal autoregressive moving
average model, say, ARMA(P,Q)s , then takes the form

ΦP (Bs)xt = ΘQ (Bs)wt, (3.81)

where the operators

ΦP (Bs) = 1 −Φ1Bs −Φ2B2s − · · · −ΦPBPs (3.82)

and
ΘQ (Bs) = 1 +Θ1Bs +Θ2B2s + · · · +ΘQBQs (3.83)

are the seasonal autoregressive operator and the seasonal moving average opera-
tor of orders P and Q, respectively, with seasonal period s.

Analogous to the properties of nonseasonal ARMA models, the pure seasonal
ARMA(P,Q)s is causal only when the roots ofΦP (zs) lie outside the unit circle, and
it is invertible only when the roots of ΘQ (zs) lie outside the unit circle.

Example 3.36 A Seasonal AR Series
A first-order seasonal autoregressive series that might run over months could be
written as

(1 −ΦB12)xt = wt

or
xt =Φxt−12 + wt .

This model exhibits the series xt in terms of past lags at the multiple of the yearly
seasonal period s = 12 months. It is clear from the above form that estimation and
forecasting for such a process involves only straightforward modifications of the
unit lag case already treated. In particular, the causal condition requires |Φ| < 1.

We simulated 3 years of data from the model with Φ = .9, and exhibit the
theoretical ACF and PACF of the model. See Figure 3.21.
set.seed(666)
phi = c(rep(0,11),.9)
sAR = arima.sim(list(order=c(12,0,0), ar=phi), n=37)
sAR = ts(sAR, freq=12)
layout(matrix(c(1,2, 1,3), nc=2))
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Fig. 3.21. Data generated from a seasonal (s = 12) AR(1), and the true ACF and PACF of the
model xt = .9xt−12 + wt .

par(mar=c(3,3,2,1), mgp=c(1.6,.6,0))
plot(sAR, axes=FALSE, main='seasonal AR(1)', xlab="year", type='c')
Months = c("J","F","M","A","M","J","J","A","S","O","N","D")
points(sAR, pch=Months, cex=1.25, font=4, col=1:4)
axis(1, 1:4); abline(v=1:4, lty=2, col='#cccccc')
axis(2); box()
ACF = ARMAacf(ar=phi, ma=0, 100)
PACF = ARMAacf(ar=phi, ma=0, 100, pacf=TRUE)
plot(ACF,type="h", xlab="lag", ylim=c(-.1,1)); abline(h=0)
plot(PACF, type="h", xlab="lag", ylim=c(-.1,1)); abline(h=0)

For the first-order seasonal (s = 12) MA model, xt = wt + Θwt−12, it is easy to
verify that

γ(0) = (1 +Θ2)σ2

γ(±12) = Θσ2

γ(h) = 0, otherwise.

Thus, the only nonzero correlation, aside from lag zero, is

ρ(±12) = Θ/(1 +Θ2).

For the first-order seasonal (s = 12) AR model, using the techniques of the
nonseasonal AR(1), we have
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Table 3.3. Behavior of the ACF and PACF for Pure SARMA Models

AR(P)s MA(Q)s ARMA(P,Q)s
ACF* Tails off at lags ks, Cuts off after Tails off at

k = 1, 2, . . . , lag Qs lags ks

PACF* Cuts off after Tails off at lags ks Tails off at
lag Ps k = 1, 2, . . . , lags ks

*The values at nonseasonal lags h , ks, for k = 1, 2, . . ., are zero.

γ(0) = σ2/(1 −Φ2)
γ(±12k) = σ2Φk/(1 −Φ2) k = 1, 2, . . .

γ(h) = 0, otherwise.

In this case, the only non-zero correlations are

ρ(±12k) =Φk, k = 0, 1, 2, . . . .

These results can be verified using the general result that γ(h) = Φγ(h − 12), for
h ≥ 1. For example, when h = 1, γ(1) = Φγ(11), but when h = 11, we have
γ(11) = Φγ(1), which implies that γ(1) = γ(11) = 0. In addition to these results,
the PACF have the analogous extensions from nonseasonal to seasonal models. These
results are demonstrated in Figure 3.21.

As an initial diagnostic criterion, we can use the properties for the pure seasonal
autoregressive and moving average series listed in Table 3.3. These properties may
be considered as generalizations of the properties for nonseasonal models that were
presented in Table 3.1.

In general, we can combine the seasonal and nonseasonal operators into a multi-
plicative seasonal autoregressive moving average model, denoted by ARMA(p, q) ×
(P,Q)s , and write

ΦP (Bs)φ(B)xt = ΘQ (Bs)θ(B)wt (3.84)

as the overall model. Although the diagnostic properties in Table 3.3 are not strictly
true for the overall mixed model, the behavior of the ACF and PACF tends to show
rough patterns of the indicated form. In fact, for mixed models, we tend to see a
mixture of the facts listed in Table 3.1 and Table 3.3. In fitting such models, focusing
on the seasonal autoregressive and moving average components first generally leads
to more satisfactory results.

Example 3.37 A Mixed Seasonal Model
Consider an ARMA(0, 1) × (1, 0)12 model

xt =Φxt−12 + wt + θwt−1,

where |Φ| < 1 and |θ | < 1. Then, because xt−12, wt , and wt−1 are uncorrelated, and
xt is stationary, γ(0) =Φ2γ(0) + σ2

w + θ
2σ2

w, or
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Fig. 3.22. ACF and PACF of the mixed seasonal ARMA model xt = .8xt−12 + wt − .5wt−1.

γ(0) =
1 + θ2

1 −Φ2 σ
2
w .

In addition, multiplying the model by xt−h , h > 0, and taking expectations, we have
γ(1) = Φγ(11) + θσ2

w , and γ(h) = Φγ(h − 12), for h ≥ 2. Thus, the ACF for this
model is

ρ(12h) = Φh h = 1, 2, . . .

ρ(12h − 1) = ρ(12h + 1) =
θ

1 + θ2Φ
h h = 0, 1, 2, . . . ,

ρ(h) = 0, otherwise.

The ACF and PACF for this model, with Φ = .8 and θ = −.5, are shown in
Figure 3.22. These type of correlation relationships, although idealized here, are
typically seen with seasonal data.

To reproduce Figure 3.22 in R, use the following commands:
phi = c(rep(0,11),.8)
ACF = ARMAacf(ar=phi, ma=-.5, 50)[-1] # [-1] removes 0 lag
PACF = ARMAacf(ar=phi, ma=-.5, 50, pacf=TRUE)
par(mfrow=c(1,2))
plot(ACF, type="h", xlab="lag", ylim=c(-.4,.8)); abline(h=0)
plot(PACF, type="h", xlab="lag", ylim=c(-.4,.8)); abline(h=0)

Seasonal persistence occurs when the process is nearly periodic in the season. For
example, with average monthly temperatures over the years, each January would be
approximately the same, each February would be approximately the same, and so on.
In this case, we might think of average monthly temperature xt as being modeled as

xt = St + wt,

where St is a seasonal component that varies a little from one year to the next,
according to a random walk,
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St = St−12 + vt .

In this model, wt and vt are uncorrelated white noise processes. The tendency of data
to follow this type of model will be exhibited in a sample ACF that is large and decays
very slowly at lags h = 12k, for k = 1, 2, . . . . If we subtract the effect of successive
years from each other, we find that

(1 − B12)xt = xt − xt−12 = vt + wt − wt−12.

This model is a stationary MA(1)12, and its ACF will have a peak only at lag 12.
In general, seasonal differencing can be indicated when the ACF decays slowly at
multiples of some season s, but is negligible between the periods. Then, a seasonal
difference of order D is defined as

∇Ds xt = (1 − Bs)D xt, (3.85)

where D = 1, 2, . . ., takes positive integer values. Typically, D = 1 is sufficient to
obtain seasonal stationarity. Incorporating these ideas into a general model leads to
the following definition.

Definition 3.8 The multiplicative seasonal autoregressive integrated moving aver-
age model, or SARIMA model is given by

ΦP (Bs)φ(B)∇Ds ∇
dxt = δ +ΘQ (Bs)θ(B)wt, (3.86)

where wt is the usual Gaussian white noise process. The general model is denoted
as ARIMA(p, d, q) × (P, D,Q)s . The ordinary autoregressive and moving average
components are represented by polynomials φ(B) and θ(B) of orders p and q,
respectively, and the seasonal autoregressive and moving average components by
ΦP (Bs) and ΘQ (Bs) of orders P and Q and ordinary and seasonal difference
components by ∇d = (1 − B)d and ∇Ds = (1 − Bs)D .

Example 3.38 An SARIMAModel
Consider the following model, which often provides a reasonable representation
for seasonal, nonstationary, economic time series. We exhibit the equations for the
model, denoted by ARIMA(0, 1, 1) × (0, 1, 1)12 in the notation given above, where
the seasonal fluctuations occur every 12 months. Then, with δ = 0, the model (3.86)
becomes

∇12∇xt = Θ(B12)θ(B)wt

or
(1 − B12)(1 − B)xt = (1 +ΘB12)(1 + θB)wt . (3.87)

Expanding both sides of (3.87) leads to the representation

(1 − B − B12 + B13)xt = (1 + θB +ΘB12 +ΘθB13)wt,

or in difference equation form
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Fig. 3.23. R data set AirPassengers, which are the monthly totals of international airline
passengers x, and the transformed data: lx = log xt , dlx = ∇ log xt , and ddlx = ∇12∇ log xt .

xt = xt−1 + xt−12 − xt−13 + wt + θwt−1 +Θwt−12 +Θθwt−13.

Note that the multiplicative nature of the model implies that the coefficient of wt−13
is the product of the coefficients of wt−1 and wt−12 rather than a free parameter.
The multiplicative model assumption seems to work well with many seasonal time
series data sets while reducing the number of parameters that must be estimated.

Selecting the appropriatemodel for a given set of data from all of those represented
by the general form (3.86) is a daunting task, and we usually think first in terms of
finding difference operators that produce a roughly stationary series and then in terms
of finding a set of simple autoregressive moving average or multiplicative seasonal
ARMA to fit the resulting residual series. Differencing operations are applied first,
and then the residuals are constructed from a series of reduced length. Next, the ACF
and the PACF of these residuals are evaluated. Peaks that appear in these functions
can often be eliminated by fitting an autoregressive or moving average component
in accordance with the general properties of Table 3.1 and Table 3.3. In considering
whether the model is satisfactory, the diagnostic techniques discussed in §3.8 still
apply.
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Example 3.39 Air Passengers
We consider the R data set AirPassengers, which are the monthly totals of interna-
tional airline passengers, 1949 to 1960, taken from Box & Jenkins (1970). Various
plots of the data and transformed data are shown in Figure 3.23 and were obtained
as follows:
x = AirPassengers
lx = log(x); dlx = diff(lx); ddlx = diff(dlx, 12)
plot.ts(cbind(x,lx,dlx,ddlx), main="")
# of interest for showing seasonal RW (not shown here):
dev.new()
par(mfrow=c(2,1), mar=c(3,3,1,1), mgp=c(1.6,.6,0))
monthplot(dlx)
monthplot(ddlx)

Note that x is the original series, which shows trend plus increasing variance. The
logged data are in lx, and the transformation stabilizes the variance. The logged data
are then differenced to remove trend, and are stored in dlx. It is clear the there is still
persistence in the seasons (i.e., dlxt ≈ dlxt−12), so that a twelfth-order difference
is applied and stored in ddlx. The transformed data appears to be stationary and we
are now ready to fit a model.

The sample ACF and PACF of ddlx (∇12∇ log xt ) are shown in Figure 3.24.
The R code is:
acf2(ddlx,50)

Between Seasons: It appears that at the seasons, the ACF is cutting off a lag 1s
(s = 12), whereas the PACF is tailing off at lags 1s, 2s, 3s, 4s, . . . . These results
implies an SMA(1), P = 0, Q = 1, in the season (s = 12).
Within Seasons: Inspecting the sample ACF and PACF at the lower lags, it appears
as though both are tailing off. This suggests an ARMA(1, 1) within the seasons,
p = q = 1.

Thus, we first try an ARIMA(1, 1, 1) × (0, 1, 1)12 on the logged data:
sarima(lx, 1,1,1, 0,1,1,12)
Coefficients:

ar1 ma1 sma1
0.1960 -0.5784 -0.5643

s.e. 0.2475 0.2132 0.0747
sigma^2 estimated as 0.001341
$AIC -5.5726 $AICc -5.556713 $BIC -6.510729

However, the AR parameter is not significant, so we should try dropping one
parameter from thewithin seasons part. In this case,we try both anARIMA(0, 1, 1)×
(0, 1, 1)12 and an ARIMA(1, 1, 0) × (0, 1, 1)12 model:
sarima(lx, 0,1,1, 0,1,1,12)
Coefficients:

ma1 sma1
-0.4018 -0.5569

s.e. 0.0896 0.0731
sigma^2 estimated as 0.001348
$AIC -5.58133 $AICc -5.56625 $BIC -6.540082
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Fig. 3.24. Sample ACF and PACF of ddlx (∇12∇ log xt ).

sarima(lx, 1,1,0, 0,1,1,12)
Coefficients:

ar1 sma1
-0.3395 -0.5619

s.e. 0.0822 0.0748
sigma^2 estimated as 0.001367
$AIC -5.567081 $AICc -5.552002 $BIC -6.525834

All information criteria prefer the ARIMA(0, 1, 1) × (0, 1, 1)12 model, which is the
model displayed in (3.87). The residual diagnostics are shown in Figure 3.25, and
except for one or two outliers, the model seems to fit well.

Finally, we forecast the logged data out twelve months, and the results are shown
in Figure 3.26.
sarima.for(lx, 12, 0,1,1, 0,1,1,12)

Example 3.40 Regression with Lagged Variables (cont)
In Example 2.8 we fit the model

Rt = β1 + β2St−6 + β3Dt−6 + β4Dt−6 St−6 + wt,

where Rt is Recruitment, St is SOI, and Dt is a dummy variable that is 0 if St < 0
and 1 otherwise. However, residual analysis indicates that the residuals are not white
noise. The sample (P)ACF of the residuals indicates that an AR(2) model might
be appropriate, which is similar to the results of Example 3.35. Additional analysis
suggests that at seasonal model might be needed, and after some investigation, we
settled on an SARIMA(2, 0, 0) × (2, 0, 0)12 model for the residuals. Both AIC and
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Fig. 3.25. Residual analysis for the ARIMA(0, 1, 1) × (0, 1, 1)12 fit to the logged air passengers
data set.

BIC confirm that this model is the the best. We only display the results of the final
model for this example, but the code to carry out the complete analysis is listed
below.
dummy=ifelse(soi<0,0,1)
fish=ts.intersect(rec,soiL6=lag(soi,-6),dL6=lag(dummy,-6),dframe=TRUE)
summary(fit<-lm(rec~soiL6*dL6, data=fish, na.action=NULL))
attach(fish)
plot(resid(fit))
acf2(resid(fit)) # indicates AR(2)
(fit1 = sarima(rec,2,0,0, xreg=cbind(soiL6,dL6,I(soiL6*dL6))))
acf2(resid(fit1)) # indicates seasonal AR
# try seasonal AR order 1 and then 2, which appears to be best
(fit2 = sarima(rec,2,0,0,1,0,0,12,xreg=cbind(soiL6,dL6,I(soiL6*dL6))))
(fit3 = sarima(rec,2,0,0,2,0,0,12,xreg=cbind(soiL6,dL6,I(soiL6*dL6))))
Coefficients: (rounded)

ar1 ar2 sar1 sar2 intrcpt soiL6 dL6 I(soiL6*dL6)
1.349 -0.444 0.114 0.15 64 8.4 -2.25 -8.3

s.e. 0.044 0.045 0.047 0.05 6 2.2 0.95 2.9
sigma^2 estimated as 83.75: log likelihood = -1625.53, aic = 3269.07
$AIC $AICc $BIC
[1] 5.463671 [1] 5.469067 [1] 4.537095
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Fig. 3.26. Twelve month forecast using the ARIMA(0, 1, 1) × (0, 1, 1)12 model on the logged
air passenger data set.

Problems

3.1 For an MA(1), xt = wt + θwt−1, show that |ρx (1) | ≤ 1/2 for any number θ. For
which values of θ does ρx (1) attain its maximum and minimum?

3.2 Let {wt ; t = 0, 1, . . . } be a white noise process with variance σ2
w and let |φ| < 1

be a constant. Consider the process x0 = w0, and

xt = φxt−1 + wt, t = 1, 2, . . . .

We might use this method to simulate an AR(1) process from simulated white noise.

(a) Show that xt =
∑t

j=0 φ
jwt−j for any t = 0, 1, . . . .

(b) Find the E(xt ).
(c) Show that, for t = 0, 1, . . .,11

var(xt ) =
σ2
w

1 − φ2 (1 − φ2(t+1))

(d) Show that, for h ≥ 0,12

cov(xt+h, xt ) = φhvar(xt )

(e) Is xt stationary?
(f) Argue that, as t → ∞, the process becomes stationary, so in a sense, xt is

“asymptotically stationary."
(g) Comment on how you could use these results to simulate n observations of a

stationary Gaussian AR(1) model from simulated iid N(0,1) values.
(h) Now suppose x0 = w0/

√
1 − φ2. Is this process stationary? Hint: Show var(xt ) is

constant.

11 ∑k
j=0 a

j = (1 − ak+1)/(1 − a) for |a | , 1
12 Use footnote 1 to write xt+h in terms of xt and other stuff.
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3.3 Using Example 3.6 as a guide, identify the following models as ARMA(p, q)
models (watch out for parameter redundancy), and determine whether they are causal
and/or invertible. If the model is causal, use R to find the first 10 ψ-weights, and if
the model is invertible, use R to find the first 10 π-weights.

(a) xt = .80xt−1 − .15xt−2 + wt − .30wt−1.
(b) xt = xt−1 − .50xt−2 + wt − wt−1.

3.4 For the AR(2) model given by xt = −.9xt−2 + wt , follow the R code in Exam-
ple 3.11 to find the roots of the autoregressive polynomial, find the pseudo period of
the process, and then plot the theoretical ACF, ρ(h).

3.5 (a) Compare the theoretical ACF and PACF of an ARMA(1, 1), an ARMA(1, 0),
and an ARMA(0, 1) series by plotting the ACFs and PACFs of the three series for
φ = .6, θ = .9. Comment on the capability of the ACF and PACF to determine
the order of the models. Hint: See the code for Example 3.13.

(b) Use arima.sim to generate n = 100 observations from each of the three models
discussed in (a). Compute the sample ACFs and PACFs for each model and
compare it to the theoretical values. How do the results compare with the general
results given in Table 3.1?

(c) Repeat (b) but with n = 500. Comment.

3.6 Let ct be the cardiovascular mortality series (cmort) discussed in Chapter 2,
Example 2.2 and let xt = ∇ct be the differenced data.

(a) Plot xt and compare it to the actual data plotted in Figure 2.2. Why does differ-
encing seem reasonable in this case?

(b) Calculate and plot the sample ACF and PACF of xt and using Table 3.1, argue
that an AR(1) is appropriate for xt .

(c) Fit an AR(1) to xt using maximum likelihood (basically unconditional least
squares) as in Section 3.6. The easiest way to do this is to use sarima from astsa.
Comment on the significance of the regression parameter estimates of the model.
What is the estimate of the white noise variance?

(d) Examine the residuals and comment on whether or not you think the residuals are
white.

(e) Assuming the fitted model is the true model, find the forecasts over a four-week
horizon, xnn+m, for m = 1, 2, 3, 4, and the corresponding 95% prediction intervals;
n = 508 here. The easiest way to do this is to use sarima.for from astsa.

(f) Show how the values obtained in part (e) were calculated.
(g) What is the one-step-ahead forecast of the actual value of cardiovascularmortality;

i.e., what is cn
n+1?

3.7 For an AR(1) model, determine the general form of the m-step-ahead forecast
xnn+m and show

E[(xn+m − xnn+m)2] = σ2
w

1 − φ2m

1 − φ2 .
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110 3 ARIMA Models

3.8 Repeat the following numerical exercise five times. Generate n = 100 iid N(0, 1)
observations. Fit an ARMA(1, 1) model to the data. Compare the parameter estimates
in each case and explain the results.

3.9 Generate 10 realizations of length n = 200 each of an ARMA(1,1) process with
φ = .9, θ = .5 and σ2 = 1. Find the MLEs of the three parameters in each case and
compare the estimators to the true values.

3.10 Using Example 3.19 as your guide, find the Gauss–Newton procedure for es-
timating the autoregressive parameter, φ, from the AR(1) model, xt = φxt−1 + wt ,
given data x1, . . . , xn. Does this procedure produce the unconditional or the condi-
tional estimator? Hint:Write the model as wt (φ) = xt − φxt−1; your solution should
work out to be a non-recursive procedure.

3.11 Verify that the IMA(1,1) model given in (3.72) can be inverted and written as
(3.73).

3.12 For the logarithmof the glacial varve data, say, xt , presented in Example 3.20, use
the first 100 observations and calculate the EWMA, xn

n+1, discussed in Example 3.29,
for n = 1, . . . , 100, using λ = .25, .50, and .75, and plot the EWMAs and the data
superimposed on each other. Comment on the results.

3.13 Crude oil prices in dollars per barrel are in oil; see Appendix R for more details.
Fit an ARIMA(p, d, q) model to the growth rate performing all necessary diagnostics.
Comment.

3.14 Fit an ARIMA(p, d, q) model to the global temperature data gtemp2 in astsa
performing all of the necessary diagnostics. After deciding on an appropriate model,
forecast (with limits) the next 10 years. Comment.

3.15 One of the series collected along with particulates, temperature, and mortality
described in Example 2.2 is the sulfur dioxide series, so2. Fit an ARIMA(p, d, q)
model to the data, performing all of the necessary diagnostics. After deciding on an
appropriate model, forecast the data into the future four time periods ahead (about
one month) and calculate 95% prediction intervals for each of the four forecasts.
Comment.

3.16 Let St represent the monthly sales data in sales (n = 150), and let Lt be the
leading indicator in lead.

(a) Fit an ARIMA model to St , the monthly sales data. Discuss your model fitting
in a step-by-step fashion, presenting your (A) initial examination of the data, (B)
transformations, if necessary, (C) initial identification of the dependence orders
and degree of differencing, (D) parameter estimation, (E) residual diagnostics and
model choice.

(b) Use the CCF and lag plots between ∇St and ∇Lt to argue that a regression of ∇St
on ∇Lt−3 is reasonable. [Note: In lag2.plot(), the first named series is the one
that gets lagged.]
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(c) Fit the regression model ∇St = β0+ β1∇Lt−3+ xt , where xt is an ARMA process
(explain how you decided on your model for xt ). Discuss your results. R help: If
you have to work with various transformations of series in x and y, first align the
data:
dog = ts.intersect( lag(x,-11), diff(y,97) )
xnew = dog[,1] # dog has 2 columns, the first is lag(x,-11) ...
ynew = dog[,2] # ... and the second column is diff(y,97)
plot(dog) # now you can manipulate xnew and ynew simultaneously
lag2.plot(xnew, ynew, 5)

3.17 Redo Problem 2.2 without assuming the error term is white noise.

3.18 Plot the theoretical ACF of the seasonal ARIMA(0, 1) × (1, 0)12 model with
Φ = .8 and θ = .5 out to lag 50.

3.19 Fit a seasonal ARIMA model of your choice to the unemployment data, unemp.
Use the estimated model to forecast the next 12 months.

3.20 Fit a seasonal ARIMAmodel of your choice to the U.S. Live Birth Series, birth.
Use the estimated model to forecast the next 12 months.

3.21 Fit an appropriate seasonal ARIMA model to the log-transformed Johnson and
Johnson earnings series (jj) of Example 1.1. Use the estimated model to forecast the
next 4 quarters.
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Chapter 4

Spectral Analysis and Filtering

4.1 Introduction

The cyclic behavior of data is the focus of this chapter. For example, in the Johnson &
Johnson data set in Figure 1.1, the predominant frequency of oscillation is one cycle
per year (4 quarters), or .25 cycles per observation. The predominant frequency in
the SOI and fish populations series in Figure 1.5 is also one cycle per year, but this
corresponds to 1 cycle every 12months, or .083 cycles per observation. For simplicity,
we measure frequency, ω, at cycles per time point and discuss the implications of
certain frequencies in terms of the problem context. Of descriptive interest is the
period of a time series, defined as the number of points in a cycle, i.e., 1/ω. Hence,
the predominant period of the Johnson & Johnson series is 1/.25 or 4 quarters per
cycle, whereas the predominant period of the SOI series is 12 months per cycle. As
stated in the Preface, complex numbers (a pdf) may be helpful for this chapter.

4.2 Periodicity and Cyclical Behavior

We have already encountered the notion of periodicity in numerous examples in
Chapters 1, 2 and 3. The general notion of periodicity can be made more precise by
introducing some terminology. In order to define the rate at which a series oscillates,
we first define a cycle as one complete period of a sine or cosine function defined
over a unit time interval. As in (1.5), we consider the periodic process

xt = A cos(2πωt + φ) (4.1)

for t = 0,±1,±2, . . ., where ω is a frequency index, defined in cycles per unit time
with A determining the height or amplitude of the function and φ, called the phase,
determining the start point of the cosine function. We can introduce random variation
in this time series by allowing the amplitude and phase to vary randomly.

As discussed in Example 2.9, for purposes of data analysis, it is easier to use a
trigonometric identity1 and write (4.1) as

1 cos(α ± β) = cos(α) cos(β) ∓ sin(α) sin(β).

http://tutorial.math.lamar.edu/pdf/Complex/ComplexNumbers.pdf


i
i

“tsa3EZ” — 2015/12/26 — 11:53 — page 113 — #119 i
i

i
i

i
i
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xt = U1 cos(2πωt) +U2 sin(2πωt), (4.2)

where U1 = A cos φ and U2 = −A sin φ are often taken to be normally distributed
random variables. In this case, the amplitude is A =

√
(U2

1 + U2
2 ) and the phase is

φ = tan−1(−U2/U1). From these facts we can show that if, and only if, in (4.1), A
and φ are independent random variables, where A2 is chi-squared with 2 degrees of
freedom, and φ is uniformly distributed on (−π, π), then U1 and U2 are independent,
standard normal random variables.

If we assume that U1 and U2 are iid random variables with mean 0 and variance
σ2, then xt in (4.2) is stationary with mean E(xt ) = 0 and, writing ct = cos(2πωt)
and st = sin(2πωt), autocovariance function

γ(h) = cov(xt+h, xt ) = cov(U1ct+h +U2st+h,U1ct +U2st )
= cov(U1ct+h,U1ct ) + cov(U1ct+h,U2st )
+ cov(U2st+h,U1ct ) + cov(U2st+h,U2st )

= σ2ct+hct + 0 + 0 + σ2st+hst = σ2 cos(2πωh),

(4.3)

using footnote 1 and noting that cov(U1,U2) = 0.
The random process in (4.2) is function of its frequency, ω. For ω = 1, the series

makes one cycle per time unit; for ω = .50, the series makes a cycle every two
time units; for ω = .25, every four units, and so on. In general, for data that occur
at discrete time points, we will need at least two points to determine a cycle, so the
highest frequency of interest is .5 cycles per point. This frequency is called the folding
frequency and defines the highest frequency that can be seen in discrete sampling.
Higher frequencies sampled this way will appear at lower frequencies, called aliases;
an example is the way a camera samples a rotating wheel on a moving automobile in
a movie, in which the wheel appears to be rotating at a different rate. For example,
movies are recorded at 24 frames per second. If the camera is filming a wheel that
is rotating at the rate of 24 cycles per second (or 24 Hertz), the wheel will appear to
stand still.

Consider a generalization of (4.2) that allows mixtures of periodic series with
multiple frequencies and amplitudes,

xt =
q∑

k=1
[Uk1 cos(2πωkt) +Uk2 sin(2πωkt)] , (4.4)

where Uk1,Uk2, for k = 1, 2, . . . , q, are independent zero-mean random variables
with variances σ2

k
, and the ωk are distinct frequencies. Notice that (4.4) exhibits the

process as a sum of independent components, with variance σ2
k
for frequency ωk .

As in (4.3), it is easy to show (Problem 4.2) that the autocovariance function of the
process is

γ(h) =
q∑

k=1
σ2
k cos(2πωkh), (4.5)

and we note the autocovariance function is the sum of periodic components with
weights proportional to the variances σ2

k
. Hence, xt is a mean-zero stationary pro-

cesses with variance
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Fig. 4.1. Periodic components and their sum as described in Example 4.1.

γ(0) = var(xt ) =
q∑

k=1
σ2
k, (4.6)

which exhibits the overall variance as a sum of variances of each of the component
parts.

Example 4.1 A Periodic Series
Figure 4.1 shows an example of the mixture (4.4) with q = 3 constructed in the
following way. First, for t = 1, . . . , 100, we generated three series

xt1 = 2 cos(2πt 6/100) + 3 sin(2πt 6/100)
xt2 = 4 cos(2πt 10/100) + 5 sin(2πt 10/100)
xt3 = 6 cos(2πt 40/100) + 7 sin(2πt 40/100)

These three series are displayed in Figure 4.1 along with the corresponding fre-
quencies and squared amplitudes. For example, the squared amplitude of xt1 is
A2 = 22 + 32 = 13. Hence, the maximum and minimum values that xt1 will attain
are ±

√
13 = ±3.61.

Finally, we constructed

xt = xt1 + xt2 + xt3

and this series is also displayed in Figure 4.1. We note that xt appears to behave
as some of the periodic series we saw in Chapters 1 and 2. The systematic sorting
out of the essential frequency components in a time series, including their relative
contributions, constitutes one of the main objectives of spectral analysis.

The R code to reproduce Figure 4.1 is
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x1 = 2*cos(2*pi*1:100*6/100) + 3*sin(2*pi*1:100*6/100)
x2 = 4*cos(2*pi*1:100*10/100) + 5*sin(2*pi*1:100*10/100)
x3 = 6*cos(2*pi*1:100*40/100) + 7*sin(2*pi*1:100*40/100)
x = x1 + x2 + x3
par(mfrow=c(2,2))
plot.ts(x1, ylim=c(-10,10), main=expression(omega==6/100~~~A^2==13))
plot.ts(x2, ylim=c(-10,10), main=expression(omega==10/100~~~A^2==41))
plot.ts(x3, ylim=c(-10,10), main=expression(omega==40/100~~~A^2==85))
plot.ts(x, ylim=c(-16,16), main="sum")

Themodel given in (4.4), alongwith its autocovariance given (4.5), is a population
construct. If the model is correct, our next step would be to estimate the variances σ2

k
and frequencies ωk that form the model (4.4). In the next example, we consider the
problem of estimation of these quantities.

Example 4.2 Estimation and the Periodogram
For any time series sample x1, . . . , xn, where n is odd, we may write, exactly

xt = a0 +

(n−1)/2∑
j=1

[
a j cos(2πt j/n) + bj sin(2πt j/n)

]
, (4.7)

for t = 1, . . . , n and suitably chosen coefficients. If n is even, the representation
(4.7) can be modified by summing to (n/2−1) and adding an additional component
given by an/2 cos(2πt 1

2 ) = an/2(−1)t . The crucial point here is that (4.7) is exact
for any sample. Hence (4.4) may be thought of as an approximation to (4.7), the
idea being that many of the coefficients in (4.7) may be close to zero.

Using the regression results from Chapter 2, the coefficients a j and bj are of the
form

∑n
t=1 xt zt j/

∑n
t=1 z2

t j , where zt j is either cos(2πt j/n) or sin(2πt j/n). Using
Problem 4.20,

∑n
t=1 z2

t j = n/2 when j/n , 0, 1/2, so the regression coefficients in
(4.7) can be written as

a j =
2
n

n∑
t=1

xt cos(2πt j/n) and bj =
2
n

n∑
t=1

xt sin(2πt j/n).

We then define the scaled periodogram to be

P( j/n) = a2
j + b2

j, (4.8)

because it indicates which frequency components in (4.7) are large in magnitude
and which components are small. The scaled periodogram is the estimate of σ2

j
corresponding to the sinusoid oscillating at a frequency of ω j = j/n, or j cycles in
n time points. These particular frequencies are called the Fourier or fundamental
frequencies. Large values of P( j/n) indicate which frequencies ω j = j/n are
predominant in the series, whereas small values of P( j/n) may be associated with
noise.

It is not necessary to run a large regression to obtain the values of a j and bj

because they can be computed quickly if n is a highly composite integer. Although
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Fig. 4.2. Periodogram of the data generated in Example 4.1.

we will discuss it in more detail in §4.4, the discrete Fourier transform (DFT) is a
complex-valued weighted average of the data given by2

d( j/n) = n−1/2
n∑
t=1

xt exp(−2πit j/n)

= n−1/2 *
,

n∑
t=1

xt cos(2πt j/n) − i
n∑
t=1

xt sin(2πt j/n)+
-
,

(4.9)

for j = 0, 1, . . . , n − 1, where the frequencies j/n are called the Fourier or funda-
mental frequencies. Because of a large number of redundancies in the calculation,
(4.9) may be computed quickly using the fast Fourier transform (FFT). Note that

|d( j/n) |2 =
1
n

*
,

n∑
t=1

xt cos(2πt j/n)+
-

2

+
1
n

*
,

n∑
t=1

xt sin(2πt j/n)+
-

2

(4.10)

and it is this quantity that is called the periodogram. We may calculate the scaled
periodogram, (4.8), using the periodogram as

P( j/n) =
4
n
|d( j/n) |2. (4.11)

The scaled periodogram of the data, xt , simulated in Example 4.1 is shown in
Figure 4.2, and it clearly identifies the three components xt1, xt2, and xt3 of xt .
Note that

P( j/n) = P(1 − j/n), j = 0, 1, . . . , n − 1,
so there is a mirroring effect at the folding frequency of 1/2; consequently, the peri-
odogram is typically not plotted for frequencies higher than the folding frequency.
In addition, note that the heights of the scaled periodogram shown in the figure are

2 Useful information: Euler’s formula: eiα = cos(α) + i sin(α). Consequently, cos(α) = eiα+e−iα

2 ,
and sin(α) = eiα−e−iα

2i . Also, 1
i = −i because −i × i = 1. If z = a + ib is complex, then |z |2 = zz =

(a + ib)(a − ib) = a2 + b2.
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P( 6
100 ) = P( 94

100 ) = 13, P( 10
100 ) = P( 90

100 ) = 41, P( 40
100 ) = P( 60

100 ) = 85,

and P( j/n) = 0 otherwise. These are exactly the values of the squared amplitudes
of the components generated in Example 4.1. This outcome suggests that the peri-
odogram may provide some insight into the variance components, (4.6), of a real
set of data.

Assuming the simulated data, x, were retained from the previous example, the
R code to reproduce Figure 4.2 is
P = abs(2*fft(x)/100)^2; Fr = 0:99/100
plot(Fr, P, type="o", xlab="frequency", ylab="periodogram")

Different packages scale the FFT differently, so it is a good idea to consult the
documentation. R computes it without the factor n−1/2 and with an additional factor
of e2πiω j that can be ignored because we will be interested in the squared modulus.

If we consider the data xt in Example 4.1 as a color (waveform) made up of
primary colors xt1, xt2, xt3 at various strengths (amplitudes), then we might consider
the periodogram as a prism that decomposes the color xt into its primary colors
(spectrum). Hence the term spectral analysis.

The following is an example using actual data.

Example 4.3 Star Magnitude
The data in Figure 4.3 are the magnitude of a star taken at midnight for 600 consec-
utive days. The data are taken from the classic text, The Calculus of Observations,
a Treatise on Numerical Mathematics, by E.T. Whittaker and G. Robinson, (1923,
Blackie & Son, Ltd.).

The periodogram for frequencies less than .08 is also displayed in the figure;
the periodogram for frequencies higher than .08 are essentially zero. Note that the
29 day cycle and the 25 day cycle are the most prominent periodic components of
the data.

The R code to reproduce Figure 4.3 is
n = length(star)
par(mfrow=c(2,1), mar=c(3,3,1,1), mgp=c(1.6,.6,0))
plot(star, ylab="star magnitude", xlab="day")
Per = Mod(fft(star-mean(star)))^2/n
Freq = (1:n -1)/n
plot(Freq[1:50], Per[1:50], type='h', lwd=3, ylab="Periodogram",

xlab="Frequency")
u = which.max(Per[1:50]) # 22 freq=21/600=.035 cycles/day
uu = which.max(Per[1:50][-u]) # 25 freq=24/600=.048 cycles/day
1/Freq[22]; 1/Freq[25] # period = days/cycle
text(.05, 7000, "25 day cycle"); text(.027, 9000, "29 day cycle")

The periodogram, which was introduced in Schuster (1898) and used in Schuster
(1906) for studying the periodicities in the sunspot series (shown in Figure 4.22 in
the Problems section) is a sample based statistic. In Example 4.2 and Example 4.3,
we discussed the fact that the periodogram may be giving us an idea of the variance
components associated with each frequency, as presented in (4.6), of a time series.
These variance components, however, are population parameters. The concepts of
population parameters and sample statistics, as they relate to spectral analysis of time
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Fig. 4.3. Star magnitudes and part of the corresponding periodogram.

series can be generalized to cover stationary time series and that is the topic of the
next section.

4.3 The Spectral Density

The idea that a time series is composed of periodic components, appearing in propor-
tion to their underlying variances, is fundamental in the spectral representation. The
result, called the Spectral Representation Theorem, is quite technical, but the essence
of the theorem is that (4.4) is approximately true for any stationary time series.

The examples in the previous section are not generally realistic because time series
are rarely the superposition of a small number of distinct sinusoids. An important
situation we use repeatedly is the case when the autocovariance function is absolutely
summable, in which case there is a spectral density.

Property 4.1 The Spectral Density
If the autocovariance function, γ(h), of a stationary process satisfies

∞∑
h=−∞

|γ(h) | < ∞, (4.12)

then it has the representation

γ(h) =
∫ 1/2

−1/2
e2πiωh f (ω) dω h = 0,±1,±2, . . . , (4.13)

as the inverse transform of the spectral density, which has the representation

f (ω) =
∞∑

h=−∞

γ(h)e−2πiωh − 1/2 ≤ ω ≤ 1/2. (4.14)



i
i

“tsa3EZ” — 2015/12/26 — 11:53 — page 119 — #125 i
i

i
i

i
i

4.3 The Spectral Density 119

The examples of the previous section were analogues of probability mass func-
tions, or discrete distributions. The pictures of the periodgram in Figure 4.2 and
Figure 4.3 are akin to histograms. The spectral density is the analogue of the proba-
bility density function, or of continuous distributions.

The fact that γ(h) is non-negative definite ensures f (ω) ≥ 0 for all ω. It follows
immediately from (4.14) that

f (ω) = f (−ω)

verifying the spectral density is an even function. Because of the evenness, we will
typically only plot f (ω) for ω ≥ 0. In addition, putting h = 0 in (4.13) yields

γ(0) = var(xt ) =
∫ 1/2

−1/2
f (ω) dω,

which expresses the total variance as the integrated spectral density over all of the
frequencies. We show later on, that a linear filter can isolate the variance in certain
frequency intervals or bands.

We note that the absolute summability condition, (4.12), is not satisfied by (4.5),
the example that we have used to introduce the idea of a spectral representation. The
condition, however, is satisfied for ARMA models.

It is illuminating to examine the spectral density for the series that we have looked
at in earlier discussions.

Example 4.4 White Noise Series
As a simple example, consider the theoretical power spectrum of a sequence of
uncorrelated random variables, wt , with variance σ2

w . A simulated set of data
is displayed in the top of Figure 1.7. Because the autocovariance function was
computed in Example 1.14 as γw (h) = σ2

w for h = 0, and zero, otherwise, it
follows from (4.14), that

fw (ω) = σ2
w

for−1/2 ≤ ω ≤ 1/2. Hence the process contains equal power at all frequencies. This
property is seen in the realization, which seems to contain all different frequencies
in a roughly equal mix. In fact, the name white noise comes from the analogy to
white light, which contains all frequencies in the color spectrum at the same level
of intensity. Figure 4.4 shows a plot of the white noise spectrum for σ2

w = 1.

If xt is ARMA, its spectral density can be obtained explicitly using the fact that
it is a linear process, i.e., xt =

∑∞
j=0 ψ jwt−j , where

∑∞
j=0 |ψ j | < ∞. In the following

property, we exhibit the form of the spectral density of an ARMA model. The proof
of the property follows directly from the proof of a more general result, Property 4.5,
by using the additional fact that ψ(z) = θ(z)/φ(z). The result is analogous to the fact
that if X = aY , then var(X ) = a2var(Y ).
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Property 4.2 The Spectral Density of ARMA
If xt is ARMA(p, q), φ(B)xt = θ(B)wt , its spectral density is given by

fx (ω) = σ2
w |ψ(e−2πiω) |2 = σ2

w

|θ(e−2πiω) |2

|φ(e−2πiω) |2
(4.15)

where φ(z) = 1 −
∑p

k=1 φk zk , θ(z) = 1 +
∑q

k=1 θk zk , and ψ(z) =
∑∞

k=0 ψk zk .

Example 4.5 Moving Average
As an example of a series that does not have an equal mix of frequencies, we
consider a moving average model. Specifically, consider the MA(1) model given by

xt = wt + .5wt−1.

A sample realization is shown in the top of Figure 3.2 and we note that the series
has less of the higher or faster frequencies. The spectral density will verify this
observation.

The autocovariance function is displayed in Example 3.3 on page 58, and for
this particular example, we have

γ(0) = (1 + .52)σ2
w = 1.25σ2

w; γ(±1) = .5σ2
w; γ(±h) = 0 for h > 1.

Substituting this directly into the definition given in (4.14), we have

f (ω) =
∞∑

h=−∞

γ(h) e−2πiωh = σ2
w

[
1.25 + .5

(
e−2πiω + e2πiω

)]

= σ2
w [1.25 + cos(2πω)] .

(4.16)

We can also compute the spectral density using Property 4.2, which states that
for an MA, f (ω) = σ2

w |θ(e−2πiω) |2. Because θ(z) = 1 + .5z, we have

|θ(e−2πiω) |2 = |1 + .5e−2πiω |2 = (1 + .5e−2πiω)(1 + .5e2πiω)

= 1.25 + .5
(
e−2πiω + e2πiω

)
which leads to agreement with (4.16).

Plotting the spectrum for σ2
w = 1, as in the middle of Figure 4.4, shows the

lower or slower frequencies have greater power than the higher or faster frequencies.

Example 4.6 A Second-Order Autoregressive Series
We now consider the spectrum of an AR(2) series of the form

xt − φ1xt−1 − φ2xt−2 = wt,

for the special case φ1 = 1 and φ2 = −.9. Figure 1.8 shows a sample realization of
such a process for σw = 1. We note the data exhibit a strong periodic component
that makes a cycle about every six points.
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Fig. 4.4. Theoretical spectra of white noise (top), a first-order moving average (middle), and a
second-order autoregressive process (bottom).

To use Property 4.2, note that θ(z) = 1, φ(z) = 1 − z + .9z2 and

|φ(e−2πiω) |2 = (1 − e−2πiω + .9e−4πiω)(1 − e2πiω + .9e4πiω)

= 2.81 − 1.9(e2πiω + e−2πiω) + .9(e4πiω + e−4πiω)
= 2.81 − 3.8 cos(2πω) + 1.8 cos(4πω).

Using this result in (4.15), we have that the spectral density of xt is

fx (ω) =
σ2
w

2.81 − 3.8 cos(2πω) + 1.8 cos(4πω)
.

Setting σw = 1, the bottom of Figure 4.4 displays fx (ω) and shows a strong power
component at about ω = .16 cycles per point or a period between six and seven
cycles per point and very little power at other frequencies. In this case, modifying
the white noise series by applying the second-order AR operator has concentrated
the power or variance of the resulting series in a very narrow frequency band.

To reproduce Figure 4.4, use the arma.spec script from astsa (see §R.1):
par(mfrow=c(3,1))
arma.spec(log="no", main="White Noise")
arma.spec(ma=.5, log="no", main="Moving Average")
arma.spec(ar=c(1,-.9), log="no", main="Autoregression")

The above examples motivate the use of the power spectrum for describing the
theoretical variance fluctuations of a stationary time series. Indeed, the interpretation
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of the spectral density function as the variance of the time series over a given frequency
band gives us the intuitive explanation for its physical meaning. The plot of the
function f (ω) over the frequency argument ω can even be thought of as an analysis
of variance, in which the columns or block effects are the frequencies, indexed by ω.

4.4 Periodogram and Discrete Fourier Transform

We are now ready to tie together the periodogram, which is the sample-based concept
presented in §4.2, with the spectral density, which is the population-based concept of
§4.3.

Definition 4.1 Given data x1, . . . , xn, we define the discrete Fourier transform
(DFT) to be

d(ω j ) = n−1/2
n∑
t=1

xte−2πiω j t (4.17)

for j = 0, 1, . . . , n − 1, where the frequencies ω j = j/n are called the Fourier or
fundamental frequencies.

If n is a highly composite integer (i.e., it has many factors), the DFT can be
computed by the fast Fourier transform (FFT) introduced in Cooley and Tukey (1965).
Sometimes it is helpful to exploit the inversion result for DFTs which shows the linear
transformation is one-to-one. For the inverse DFT we have,

xt = n−1/2
n−1∑
j=0

d(ω j )e2πiω j t (4.18)

for t = 1, . . . , n. The following example shows how to calculate theDFT and its inverse
in R for the data set {1, 2, 3, 4}; note that R writes a complex number z = a + ib as
a+bi.
(dft = fft(1:4)/sqrt(4))
[1] 5+0i -1+1i -1+0i -1-1i

(idft = fft(dft, inverse=TRUE)/sqrt(4))
[1] 1+0i 2+0i 3+0i 4+0i

(Re(idft)) # keep it real
[1] 1 2 3 4

We now define the periodogram as the squared modulus3 of the DFT.

Definition 4.2 Given data x1, . . . , xn, we define the periodogram to be

I (ω j ) =
���d(ω j )

���
2

(4.19)

for j = 0, 1, 2, . . . , n − 1.

3 Recall that if z = a + ib, then z̄ = a − ib, and |z |2 = zz̄ = a2 + b2.
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Note that I (0) = nx̄2, where x̄ is the sample mean. Also, for j , 0,4

I (ω j ) =
n−1∑

h=−(n−1)

γ̂(h)e−2πiω jh . (4.20)

In view of (4.20), the periodogram, I (ω j ), is the sample version of f (ω j ) given in
(4.14). That is, we may think of the periodogram as the “sample spectral density" of
xt . Although (4.20) seems like a reasonable estimate of f (ω), recall fromExample 4.2
that I (ω j ), for any j, is based on only 2 pieces of information (degrees of freedom).

It is sometimes useful to work with the real and imaginary parts of the DFT
individually. To this end, we define the following transforms.

Definition 4.3 Given data x1, . . . , xn, we define the cosine transform

dc (ω j ) = n−1/2
n∑
t=1

xt cos(2πω j t) (4.21)

and the sine transform

ds (ω j ) = n−1/2
n∑
t=1

xt sin(2πω j t) (4.22)

where ω j = j/n for j = 0, 1, . . . , n − 1.

Note that dc (ω j ) and ds (ω j ) are averages like the sample mean, but with differ-
enceweights (the samplemean hasweights 1

n for each observation).Under appropriate
conditions, there is central limit theorem for these quantities. In non-technical terms,
the result is similar to the central limit theorem for sample means, that is,

dc (ω j )
·
∼ N(0, 1

2 f (ω j )) and ds (ω j )
·
∼ N(0, 1

2 f (ω j )) (4.23)

where ·∼ means approximately distributed as for n large. Moreover, it can be shown
that for large n, dc (ω j ) ⊥ ds (ω j ) ⊥ dc (ωk ) ⊥ ds (ωk ), as long as ω j , ωk , where ⊥
is read is independent of.

We note that d(ω j ) = dc (ω j ) − i ds (ω j ) and hence the periodogram is

I (ω j ) = d2
c (ω j ) + d2

s (ω j ), (4.24)

which for large n is the sum of the squares of two independent normal random
variables, whichwe know has a chi-squared (χ2) distribution. Thus, for large samples,
I (ω j )

·
∼ 1

2 f (ω j ) χ2
2, or equivalently,

2 I (ω j )
f (ω j )

·
∼ χ2

2, (4.27a)

4 The DFTs of xt and of (xt − x̄) are the same except at the zero frequency. This follows because∑n
t=1 exp(−2πit j

n ) = 0. Consequently, ���d(ω j )���
2
= n−1 ∑n

t=1
∑n

s=1 (xt − x̄)(xs − x̄)e−2π iω j (t−s) =

n−1 ∑n−1
h=−(n−1)

∑n−|h |
t=1 (xt+|h | − x̄)(xt − x̄)e−2π iω j h , which is (4.20).
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where χ2
2 is the chi-squared distribution with 2 degrees of freedom. Since the mean

and variance of a χ2
ν are ν and 2ν, respectively, it follows from (4.27a) that

E[I (ω j )] ≈ f (ω j ) and var[I (ω j )] ≈ f 2(ω j ). (4.25)

This is bad news because, while the periodgram is approximately unbiased, its vari-
ance does not go to zero, and hence it is not consistent. In fact, no matter how large
n, the variance of the periodogram does not change. Contrast this with the mean x̄ of
a random sample of size n for which E[x̄] = µ and var[x̄] = σ2/n → 0 as n → ∞.

The technical result regarding the large sample distribution of the periodogram
under general conditions is given in the following result.

Property 4.3 Distribution of the Periodogram Ordinates
If

xt =
∞∑

j=−∞

ψ jwt−j,

∞∑
j=−∞

√
| j | ��ψ j

�� < ∞ (4.26)

where wt ∼ iid(0, σ2
w), then for any collection of K distinct frequenciesωk ∈ (0, 1/2)

with ωk:n → ωk (where ωk:n is a fundamental frequency) as n → ∞,

2I (ωk:n)
f (ωk )

d
→ iid χ2

2 (4.27)

provided f (ωk ) > 0, for k = 1, . . . , K .

The distributional result (4.27) can be used to derive an approximate confidence
interval for the spectrum in the usual way. Let χ2

ν (α) denote the lower α probability
tail for the chi-squared distribution with ν degrees of freedom. Then, an approximate
100(1 − α)% confidence interval for the spectral density function would be of the
form

2 I (ω j:n)

χ2
2(1 − α/2)

≤ f (ω) ≤
2 I (ω j:n)

χ2
2(α/2)

. (4.28)

The log transform is the variance stabilizing transformation. In this case, the confi-
dence intervals are of the form[

log I (ω j:n) + log 2 − log χ2
2(1 − α/2), log I (ω j:n) + log 2 − log χ2

2(α/2)
]
. (4.29)

Often, nonstationary trends are present that should be eliminated before com-
puting the periodogram. Trends introduce extremely low frequency components in
the periodogram that tend to obscure the appearance at higher frequencies. For this
reason, it is usually conventional to center the data prior to a spectral analysis using
either mean-adjusted data of the form xt − x̄ to eliminate the zero or d-c component
or to use detrended data of the form xt − β̂1 − β̂2t. Note that higher order polynomial
regressions in t or nonparametric smoothing (linear filtering) could be used in cases
where the trend is nonlinear.

As previously indicated, it is often convenient to calculate the DFTs, and hence the
periodogram, using the fast Fourier transform algorithm. The FFT utilizes a number
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Fig. 4.5. Periodogram of SOI and Recruitment, n = 453 (n′ = 480), where the frequency axis
is labeled in multiples of ∆ = 1/12. Note the common peaks at ω = 1∆ = 1/12, or one cycle
per year (12 months), and ω = 1

4 ∆ = 1/48, or one cycle every four years (48 months).

of redundancies in the calculation of the DFT when n is highly composite; that is, an
integer with many factors of 2, 3, or 5, the best case being when n = 2p is a factor of
2. Details may be found in Cooley and Tukey (1965). To accommodate this property,
we can pad the centered (or detrended) data of length n to the next highly composite
integer n′ by adding zeros, i.e., setting xc

n+1 = xc
n+2 = · · · = xcn′ = 0, where xct

denotes the centered data. This means that the fundamental frequency ordinates will
be ω j = j/n′ instead of j/n. We illustrate by considering the periodogram of the
SOI and Recruitment series, as has been given in Figure 1.5 of Chapter 1. Recall
that they are monthly series and n = 453 months. To find n′ in R, use the command
nextn(453) to see that n′ = 480 will be used in the spectral analyses by default.

Example 4.7 Periodogram of SOI and Recruitment Series
Figure 4.5 shows the periodograms of each series, where the frequency axis is
labeled in multiples of ∆ = 1/12. As previously indicated, the centered data have
been padded to a series of length 480. We notice a narrow-band peak at the obvious
yearly (12 month) cycle, ω = 1∆ = 1/12. In addition, there is considerable power
in a wide band at the lower frequencies that is centered around the four-year (48
month) cycle ω = 1

4 ∆ = 1/48 representing a possible El Niño effect. This wide
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Fig. 4.6. Log-periodogram of SOI and Recruitment. 95% confidence intervals are indicated by
the blue line in the upper right corner.

band activity suggests that the possible El Niño cycle is irregular, but tends to be
around four years on average. We will continue to address this problem as we move
to more sophisticated analyses.

Noting χ2
2(.025) = .05 and χ2

2(.975) = 7.38, we can obtain approximate 95%
confidence intervals for the frequencies of interest. For example, the periodogram
of the SOI series is IS (1/12) = .97 at the yearly cycle. An approximate 95%
confidence interval for the spectrum fS (1/12) is then

[2(.97)/7.38, 2(.97)/.05] = [.26, 38.4],

which is too wide to be of much use. We do notice, however, that the lower value of
.26 is higher than any other periodogram ordinate, so it is safe to say that this value
is significant. On the other hand, an approximate 95% confidence interval for the
spectrum at the four-year cycle, fS (1/48), is

[2(.05)/7.38, 2(.05)/.05] = [.01, 2.12],

which again is extremely wide, and with which we are unable to establish signifi-
cance of the peak.

We now give the R commands that can be used to reproduce Figure 4.5. To cal-
culate and graph the periodogram, we used the mvspec script from astsa, although
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R’s spec.pgram can be used. In the code, we set log="no" because the script will
plot the periodogram on a log10 scale by default. Figure 4.5 displays a bandwidth,
which we discuss in the next section.
require(astsa) # needed for mvspec() - otherwise use spec.pgram()
par(mfrow=c(2,1))
soi.per = mvspec(soi, log="no"); abline(v=1/4, lty="dotted")
rec.per = mvspec(rec, log="no"); abline(v=1/4, lty="dotted")

The confidence intervals for the SOI series at the yearly cycle, ω = 1/12 =
40/480, and the possible El Niño cycle of four years ω = 1/48 = 10/480 can be
computed in R as follows:
soi.per$spec[40] # 0.97223
soi pgram at freq 1/12 = 40/480
soi.per$spec[10] # 0.05372
soi pgram at freq 1/48 = 10/480
# conf intervals - returned value:
U = qchisq(.025,2) # 0.05063
L = qchisq(.975,2) # 7.37775
2*soi.per$spec[10]/L # 0.01456
2*soi.per$spec[10]/U # 2.12220
2*soi.per$spec[40]/L # 0.26355
2*soi.per$spec[40]/U # 38.40108

The example above makes it clear that the periodogram as an estimator is sus-
ceptible to large uncertainties, and we need to find a way to reduce the variance.
Not surprisingly, this result follows if we think about the periodogram, I (ω j ) as an
estimator of the spectral density f (ω) and realize that it is the sum of squares of
only two random variables for any sample size. The solution to this dilemma is sug-
gested by the analogy with classical statistics where we look for independent random
variables with the same variance and average the squares of these common variance
observations.

As an analogy to using the periodogram to estimate the spectral density, consider
the problem of taking a random sample and then trying to estimate a probability
density based on a histogram with many cells. This approach is demonstrated in
Figure 4.7.

4.5 Nonparametric Spectral Estimation

To continue the discussion that ended the previous section, we introduce a frequency
band, B, of L � n contiguous fundamental frequencies, centered around frequency
ω j = j/n, which is chosen close to a frequency of interest, ω. Let

B =
{
ω j + k/n : k = 0,±1, . . . ,±m

}
, (4.30)

where
L = 2m + 1 (4.31)

is an odd number, chosen such that the spectral values in the interval B,

f (ω j + k/n), k = −m, . . . , 0, . . . ,m
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Fig. 4.7. Histogram of a sample of n = 200 standard normals with 100 cells and with the
standard normal density superimposed. The periodogram is to the spectral density as the
histogram is to the normal density.

are approximately equal to f (ω). For example, to see a small section of the AR(2)
spectrum|near the peak|shown in Figure 4.4, use
arma.spec(ar=c(1,-.9), xlim=c(.15,.151))

which is displayed in Figure 4.8.
We now define an averaged (or smoothed) periodogram as the average of the

periodogram values, say,

f̄ (ω) =
1
L

m∑
k=−m

I (ω j + k/n), (4.32)

over the band B. Under the assumption that the spectral density is fairly constant in
the band B, and in view of (4.27) we can show that under appropriate conditions,
for large n, the periodograms in (4.32) are approximately distributed as independent
f (ω) χ2

2/2 random variables, for 0 < ω < 1/2, as long as we keep L fairly small
relative to n. Thus, under these conditions, L f̄ (ω) is the sum of L approximately
independent f (ω) χ2

2/2 random variables. It follows that, for large n,

2L f̄ (ω)
f (ω)

·
∼ χ2

2L . (4.33)

Now we have

E[ f̄ (ω)] ≈ f (ω) and var[ f̄ (ω)] ≈ f 2(ω)/L, (4.34)

which can be compared to (4.25). In this case, we have consistency if we let L → ∞
as n → ∞, but L must grow much slower than n, of course (in fact, L/n → 0 as
n → ∞).

In this scenario, where we smooth the periodogram by simple averaging, the
width of the frequency interval defined by (4.30),

Bw =
L
n
, (4.35)

is called the bandwidth. Note (4.35) implies the degrees of freedom can be expressed
as
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Fig. 4.8. A small section (near the peak) of the AR(2) spectrum shown in Figure 4.4 .

2L = 2Bwn, (4.36)

or twice the time-bandwidth product. The result (4.33) can be rearranged to obtain
an approximate 100(1 − α)% confidence interval of the form

2L f̄ (ω)
χ2

2L (1 − α/2)
≤ f (ω) ≤

2L f̄ (ω)
χ2

2L (α/2)
(4.37)

for the true spectrum, f (ω).
As previously discussed, the visual impact of a spectral density plot will be

improved by plotting the logarithm of the spectrum, which is the variance stabilizing
transformation in this situation. This phenomenon can occur when regions of the
spectrum exist with peaks of interest much smaller than some of the main power
components. For the log spectrum, we obtain an interval of the form[

log f̄ (ω) + log 2L − log χ2
2L (1 − α/2),

log f̄ (ω) + log 2L − log χ2
2L (α/2)

]
. (4.38)

If zeros are appended before computing the spectral estimators, we need to adjust
the degrees of freedom and an approximation is to replace 2L by 2Ln/n′. Hence, we
define the adjusted degrees of freedom as

df =
2Ln
n′

(4.39)

and use it instead of 2L in the confidence intervals (4.37) and (4.38). For example,
(4.37) becomes

df f̄ (ω)
χ2
d f

(1 − α/2)
≤ f (ω) ≤

df f̄ (ω)
χ2
d f

(α/2)
. (4.40)

Before proceeding further, we pause to consider computing the average peri-
odograms for the SOI and Recruitment series, as shown in Figure 4.9.

Example 4.8 Averaged Periodogram for SOI and Recruitment
Generally, it is a good idea to try several bandwidths that seem to be compatible
with the general overall shape of the spectrum, as suggested by the periodogram.
The SOI and Recruitment series periodograms, previously computed in Figure 4.5,
suggest the power in the lower El Niño frequency needs smoothing to identify the
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Fig. 4.9. The averaged periodogram of the SOI and Recruitment series n = 453, n′ = 480, L =
9, df = 17, showing common peaks at the four year period, ω = 1

4 ∆ = 1/48 (cycle/months),
the yearly period, ω = 1∆ = 1/12 (cycle/months) and some of its harmonics ω = k∆ for
k = 2, 3.
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Fig. 4.10. Figure 4.9 with the average periodogram ordinates plotted on a log10 scale. The
display in the upper right-hand corner represents a generic 95% confidence interval.

predominant overall period. Trying values of L leads to the choice L = 9 as a
reasonable value, and the result is displayed in Figure 4.9.
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The smoothed spectra shown in Figure 4.9 provide a sensible compromise
between the noisy version, shown in Figure 4.5, and a more heavily smoothed
spectrum, which might lose some of the peaks. An undesirable effect of averaging
can be noticed at the yearly cycle, ω = 1∆, where the narrow band peaks that
appeared in the periodograms in Figure 4.5 have been flattened and spread out to
nearby frequencies. We also notice, and have marked, the appearance of harmonics
of the yearly cycle, that is, frequencies of the form ω = k∆ for k = 1, 2, . . . .
Harmonics typically occur when a periodic component is present, but not in a
sinusoidal fashion; see Example 4.9.

Figure 4.9 can be reproduced in R using the following commands. The basic
call is to the function mvspec, which is available in astsa; alternately, use R’s
spec.pgram. To compute averaged periodograms, use theDaniell kernel, and specify
m, where L = 2m+1 (L = 9 and m = 4 in this example). We will explain the kernel
concept later in this section, specifically just prior to Example 4.10.
par(mfrow=c(2,1))
(k = kernel("daniell", 4))
soi.ave = mvspec(soi, k, log="no")
abline(v=c(.25,1,2,3), lty=2)
# Repeat above lines using rec in place of soi on line 3
soi.ave$bandwidth # = 0.225

The displayed bandwidth (.225) is adjusted for the fact that the frequency scale
of the plot is in terms of cycles per year instead of cycles per month (the original unit
of the data). Using (4.35), the bandwidth in terms of months is 9/480 = .01875; the
displayed value is simply converted to years, .01875 cycles

month×12months
year = .225 cycles

year .
The adjusted degrees of freedom are df = 2(9)(453)/480 ≈ 17. We can use this

value for the 95% confidence intervals, with χ2
d f

(.025) = 7.56 and χ2
d f

(.975) =
30.17. Substituting into (4.40) gives the intervals in Table 4.1 for the two frequency
bands identified as having the maximum power. To examine the two peak power
possibilities, wemay look at the 95% confidence intervals and see whether the lower
limits are substantially larger than adjacent baseline spectral levels. For example,
the El Niño frequency of 48 months has lower limits that exceed the values the
spectrum would have if there were simply a smooth underlying spectral function
without the peaks. The relative distribution of power over frequencies is different,
with the SOI having less power at the lower frequency, relative to the seasonal
periods, and the recruit series having relatively more power at the lower or El Niño
frequency.

The entries in Table 4.1 for SOI can be obtained in R as follows:
df = soi.ave$df # df = 16.9875 (returned values)
U = qchisq(.025, df) # U = 7.555916
L = qchisq(.975, df) # L = 30.17425
soi.ave$spec[10] # 0.0495202
soi.ave$spec[40] # 0.1190800
# intervals
df*soi.ave$spec[10]/L # 0.0278789
df*soi.ave$spec[10]/U # 0.1113333
df*soi.ave$spec[40]/L # 0.0670396
df*soi.ave$spec[40]/U # 0.2677201
# repeat above commands with soi replaced by rec
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Table 4.1. Confidence Intervals for the Spectra of the SOI and Recruitment Series

Series ω Period Power Lower Upper

SOI 1/48 4 years .05 .03 .11
1/12 1 year .12 .07 .27

Recruits 1/48 4 years 6.59 3.71 14.82
×102 1/12 1 year 2.19 1.24 4.93

Finally, Figure 4.10 shows the averaged periodograms in Figure 4.9 plotted on
a log10 scale. This is the default plot in R, and these graphs can be obtained by
removing the statement log="no". Notice that the default plot also shows a generic
confidence interval of the form (4.38) in the upper right-hand corner. To use it,
imagine placing the tick mark on the averaged periodogram ordinate of interest;
the resulting bar then constitutes an approximate 95% confidence interval for the
spectrum at that frequency. We note that displaying the estimates on a log scale
tends to emphasize the harmonic components.

Example 4.9 Harmonics
In the previous example, we saw that the spectra of the annual signals displayed
minor peaks at the harmonics; that is, the signal spectra had a large peak at ω =
1∆ = 1/12 cycles/month (the one-year cycle) and minor peaks at its harmonics
ω = k∆ for k = 2, 3, . . . (two-, three-, and so on, cycles per year). This will often be
the case because most signals are not perfect sinusoids (or perfectly cyclic). In this
case, the harmonics are needed to capture the non-sinusoidal behavior of the signal.
As an example, consider the signal formed in Figure 4.11 from a (fundamental)
sinusoid oscillating at two cycles per unit time along with the second through sixth
harmonics at decreasing amplitudes. In particular, the signal was formed as

xt = sin(2π2t) + .5 sin(2π4t) + .4 sin(2π6t)
+ .3 sin(2π8t) + .2 sin(2π10t) + .1 sin(2π12t) (4.41)

for 0 ≤ t ≤ 1. Notice that the signal is non-sinusoidal in appearance and rises
quickly then falls slowly.

A figure similar to Figure 4.11 can be generated in R as follows.
t = seq(0, 1, by=1/200)
amps = c(1, .5, .4, .3, .2, .1)
x = matrix(0, 201, 6)
for (j in 1:6) x[,j] = amps[j]*sin(2*pi*t*2*j)
x = ts(cbind(x, rowSums(x)), start=0, deltat=1/200)
ts.plot(x, lty=c(1:6, 1), lwd=c(rep(1,6), 2), ylab="Sinusoids")
names = c("Fundamental","2nd Harmonic","3rd Harmonic","4th Harmonic", "5th

Harmonic", "6th Harmonic", "Formed Signal")
legend("topright", names, lty=c(1:6, 1), lwd=c(rep(1,6), 2))

Example 4.8 points out the necessity for having some relatively systematic pro-
cedure for deciding whether peaks are significant. The question of deciding whether
a single peak is significant usually rests on establishing what we might think of as
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Fig. 4.11. A signal (thick solid line) formed by a fundamental sinusoid (thin solid line)
oscillating at two cycles per unit time and its harmonics as specified in (4.41).

a baseline level for the spectrum, defined rather loosely as the shape that one would
expect to see if no spectral peaks were present. This profile can usually be guessed
by looking at the overall shape of the spectrum that includes the peaks; usually, a
kind of baseline level will be apparent, with the peaks seeming to emerge from this
baseline level. If the lower confidence limit for the spectral value is still greater than
the baseline level at some predetermined level of significance, we may claim that
frequency value as a statistically significant peak. To be consistent with our stated
indifference to the upper limits, we might use a one-sided confidence interval.

Care must be taken when we make a decision about the bandwidth Bw over which
the spectrumwill be essentially constant. Taking too broad a band will tend to smooth
out valid peaks in the data when the constant variance assumption is not met over
the band. Taking too narrow a band will lead to confidence intervals so wide that
peaks are no longer statistically significant. Thus, we note that there is a conflict
here between variance properties or bandwidth stability, which can be improved by
increasing Bw and resolution, which can be improved by decreasing Bw . A common
approach is to try a number of different bandwidths and to look qualitatively at the
spectral estimators for each case.

To address the problem of resolution, it should be evident that the flattening of
the peaks in Figure 4.9 and Figure 4.10 was due to the fact that simple averaging was
used in computing f̄ (ω) defined in (4.32). There is no particular reason to use simple
averaging, and we might improve the estimator by employing a weighted average, say

f̂ (ω) =
m∑

k=−m

hk I (ω j + k/n), (4.42)

using the same definitions as in (4.32) but where the weights hk > 0 satisfy
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m∑
k=−m

hk = 1.

In particular, it seems reasonable that the resolution of the estimator will improve if
we use weights that decrease as distance from the center weight h0 increases; we will
return to this idea shortly. To obtain the averaged periodogram, f̄ (ω), in (4.42), set
hk = L−1, for all k, where L = 2m + 1. The asymptotic theory established for f̄ (ω)
still holds for f̂ (ω) provided that the weights satisfy the additional condition that if
m → ∞ as n → ∞ but m/n → 0, then

m∑
k=−m

h2
k → 0.

Under these conditions, for n large, we have

E[ f̂ (ω)] ≈ f (ω) and var[ f̂ (ω)] ≈ f 2(ω)
m∑

k=−m

h2
k (4.43)

which can be compared to (4.34); as before, we have that f̂ (ω) is consistent. We
have already seen this result in the case of f̄ (ω), where the weights are constant,
hk = L−1, in which case

∑m
k=−m h2

k
= L−1. The distributional properties of (4.42) are

more difficult now because f̂ (ω) is a weighted linear combination of asymptotically
independent χ2 random variables. An approximation that seems to work well is to
replace L by

(∑m
k=−m h2

k

)−1
. That is, define

Lh = *
,

m∑
k=−m

h2
k

+
-

−1

(4.44)

and use the approximation
2Lh f̂ (ω)

f (ω)
·
∼ χ2

2Lh
. (4.45)

In analogy to (4.35), we will define the bandwidth in this case to be

Bw =
Lh

n
. (4.46)

Using the approximation (4.45) we obtain an approximate 100(1 − α)% confidence
interval of the form

2Lh f̂ (ω)
χ2

2Lh
(1 − α/2)

≤ f (ω) ≤
2Lh f̂ (ω)
χ2

2Lh
(α/2)

(4.47)

for the true spectrum, f (ω). If the data are padded to n′, then replace 2Lh in (4.47)
with df = 2Lhn/n′ as in (4.39).



i
i

“tsa3EZ” — 2015/12/26 — 11:53 — page 135 — #141 i
i

i
i

i
i

4.5 Nonparametric Spectral Estimation 135

−6 −4 −2 0 2 4 6

0.
05

0.
10

0.
15

mDaniell(3,3)

k

h  
k

Fig. 4.12. Modified Daniell kernel weights used in Example 4.10

An easy way to generate the weights in R is by repeated use of the Daniell kernel.
For example, with m = 1 and L = 2m + 1 = 3, the Daniell kernel has weights
{hk } = { 1

3,
1
3,

1
3 }; applying this kernel to a sequence of numbers, {ut }, produces

ût = 1
3ut−1 +

1
3ut + 1

3ut+1.

We can apply the same kernel again to the ût ,

̂̂ut = 1
3 ût−1 +

1
3 ût + 1

3 ût+1,

which simplifies to

̂̂ut = 1
9ut−2 +

2
9ut−1 +

3
9ut + 2

9ut+1 +
1
9ut+2.

The modified Daniell kernel puts half weights at the end points, so with m = 1 the
weights are {hk } = { 1

4,
2
4,

1
4 } and

ût = 1
4ut−1 +

1
2ut + 1

4ut+1.

Applying the same kernel again to ût yields

̂̂ut = 1
16ut−2 +

4
16ut−1 +

6
16ut + 4

16ut+1 +
1
16ut+2.

These coefficients can be obtained in R by issuing the kernel command. For example,
kernel("modified.daniell", c(1,1)) would produce the coefficients of the last
example.

Example 4.10 Smoothed Periodogram for SOI and Recruitment
In this example, we estimate the spectra of the SOI and Recruitment series using the
smoothed periodogram estimate in (4.42).We used a modified Daniell kernel twice,
withm = 3 both times. This yields Lh = 1/

∑
h2
k
= 9.232, which is close to the value

of L = 9 used in Example 4.8. In this case, the bandwidth is Bw = 9.232/480 = .019
and the modified degrees of freedom is df = 2Lh453/480 = 17.43. The weights,
hk , can be obtained and graphed in R as follows; see Figure 4.12.
kernel("modified.daniell", c(3,3)) # for a list
plot(kernel("modified.daniell", c(3,3))) # for a plot
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Fig. 4.13. Smoothed spectral estimates of the SOI and Recruitment series; see Example 4.10
for details. The bottom pair are drawn on a log scale. Note that the El Niño cycle is a broad
band cycle ranging from about 3 to 7 years. See Figure 4.18 for a graph of the approximate El
Niño cycle.
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The resulting spectral estimates can be viewed in Figure 4.13 and we notice that
the estimates more appealing than those in Figure 4.9. Figure 4.13 was generated
in R as follows; we also show how to obtain df and Bw .
par(mfrow=c(2,1))
k = kernel("modified.daniell", c(3,3))
soi.smo = mvspec(soi, k, log="no")
abline(v=1, lty="dotted"); abline(v=1/4, lty="dotted")
## Repeat above lines with rec replacing soi in line 3
df = soi.smo$df # df = 17.42618
soi.smo$bandwidth # Bw = 0.2308103 = 12*9.232/480

Reissuing the mvspec commands with log="no" removed will result in a figure
similar to Figure 4.10; see Figure 4.13. Finally, we mention that the modified
Daniell kernel is used by default. For example, an easier way to obtain soi.smo is
to issue the command:
soi.smo = mvspec(soi, spans=c(7,7))

Notice that spans is a vector of odd integers, given in terms of L = 2m + 1 instead
of m. These values give the widths of the modified Daniell smoother to be used to
smooth the periodogram.

Tapering
We are now ready to briefly introduce the concept of tapering; a more detailed
discussion may be found in Bloomfield (2000, §9.5). Suppose xt is a mean-zero,
stationary process with spectral density fx (ω). If we replace the original series by
the tapered series

yt = ht xt, (4.48)

for t = 1, 2, . . . , n, use the modified DFT

dy (ω j ) = n−1/2
n∑
t=1

ht xte−2πiω j t, (4.49)

and let Iy (ω j ) = |dy (ω j ) |2, we will obtain

E[Iy (ω j )] =
∫ 1/2

−1/2
Wn(ω j − ω) fx (ω) dω. (4.50)

The value Wn(ω) is called a spectral window because, in view of (4.50), it is de-
termining which part of the spectral density fx (ω) is being “seen" by the estimator
Iy (ω j ) on average. In the case that ht = 1 for all t, Iy (ω j ) = Ix (ω j ) is simply the
periodogram of the data and the window is

Wn(ω) =
sin2(nπω)
n sin2(πω)

(4.51)

with Wn(0) = n, which is known as the Fejér or modified Bartlett kernel. If we
consider the averaged periodogram in (4.32), namely

f̄x (ω) =
1
L

m∑
k=−m

Ix (ω j + k/n),
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Fig. 4.14. Averaged Fejér window (top row) and the corresponding cosine taper window
(bottom row) for L = 9, n = 480. The extra tic marks on the horizontal axis of the left-hand
plots exhibit the predicted bandwidth, Bw = 9/480 = .01875.

the window, Wn(ω), in (4.50) will take the form

Wn(ω) =
1

nL

m∑
k=−m

sin2[nπ(ω + k/n)]
sin2[π(ω + k/n)]

. (4.52)

Tapers generally have a shape that enhances the center of the data relative to the
extremities, such as a cosine bell of the form

ht = .5
[
1 + cos

(2π(t − t)
n

)]
, (4.53)

where t = (n+1)/2, favored by Blackman and Tukey (1959). In Figure 4.14, we have
plotted the shapes of two windows, Wn(ω), for n = 480 and L = 9, when (i) ht ≡ 1,
in which case, (4.52) applies, and (ii) ht is the cosine taper in (4.53). In both cases
the predicted bandwidth should be Bw = 9/480 = .01875 cycles per point, which
corresponds to the “width" of the windows shown in Figure 4.14. Both windows
produce an integrated average spectrum over this band but the untapered window in
the top panels shows considerable ripples over the band and outside the band. The
ripples outside the band are called sidelobes and tend to introduce frequencies from
outside the interval that may contaminate the desired spectral estimate within the
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Fig. 4.15. Smoothed spectral estimates of the SOI without tapering (dashed line) and with full
tapering (solid line); see Example 4.11 for details.

band. For example, a large dynamic range for the values in the spectrum introduces
spectra in contiguous frequency intervals several orders of magnitude greater than the
value in the interval of interest. This effect is sometimes called leakage. Figure 4.14
emphasizes the suppression of the sidelobes in the Fejér kernel when a cosine taper
is used.

Example 4.11 The Effect of Tapering the SOI Series
In this example, we examine the effect of tapering on the estimate of the spectrum
of the SOI series. The results for the Recruitment series are similar. Figure 4.15
shows two spectral estimates plotted on a log scale. The degree of smoothing here
is the same as in Example 4.10. The dashed line in Figure 4.15 shows the estimate
without any tapering and hence it is the same as the estimated spectrum displayed
in the top of Figure 4.13. The solid line shows the result with full tapering. Notice
that the tapered spectrum does a better job in separating the yearly cycle (ω = 1)
and the El Niño cycle (ω = 1/4).

The following R session was used to generate Figure 4.15. We note that, by
default, mvspec does not taper. For full tapering, we use the argument taper=.5 to
instruct mvspec to taper 50% of each end of the data; any value between 0 and .5 is
acceptable.
s0 = mvspec(soi, spans=c(7,7), plot=FALSE) # no taper
s50 = mvspec(soi, spans=c(7,7), taper=.5, plot=FALSE) # full taper
plot(s0$freq, s0$spec, log="y", type="l", lty=2, ylab="spectrum",

xlab="frequency") # dashed line
lines(s50$freq, s50$spec) # solid line
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4.6 Parametric Spectral Estimation

The methods of §4.5 lead to estimators generally referred to as nonparametric spectra
because no assumption is made about the parametric form of the spectral density. In
Property 4.2, we exhibited the spectrum of an ARMA process and we might consider
basing a spectral estimator on this function, substituting the parameter estimates from
an ARMA(p, q) fit on the data into the formula for the spectral density fx (ω) given in
(4.15). Such an estimator is called a parametric spectral estimator. For convenience,
a parametric spectral estimator is obtained by fitting an AR(p) to the data, where the
order p is determined by one of the model selection criteria, such as AIC, AICc, and
BIC, defined in (2.15)-(2.17). Parametric autoregressive spectral estimators will often
have superior resolution in problems when several closely spaced narrow spectral
peaks are present and are preferred by engineers for a broad variety of problems
(see Kay, 1988). The development of autoregressive spectral estimators has been
summarized by Parzen (1983).

If φ̂1, φ̂2, . . . , φ̂p and σ̂2
w are the estimates from an AR(p) fit to xt , then based on

Property 4.2, a parametric spectral estimate of fx (ω) is attained by substituting these
estimates into (4.15), that is,

f̂x (ω) =
σ̂2
w

|φ̂(e−2πiω) |2
, (4.54)

where
φ̂(z) = 1 − φ̂1z − φ̂2z2 − · · · − φ̂p zp . (4.55)

An interesting fact about rational spectra of the form (4.15) is that any spectral
density can be approximated, arbitrarily close, by the spectrum of an AR process.

Property 4.4 AR Spectral Approximation
Let g(ω) be the spectral density of a stationary process, xt . Then, given ε > 0,

there is an AR(p) representation

xt =
p∑

k=1
φk xt−k + wt

where wt is white noise with variance σ2
w , such that

| fx (ω) − g(ω) | < ε for all ω ∈ [−1/2, 1/2].

Moreover, p is finite and the roots of φ(z) = 1−
∑p

k=1 φk zk are outside the unit circle.

One drawback, however, is that the property does not tell us how large p must be
before the approximation is reasonable; in some situations p may be extremely large.
Property 4.4 also holds for MA and for ARMA processes in general, and a proof of
the result may be found in Fuller (1996, Ch 4). We demonstrate the technique in the
following example.
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Fig. 4.16. Model selection criteria AIC and BIC as a function of order p for autoregressive
models fitted to the SOI series.

Example 4.12 Autoregressive Spectral Estimator for SOI
Consider obtaining results comparable to the nonparametric estimators shown in
Figure 4.9 for the SOI series. Fitting successively higher order AR(p) models for
p = 1, 2, . . . , 30 yields a minimum BIC and a minimum AIC at p = 15, as shown
in Figure 4.16. We can see from Figure 4.16 that BIC is very definite about which
model it chooses; that is, the minimum BIC is very distinct. On the other hand, it
is not clear what is going to happen with AIC; that is, the minimum is not so clear,
and there is some concern that AIC will start decreasing after p = 30. Minimum
AICc selects the p = 15 model, but suffers from the same uncertainty as AIC.
The spectrum is shown in Figure 4.17, and we note the strong peaks at 52 months
and 12 months corresponding to the nonparametric estimators obtained in §4.5. In
addition, the harmonics of the yearly period are evident in the estimated spectrum.

To perform a similar analysis in R, the command spec.ar can be used to fit the
best model via AIC and plot the resulting spectrum. A quick way to obtain the AIC
values is to run the ar command as follows.
spaic = spec.ar(soi, log="no") # min AIC spec
abline(v=frequency(soi)*1/52, lty="dotted") # El Nino Cycle
(soi.ar = ar(soi, order.max=30)) # estimates and AICs
dev.new()
plot(1:30, soi.ar$aic[-1], type="o") # plot AICs

R works only with the AIC in this case. To generate Figure 4.16 we used the
following code to obtain AIC, AICc, and BIC. Because AIC and AICc are nearly
identical in this example, we only graphed AIC and BIC+1; we added 1 to the BIC
to reduce white space in the graphic.
n = length(soi)
AIC = rep(0, 30) -> AICc -> BIC
for (k in 1:30){
sigma2 = ar(soi, order=k, aic=FALSE)$var.pred
BIC[k] = log(sigma2) + (k*log(n)/n)
AICc[k] = log(sigma2) + ((n+k)/(n-k-2))
AIC[k] = log(sigma2) + ((n+2*k)/n)
}
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Fig. 4.17.Autoregressive spectral estimator for the SOI series using the AR(15) model selected
by AIC, AICc, and BIC. The first peak (marked by a vertical dotted line) corresponds to the El
Niño period of 52 months.

IC = cbind(AIC, BIC+1)
ts.plot(IC, type="o", xlab="p", ylab="AIC / BIC")

4.7 Linear Filters

Some of the examples of the previous sections have hinted at the possibility the
distribution of power or variance in a time series can be modified by making a linear
transformation. In this section, we explore that notion further by defining a linear
filter and showing how it can be used to extract signals from a time series. The linear
filter modifies the spectral characteristics of a time series in a predictable way, and
the systematic development of methods for taking advantage of the special properties
of linear filters is an important topic in time series analysis.

A linear filter uses a set of specified coefficients a j , for j = 0,±1,±2, . . ., to
transform an input series, xt , producing an output series, yt , of the form

yt =

∞∑
j=−∞

a j xt−j,
∞∑

j=−∞

|a j | < ∞. (4.56)

The form (4.56) is also called a convolution in some statistical contexts. The co-
efficients, collectively called the impulse response function, are required to satisfy
absolute summability so yt in (4.56) exists as a limit in mean square and the infinite
Fourier transform
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Ayx (ω) =
∞∑

j=−∞

a j e−2πiω j , (4.57)

called the frequency response function, is well defined. We have already encountered
several linear filters, for example, the simple three-point moving average in Exam-
ple 1.7, which can be put into the form of (4.56) by letting a−1 = a0 = a1 = 1/3 and
taking at = 0 for | j | ≥ 2.

The importance of the linear filter stems from its ability to enhance certain parts
of the spectrum of the input series. We now state the following result.

Property 4.5 Output Spectrum of a Filtered Stationary Series
Assuming existence of spectra, the spectrum of the filtered output yt in (4.56) is

related to the spectrum of the input xt by

fyy (ω) = |Ayx (ω) |2 fxx (ω), (4.58)

where the frequency response function Ayx (ω) is defined in (4.57).

The result (4.58) enables us to calculate the exact effect on the spectrum of any
given filtering operation. This important property shows the spectrum of the input
series is changed by filtering and the effect of the change can be characterized as
a frequency-by-frequency multiplication by the squared magnitude of the frequency
response function. Again, an obvious analogy to a property of the variance in classical
statistics holds, namely, if x is a random variable with variance σ2

x , then y = ax
will have variance σ2

y = a2σ2
x , so the variance of the linearly transformed random

variable is changed by multiplication by a2 in much the same way as the linearly
filtered spectrum is changed in (4.58).

Finally, we mention that Property 4.2, which was used to get the spectrum of an
ARMA process, is just a special case of Property 4.5 where in (4.56), xt = wt is
white noise, in which case fxx (ω) = σ2

w , and a j = ψ j , in which case

Ayx (ω) = ψ(e−2πiω) = θ(e−2πiω)
/
φ(e−2πiω).

Example 4.13 First Difference and Moving Average Filters
We illustrate the effect of filtering with two common examples, the first difference
filter

yt = ∇xt = xt − xt−1

and the symmetric moving average filter

yt =
1

24
(
xt−6 + xt+6

)
+ 1

12

5∑
r=−5

xt−r,

which is a modifiedDaniell kernel with m = 6. The results of filtering the SOI series
using the two filters are shown in the middle and bottom panels of Figure 4.18.
Notice that the effect of differencing is to roughen the series because it tends to
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Fig. 4.18. SOI series (top) compared with the differenced SOI (middle) and a centered 12-
month moving average (bottom).

retain the higher or faster frequencies. The centered moving average smoothes the
series because it retains the lower frequencies and tends to attenuate the higher
frequencies. In general, differencing is an example of a high-pass filter because it
retains or passes the higher frequencies, whereas the moving average is a low-pass
filter because it passes the lower or slower frequencies.

Notice that the slower periods are enhanced in the symmetric moving average
and the seasonal or yearly frequencies are attenuated. The filtered series makes
about 9 cycles in the length of the data (about one cycle every 52 months) and the
moving average filter tends to enhance or extract the signal that is associated with El
Niño. Moreover, by the low-pass filtering of the data, we get a better sense of the El
Niño effect and its irregularity. Figure 4.19 shows the results of a spectral analysis
on the low-pass filtered SOI series. It is clear that all high frequency behavior has
been removed and the El Niño cycle is accentuated; the dotted vertical line in the
figure corresponds to the 52 months cycle.

Now, having done the filtering, it is essential to determine the exact way in
which the filters change the input spectrum. We shall use (4.57) and (4.58) for
this purpose. The first difference filter can be written in the form (4.56) by letting
a0 = 1, a1 = −1, and ar = 0 otherwise. This implies that

Ayx (ω) = 1 − e−2πiω,
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Fig. 4.19. Spectral analysis of SOI after applying a 12-monthmoving average filter. The vertical
line corresponds to the 52-month cycle.

and the squared frequency response becomes

|Ayx (ω) |2 = (1 − e−2πiω)(1 − e2πiω) = 2[1 − cos(2πω)]. (4.59)

The top panel of Figure 4.20 shows that the first difference filter will attenuate
the lower frequencies and enhance the higher frequencies because the multiplier
of the spectrum, |Ayx (ω) |2, is large for the higher frequencies and small for the
lower frequencies. Generally, the slow rise of this kind of filter does not particularly
recommend it as a procedure for retaining only the high frequencies.

For the centered 12-month moving average, we can take a−6 = a6 = 1/24,
ak = 1/12 for −5 ≤ k ≤ 5 and ak = 0 elsewhere. Substituting and recognizing the
cosine terms gives

Ayx (ω) = 1
12

[
1 + cos(12πω) + 2

5∑
k=1

cos(2πωk)
]
. (4.60)

Plotting the squared frequency response of this function as in Figure 4.20 shows that
we can expect this filter to cut most of the frequency content above .05 cycles per
point. This corresponds to eliminating periods shorter than T = 1/.05 = 20 points.
In particular, this drives down the yearly components with periods ofT = 12months
and enhances the El Niño frequency, which is somewhat lower. The filter is not
completely efficient at attenuating high frequencies; some power contributions are
left at higher frequencies, as shown in the function |Ayx (ω) |2 and in the spectrum
of the moving average shown in Figure 4.4.

The following R session shows how to filter the data, perform the spectral
analysis of this example, and plot the squared frequency response curve of the
difference filter.
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Fig. 4.20. Squared frequency response functions of the first difference and 12-month moving
average filters.

par(mfrow=c(3,1))
plot(soi) # plot data
plot(diff(soi)) # plot first difference
k = kernel("modified.daniell", 6) # filter weights
plot(soif <- kernapply(soi, k)) # plot 12 month filter
dev.new()
mvspec(soif, spans=9, taper=.1, log="no") # spectral analysis
abline(v=12/52, lty="dashed")
dev.new()
w = seq(0, .5, length=500) # frequency response
FR = abs(1-exp(2i*pi*w))^2
plot(w, FR, type="l")

4.8 Multiple Series and Cross-Spectra

The notion of analyzing frequency fluctuations using classical statistical ideas extends
to the case in which there are several jointly stationary series, for example, xt and yt .
In this case, we can introduce the idea of a correlation indexed by frequency, called
the coherence. The autocovariance function

γxy (h) = E[(xt+h − µx )(yt − µy )]

has a spectral representation given by

γxy (h) =
∫ 1/2

−1/2
fxy (ω)e2πiωh dω h = 0,±1,±2, ..., (4.61)
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where the cross-spectrum is defined as the Fourier transform

fxy (ω) =
∞∑

h=−∞

γxy (h) e−2πiωh − 1/2 ≤ ω ≤ 1/2, (4.62)

assuming that the cross-covariance function is absolutely summable, as was the case
for the autocovariance. The cross-spectrum is generally a complex-valued function,
and it is often written as5

fxy (ω) = cxy (ω) − iqxy (ω), (4.63)

where

cxy (ω) =
∞∑

h=−∞

γxy (h) cos(2πωh) (4.64)

and

qxy (ω) =
∞∑

h=−∞

γxy (h) sin(2πωh) (4.65)

are defined as the cospectrum and quadspectrum, respectively. Because of the rela-
tionship γyx (h) = γxy (−h), it follows, by substituting into (4.62) and rearranging,
that

fyx (ω) = fxy (ω). (4.66)
This result, in turn, implies that the cospectrum and quadspectrum satisfy

cyx (ω) = cxy (ω) (4.67)

and
qyx (ω) = −qxy (ω). (4.68)

An important example of the application of the cross-spectrum is to the problem
of predicting an output series yt from some input series xt through a linear filter
relation such as the three-point moving average considered below. A measure of the
strength of such a relation is the squared coherence function, defined as

ρ2
y ·x (ω) =

| fyx (ω) |2

fxx (ω) fyy (ω)
, (4.69)

where fxx (ω) and fyy (ω) are the individual spectra of the xt and yt series, respec-
tively. Although we consider a more general form of this that applies to multiple
inputs later, it is instructive to display the single input case as (4.69) to emphasize the
analogy with conventional squared correlation, which takes the form

ρ2
yx =

σ2
yx

σ2
xσ

2
y

,

for random variables with variances σ2
x and σ2

y and covariance σyx = σxy . This
motivates the interpretation of squared coherence and the squared correlation between
two time series at frequency ω.

5 For this section, it will be useful to recall the facts e−iα = cos(α) − i sin(α) and if z = a + ib, then
z = a − ib.
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Example 4.14 Three-Point Moving Average
As a simple example, we compute the cross-spectrum between xt and the three-
point moving average yt = (xt−1 + xt + xt+1)/3, where xt is a stationary input
process with spectral density fxx (ω). First,

γxy (h) = cov(xt+h, yt ) = 1
3 cov(xt+h, xt−1 + xt + xt+1)

=
1
3
(
γxx (h + 1) + γxx (h) + γxx (h − 1)

)
=

1
3

∫ 1/2

−1/2

(
e2πiω + 1 + e−2πiω

)
e2πiωh fxx (ω) dω

=
1
3

∫ 1/2

−1/2
[1 + 2 cos(2πω)] fxx (ω)e2πiωh dω,

where we have use (4.13). Using the uniqueness of the Fourier transform, we argue
from the spectral representation (4.61) that

fxy (ω) = 1
3 [1 + 2 cos(2πω)] fxx (ω)

so that the cross-spectrum is real in this case. From Example 4.5, the spectral
density of yt is

fyy (ω) = 1
9 [3 + 4 cos(2πω) + 2 cos(4πω)] fxx (ω)

= 1
9 [1 + 2 cos(2πω)]2 fxx (ω),

using the identity cos(2α) = 2 cos2(α) − 1 in the last step. Substituting into (4.69)
yields the squared coherence between xt and yt as unity over all frequencies. This
is a characteristic inherited by more general linear filters. However, if some noise
is added to the three-point moving average, the coherence is not unity; these kinds
of models will be considered in detail later.

Property 4.6 Spectral Representation of a Vector Process
If the elements of the p × p autocovariance function matrix

Γ (h) = E[(xxxt+h − µµµ)(xxxt − µµµ)′]

of a p-dimensional stationary time series, xxxt = (xt1, xt2, . . . , xtp)′, has elements
satisfying

∞∑
h=−∞

|γjk (h) | < ∞ (4.70)

for all j, k = 1, . . . , p, then Γ (h) has the representation

Γ (h) =
∫ 1/2

−1/2
e2πiωh f (ω) dω h = 0,±1,±2, ..., (4.71)

as the inverse transform of the spectral density matrix, f (ω) = { f jk (ω)}, for j, k =
1, . . . , p, with elements equal to the cross-spectral components. The matrix f (ω) has
the representation
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f (ω) =
∞∑

h=−∞

Γ (h)e−2πiωh − 1/2 ≤ ω ≤ 1/2. (4.72)

Example 4.15 Spectral Matrix of a Bivariate Process
Consider a jointly stationary bivariate process (xt, yt ). We arrange the autocovari-
ances in the matrix

Γ (h) =
(
γxx (h) γxy (h)
γyx (h) γyy (h)

)
.

The spectral matrix would be given by

f (ω) =
(

fxx (ω) fxy (ω)
fyx (ω) fyy (ω)

)
,

where the Fourier transform (4.71) and (4.72) relate the autocovariance and spectral
matrices.

The extension of spectral estimation to vector series is fairly obvious. For the
vector series xxxt = (xt1, xt2, . . . , xtp)′, we may use the vector of DFTs, say ddd(ω j ) =
(d1(ω j ), d2(ω j ), . . . , dp (ω j ))′, and estimate the spectral matrix by

f̄ (ω) = L−1
m∑

k=−m

I (ω j + k/n) (4.73)

where now
I (ω j ) = ddd(ω j ) ddd∗(ω j ) (4.74)

is a p × p complex matrix.6
Again, the series may be tapered before the DFT is taken in (4.73) and we can

use weighted estimation,

f̂ (ω) =
m∑

k=−m

hk I (ω j + k/n) (4.75)

where {hk } are weights as defined in (4.42). The estimate of squared coherence
between two series, yt and xt is

ρ̂2
y ·x (ω) =

| f̂yx (ω) |2

f̂xx (ω) f̂yy (ω)
. (4.76)

If the spectral estimates in (4.76) are obtained using equal weights, we will write
ρ̄2
y ·x (ω) for the estimate.
Under general conditions, if ρ2

y ·x (ω) > 0 then

6 If Z is a complex matrix, then Z∗ = Z
′ denotes the conjugate transpose operation. That is, Z∗ is the

result of replacing each element of Z by its complex conjugate and transposing the resulting matrix.
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Fig. 4.21. Squared coherency between the SOI and Recruitment series; L = 19, n = 453, n′ =
480, and α = .001. The horizontal line is C.001.

| ρ̂y ·x (ω) | ∼ AN
(
|ρy ·x (ω) |,

(
1 − ρ2

y ·x (ω)
)2/2Lh

)
(4.77)

where Lh is defined in (4.44); the details of this result may be found in Brockwell and
Davis (1991, Ch 11). We may use (4.77) to obtain approximate confidence intervals
for the squared coherency ρ2

y ·x (ω).
We can test the hypothesis that ρ2

y ·x (ω) = 0 if we use ρ̄2
y ·x (ω) for the estimate

with L > 1,7 that is,

ρ̄2
y ·x (ω) =

| f̄yx (ω) |2

f̄xx (ω) f̄yy (ω)
. (4.78)

In this case, under the null hypothesis, the statistic

F =
ρ̄2
y ·x (ω)

(1 − ρ̄2
y ·x (ω))

(L − 1) (4.79)

has an approximate F-distribution with 2 and 2L − 2 degrees of freedom. When the
series have been extended to length n′, we replace 2L − 2 by df − 2, where df is
defined in (4.39). Solving (4.79) for a particular significance level α leads to

Cα =
F2,2L−2(α)

L − 1 + F2,2L−2(α)
(4.80)

as the approximate value that must be exceeded for the original squared coherence to
be able to reject ρ2

y ·x (ω) = 0 at an a priori specified frequency.

Example 4.16 Coherence Between SOI and Recruitment
Figure 4.21 shows the squared coherence between the SOI and Recruitment series
over awider band thanwas used for the spectrum. In this case, we used L = 19, df =

7 If L = 1 then ρ̄2
y ·x (ω) ≡ 1.
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2(19)(453/480) ≈ 36 and F2,d f−2(.001) ≈ 8.53 at the significance level α = .001.
Hence, we may reject the hypothesis of no coherence for values of ρ̄2

y ·x (ω) that
exceed C.001 = .32. We emphasize that this method is crude because, in addition to
the fact that the F-statistic is approximate, we are examining the squared coherence
across all frequencies with the Bonferroni inequality in mind. Figure 4.21 also
exhibits confidence bands as part of the R plotting routine. We emphasize that these
bands are only valid for ω where ρ2

y ·x (ω) > 0.
In this case, the seasonal frequency and the ElNiño frequencies ranging between

about 3 and 7 year periods are strongly coherent. Other frequencies are also strongly
coherent, although the strong coherence is less impressive because the underlying
power spectrum at these higher frequencies is fairly small. Finally, we note that the
coherence is persistent at the seasonal harmonic frequencies.

This example may be reproduced using the following R commands.
sr = mvspec(cbind(soi,rec), kernel('daniell',9), plot=FALSE)
sr$df # = 35.8625
f = qf(.999, 2, sr$df-2) # = 8.529792
C = f/(18+f) # = 0.318878
plot(sr, plot.type = "coh", ci.lty = 2)
abline(h = C)

Problems

4.1 Repeat the simulations and analyses in Example 4.1 and Example 4.2 with the
following changes:

(a) Change the sample size to n = 128 and generate and plot the same series as in
Example 4.1:

xt1 = 2 cos(2π .06 t) + 3 sin(2π .06 t),
xt2 = 4 cos(2π .10 t) + 5 sin(2π .10 t),
xt3 = 6 cos(2π .40 t) + 7 sin(2π .40 t),
xt = xt1 + xt2 + xt3.

What is the major difference between these series and the series generated in
Example 4.1? (Hint: The answer is fundamental. But if your answer is the series
are longer, you may be punished severely.)

(b) As in Example 4.2, compute and plot the periodogram of the series, xt , generated
in (a) and comment.

(c) Repeat the analyses of (a) and (b) but with n = 100 (as in Example 4.1), and
adding noise to xt ; that is

xt = xt1 + xt2 + xt3 + wt

where wt ∼ iid N(0, σw = 5). That is, you should simulate and plot the data, and
then plot the periodogram of xt and comment.
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4.2 Verify (4.5).

4.3 Consider an MA(1) process

xt = wt + θwt−1,

where θ is a parameter.

(a) Derive a formula for the power spectrum of xt , expressed in terms of θ and ω.
(b) Use arma.spec() to plot the spectral density of xt for θ > 0 and for θ < 0 (just

select arbitrary values).
(c) How should we interpret the spectra exhibited in part (b)?

4.4 Consider a first-order autoregressive model

xt = φxt−1 + wt,

where φ, for |φ| < 1, is a parameter and the wt are independent random variables
with mean zero and variance σ2

w .

(a) Show that the power spectrum of xt is given by

fx (ω) =
σ2
w

1 + φ2 − 2φ cos(2πω)
.

(b) Verify the autocovariance function of this process is

γx (h) =
σ2
w φ |h |

1 − φ2 ,

h = 0,±1,±2, . . ., by showing that the inverse transform of γx (h) is the spectrum
derived in part (a).

4.5 In applications, we will often observe series containing a signal that has been
delayed by some unknown time D, i.e.,

xt = st + Ast−D + nt,

where st and nt are stationary and independent with zero means and spectral densities
fs (ω) and fn(ω), respectively. The delayed signal is multiplied by some unknown
constant A. Find the autocovariance function of xt and use it to show

fx (ω) = [1 + A2 + 2A cos(2πωD)] fs (ω) + fn(ω).

4.6 Figure 4.22 shows the biyearly smoothed (12-month moving average) number of
sunspots from June 1749 to December 1978 with n = 459 points that were taken
twice per year; the data are contained in sunspotz. With Example 4.7 as a guide,
perform a periodogram analysis identifying the predominant periods and obtaining
confidence intervals for the identified periods. Interpret your findings.
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Fig. 4.22. Smoothed 12-month sunspot numbers (sunspotz) sampled twice per year.

4.7 The levels of salt concentration known to have occurred over rows, corresponding
to the average temperature levels for the soil science are in salt and saltemp. Plot
the series and then identify the dominant frequencies by performing separate spectral
analyses on the two series. Include confidence intervals for the dominant frequencies
and interpret your findings.

4.8 Let the observed series xt be composed of a periodic signal and noise so it can
be written as

xt = β1 cos(2πωk t) + β2 sin(2πωk t) + wt,

where wt is a white noise process with variance σ2
w . The frequency ωk , 0, 1

2
is assumed to be known and of the form k/n. Given data x1, . . . , xn, suppose we
consider estimating β1, β2 and σ2

w by least squares.

(a) Use simple regression formulas to show that for a fixed ωk , the least squares
regression coefficients are

β̂1 = 2n−1/2dc (ωk ) and β̂2 = 2n−1/2ds (ωk ),

where the cosine and sine transforms (4.21) and (4.22) appear on the right-hand
side. Hint: See Problem 4.20.

(b) Prove that the error sum of squares can be written as

SSE =
n∑
t=1

x2
t − 2Ix (ωk )

so that the value of ωk that minimizes squared error is the same as the value that
maximizes the periodogram Ix (ωk ) estimator (4.19).

(c) Show that the sum of squares for the regression is given by

SSR = 2Ix (ωk ).

(d) Under theGaussian assumption and fixedωk , show that the F-test of no regression
leads to an F-statistic that is a monotone function of Ix (ωk ).

4.9 Repeat Problem 4.6 using a nonparametric spectral estimation procedure. In
addition to discussing your findings in detail, comment on your choice of a spectral
estimate with regard to smoothing and tapering.
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4.10 Repeat Problem 4.7 using a nonparametric spectral estimation procedure. In
addition to discussing your findings in detail, comment on your choice of a spectral
estimate with regard to smoothing and tapering.

4.11 Often, the periodicities in the sunspot series are investigated by fitting an au-
toregressive spectrum of sufficiently high order. The main periodicity is often stated
to be in the neighborhood of 11 years. Fit an autoregressive spectral estimator to the
sunspot data using a model selection method of your choice. Compare the result with
a conventional nonparametric spectral estimator found in Problem 4.6.

4.12 Fit an autoregressive spectral estimator to the Recruitment series and compare
it to the results of Example 4.10.

4.13 The periodic behavior of a time series induced by echoes can also be observed
in the spectrum of the series; this fact can be seen from the results stated in Prob-
lem 4.5(a). Using the notation of that problem, suppose we observe xt = st + Ast−D+
nt , which implies the spectra satisfy fx (ω) = [1+A2+2A cos(2πωD)] fs (ω)+ fn(ω).
If the noise is negligible ( fn(ω) ≈ 0) then log fx (ω) is approximately the sum of a
periodic component, log[1+A2+2A cos(2πωD)], and log fs (ω). Bogart et al. (1962)
proposed treating the detrended log spectrum as a pseudo time series and calculating
its spectrum, or cepstrum, which should show a peak at a quefrency corresponding to
1/D. The cepstrum can be plotted as a function of quefrency, from which the delaty
D can be estimated.

For the speech series presented in speech, estimate the pitch period using cepstral
analysis as follows.

(a) Calculate and display the log-periodogram of the data. Is the periodogram peri-
odic, as predicted?

(b) Perform a cepstral (spectral) analysis on the detrended logged periodogram, and
use the results to estimate the delay D. How does your answer compare with the
analysis of ??, which was based on the ACF?

4.14 Consider two time series

xt = wt − wt−1,

yt =
1
2 (wt + wt−1),

formed from the white noise series wt with variance σ2
w = 1.

(a) Are xt and yt jointly stationary? Recall the cross-covariance function must also
be a function only of the lag h and cannot depend on time.

(b) Compute the spectra fy (ω) and fx (ω), and comment on the difference between
the two results.

(c) Suppose sample spectral estimators f̄y (.10) are computed for the series using
L = 3. Find a and b such that

P
{
a ≤ f̄y (.10) ≤ b

}
= .90.
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This expression gives two points that will contain 90% of the sample spectral
values. Put 5% of the area in each tail.

4.15 Analyze the coherency between the temperature and salt data discussed in Prob-
lem 4.7. Discuss your findings.

4.16 Consider two processes

xt = wt and yt = φxt−D + vt

where wt and vt are independent white noise processes with common variance σ2, φ
is a constant, and D is a fixed integer delay.

(a) Compute the coherency between xt and yt .
(b) Simulate n = 1024 normal observations from xt and yt for φ = .9, σ2 = 1, and

D = 0. Then estimate and plot the coherency between the simulated series for the
following values of L and comment:
(i) L = 1, (ii) L = 3, (iii) L = 41, and (iv) L = 101.

4.17 For the processes in Problem 4.16:

(a) Compute the phase between xt and yt .
(b) Simulate n = 1024 observations from xt and yt for φ = .9, σ2 = 1, and D = 1.

Then estimate and plot the phase between the simulated series for the following
values of L and comment:
(i) L = 1, (ii) L = 3, (iii) L = 41, and (iv) L = 101.

4.18 Consider the bivariate time series records containing monthly U.S. production
as measured by the Federal Reserve Board Production Index (prodn) and monthly
unemployment (unemp) that are included with astsa.

(a) Compute the spectrum and the log spectrum for each series, and identify statis-
tically significant peaks. Explain what might be generating the peaks. Compute
the coherence, and explain what is meant when a high coherence is observed at a
particular frequency.

(b) What would be the effect of applying the filter

ut = xt − xt−1 followed by vt = ut − ut−12

to the series given above? Plot the predicted frequency responses of the simple
difference filter and of the seasonal difference of the first difference.

(c) Apply the filters successively to one of the two series and plot the output. Examine
the output after taking a first difference and comment on whether stationarity is a
reasonable assumption. Why or why not? Plot after taking the seasonal difference
of the first difference. What can be noticed about the output that is consistent with
what you have predicted from the frequency response? Verify by computing the
spectrum of the output after filtering.
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4.19 Let xt = cos(2πωt), and consider the output yt =
∑∞

k=−∞ ak xt−k, where∑
k |ak | < ∞. Show yt = |A(ω) | cos(2πωt + φ(ω)), where |A(ω) | and φ(ω) are

the amplitude and phase of the filter, respectively. Interpret the result in terms of the
relationship between the input series, xt , and the output series, yt .

4.20 * This is here for useful information. Verify that for any positive integer n and
j, k = 0, 1, . . . , [[n/2]], where [[·]] denotes the greatest integer function:

(a) Except for j = 0 or j = n/2,

n∑
t=1

cos2(2πt j/n) =
n∑
t=1

sin2(2πt j/n) = n/2.

(b) When j = 0 or j = n/2,

n∑
t=1

cos2(2πt j/n) = n but
n∑
t=1

sin2(2πt j/n) = 0.

(c) For j , k,

n∑
t=1

cos(2πt j/n) cos(2πtk/n) =
n∑
t=1

sin(2πt j/n) sin(2πtk/n) = 0.

(d) Also, for any j and k,

n∑
t=1

cos(2πt j/n) sin(2πtk/n) = 0.

* Note,
∑n

t=1 z
t = z 1−zn

1−z for z , 1, and we’ll do (a):∑n
t=1 cos2 (2πt j/n) = 1

4
∑n

t=1
(
e2π it j/n + e−2π it j/n ) (

e2π it j/n + e−2π it j/n )
= 1

4
∑n

t=1
(
e4π it j/n + 1 + 1 + e−4π it j/n )

= n
2 .
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Some Additional Topics **

In this chapter, we present special or advanced topics in the time domain. This chapter
consists of sections of independent topics that may be read in any order. Most of the
sections depend on a basic knowledge of ARMAmodels, forecasting and estimation,
which is the material that is covered in Chapter 3. A few sections, for example the
section on long memory models, require some knowledge of spectral analysis and
related topics covered in Chapter 4.

5.1 GARCHModels

Recent problems in finance have motivated the study of the volatility, or variability,
of a time series. Although ARMA models assume a constant variance, models such
as the autoregressive conditionally heteroscedastic or ARCH model, first introduced
by Engle (1982), were developed to model changes in volatility. These models were
later extended to generalized ARCH, or GARCH models by Bollerslev (1986).

In §3.8, we discussed the return or growth rate of a series. For example, if xt is
the value of a stock at time t, then the return or relative gain, yt , of the stock at time t
is

yt =
xt − xt−1

xt−1
. (5.1)

Definition (5.1) implies that xt = (1+ yt )xt−1. Thus, based on the discussion in §3.8,
if the return represents a small (in magnitude) percentage change then

∇[log(xt )] ≈ yt . (5.2)

Either value, ∇[log(xt )] or (xt − xt−1)/xt−1, will be called the return, and will be
denoted by yt . It is the study of yt that is the focus of ARCH, GARCH, and other
volatility models. Recently there has been interest in stochastic volatility models and
we will discuss these models in Chapter 6 because they are state-space models.

Typically, for financial series, the return yt , does not have a constant conditional
variance, and highly volatile periods tend to be clustered together. In other words,
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there is a strong dependence of sudden bursts of variability in a return on the series
own past. For example, Figure 1.4 shows the daily returns of the New York Stock
Exchange (NYSE) from February 2, 1984 to December 31, 1991. In this case, as is
typical, the return yt is fairly stable, except for short-term bursts of high volatility.

The simplest ARCH model, the ARCH(1), models the return as

yt = σt ε t (5.3)
σ2
t = α0 + α1y

2
t−1, (5.4)

where ε t is standard Gaussian white noise; that is, ε t ∼ iid N(0, 1). As with ARMA
models, wemust impose some constraints on themodel parameters to obtain desirable
properties. One obvious constraint is that α1 must not be negative, or else σ2

t may be
negative.

As we shall see, the ARCH(1) models return as a white noise process with non-
constant conditional variance, and that conditional variance depends on the previous
return. First, notice that the conditional distribution of yt given yt−1 is Gaussian:

yt �� yt−1 ∼ N(0, α0 + α1y
2
t−1). (5.5)

In addition, it is possible to write the ARCH(1) model as a non-Gaussian AR(1)
model in the square of the returns y2

t . First, rewrite (5.3)-(5.4) as

y2
t = σ

2
t ε

2
t

α0 + α1y
2
t−1 = σ

2
t ,

and subtract the two equations to obtain

y2
t − (α0 + α1y

2
t−1) = σ2

t ε
2
t − σ

2
t .

Now, write this equation as

y2
t = α0 + α1y

2
t−1 + vt, (5.6)

where vt = σ2
t (ε2

t − 1). Because ε2
t is the square of a N(0, 1) random variable, ε2

t − 1
is a shifted (to have mean-zero), χ2

1 random variable.
To explore the properties of ARCH, we define Ys = {ys, ys−1, ...}. Then, using

(5.5), we immediately see that yt has a zero mean:

E(yt ) = EE(yt �� Yt−1) = EE(yt �� yt−1) = 0. (5.7)

Because E(yt �� Yt−1) = 0, the process yt is said to be a martingale difference.
Because yt is a martingale difference, it is also an uncorrelated sequence. For

example, with h > 0,

cov(yt+h, yt ) = E(yt yt+h) = EE(yt yt+h | Yt+h−1)
= E {ytE(yt+h | Yt+h−1)} = 0. (5.8)
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The last line of (5.8) follows because yt belongs to the information set Yt+h−1 for
h > 0, and, E(yt+h | Yt+h−1) = 0, as determined in (5.7).

An argument similar to (5.7) and (5.8) will establish the fact that the error process
vt in (5.6) is also amartingale difference and, consequently, an uncorrelated sequence.
If the variance of vt is finite and constant with respect to time, and 0 ≤ α1 < 1, then
based on Property 3.1, (5.6) specifies a causal AR(1) process for y2

t . Therefore, E(y2
t )

and var(y2
t ) must be constant with respect to time t. This, implies that

E(y2
t ) = var(yt ) =

α0

1 − α1
(5.9)

and, after some manipulations,

E(y4
t ) =

3α2
0

(1 − α1)2

1 − α2
1

1 − 3α2
1
, (5.10)

provided 3α2
1 < 1. These results imply that the kurtosis, κ, of yt is

κ =
E(y4

t )

[E(y2
t )]2
= 3

1 − α2
1

1 − 3α2
1
, (5.11)

which is always larger than 3 (unless α1 = 0), the kurtosis of the normal distribution.
Thus, the marginal distribution of the returns, yt , is leptokurtic, or has “fat tails."
Thus, if 0 ≤ α1 < 1, the process yt itself is white noise and its unconditional
distribution is symmetrically distributed around zero; this distribution is leptokurtic.
If, in addition, 3α2

1 < 1, the square of the process, y2
t , follows a causal AR(1) model

with ACF given by ρy2 (h) = αh
1 ≥ 0, for all h > 0. If 3α1 ≥ 1, but α1 < 1, it can be

shown that y2
t is strictly stationary with infinite variance (see Douc, et al., 2014).

Estimation of the parameters α0 and α1 of the ARCH(1) model is typically
accomplished by conditional MLE. The conditional likelihood of the data y2, ...., yn
given y1, is given by

L(α0, α1 �� y1) =
n∏
t=2

fα0,α1 (yt �� yt−1), (5.12)

where the density fα0,α1 (yt �� yt−1) is the normal density specified in (5.5). Hence,
the criterion function to be minimized, l (α0, α1) ∝ − ln L(α0, α1 �� y1) is given by

l (α0, α1) =
1
2

n∑
t=2

ln(α0 + α1y
2
t−1) +

1
2

n∑
t=2

*
,

y2
t

α0 + α1y
2
t−1

+
-
. (5.13)

Estimation is accomplished by numerical methods, as described in §3.6.
It is also possible to combine a regression or an ARMA model for the mean with

an ARCHmodel for the errors. For example, a regression with ARCH(1) errors model
would have the observations xt as linear function of p regressors, zzzt = (zt1, ..., ztp)′,
and ARCH(1) noise yt , say,
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Fig. 5.1. ACF and PACF of the squares of the residuals from the AR(1) fit on U.S. GNP.

xt = βββ′zzzt + yt,

where yt satisfies (5.3)-(5.4), but, in this case, is unobserved. Similarly, for example,
an AR(1) model for data xt exhibiting ARCH(1) errors would be

xt = φ0 + φ1xt−1 + yt .

These types of models were explored by Weiss (1984).

Example 5.1 Analysis of U.S. GNP
In Example 3.30, we fit an MA(2) model and an AR(1) model to the U.S. GNP
series and we concluded that the residuals from both fits appeared to behave like a
white noise process. In Example 3.34 we concluded that the AR(1) is probably the
better model in this case. It has been suggested that the U.S. GNP series has ARCH
errors, and in this example, we will investigate this claim. If the GNP noise term is
ARCH, the squares of the residuals from the fit should behave like a non-Gaussian
AR(1) process, as pointed out in (5.6). Figure 5.1 shows the ACF and PACF of the
squared residuals it appears that there may be some dependence, albeit small, left
in the residuals. The figure was generated in R as follows.
gnpgr = diff(log(gnp)) # get the growth rate
sarima(gnpgr, 1, 0, 0) # fit an AR(1)
acf2(innov^2, 24) # get (p)acf of the squared residuals

We used the R package fGarch to fit an AR(1)-ARCH(1) model to the
U.S. GNP returns with the following results. A partial output is shown; we note that
garch(1,0) specifies an ARCH(1) in the code below (details later).
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library(fGarch)
summary(garchFit(~arma(1,0)+garch(1,0), gnpgr))

Estimate Std. Error t value Pr(>t)
mu 5.278e-03 8.996e-04 5.867 4.44e-09
ar1 3.666e-01 7.514e-02 4.878 1.07e-06
omega 7.331e-05 9.011e-06 8.135 4.44e-16
alpha1 1.945e-01 9.554e-02 2.035 0.0418

Standardised Residuals Tests: Statistic p-Value
Jarque-Bera Test R Chi^2 9.118036 0.01047234
Shapiro-Wilk Test R W 0.9842407 0.01433690
Ljung-Box Test R Q(10) 9.874326 0.4515875
Ljung-Box Test R Q(15) 17.55855 0.2865844
Ljung-Box Test R Q(20) 23.41363 0.2689437
Ljung-Box Test R^2 Q(10) 19.2821 0.03682246
Ljung-Box Test R^2 Q(15) 33.23648 0.004352736
Ljung-Box Test R^2 Q(20) 37.74259 0.009518992
LM Arch Test R TR^2 25.41625 0.01296901

In this example, we obtain φ̂0 = .005 (called mu in the output) and φ̂1 = .367
(called ar1) for the AR(1) parameter estimates; in Example 3.30 the values were
.005 and .347, respectively. The ARCH(1) parameter estimates are α̂0 = 0 (called
omega) for the constant and α̂1 = .195, which is significant with a p-value of about
.04. There are a number of tests that are performed on the residuals [R] or the squared
residuals [R^2]. For example, the Jarque–Bera statistic tests the residuals of the fit
for normality based on the observed skewness and kurtosis, and it appears that the
residuals have some non-normal skewness and kurtosis. The Shapiro–Wilk statistic
tests the residuals of the fit for normality based on the empirical order statistics.
The other tests, primarily based on the Q-statistic, are used on the residuals and
their squares.

The ARCH(1) model can be extended to the general ARCH(m) model in an
obvious way. That is, (5.3), yt = σt ε t , is retained, but (5.4) is extended to

σ2
t = α0 + α1y

2
t−1 + · · · + αmy

2
t−m. (5.14)

Estimation for ARCH(m) also follows in an obvious way from the discussion of
estimation for ARCH(1) models. That is, the conditional likelihood of the data
ym+1, ...., yn given y1, . . . , ym, is given by

L(ααα �� y1, . . . , ym) =
n∏

t=m+1
fααα (yt �� yt−1, . . . , yt−m), (5.15)

where ααα = (α0, α1, . . . , αm) and the conditional densities fααα (·|·) in (5.15) are normal
densities; that is, for t > m,

yt �� yt−1, . . . , yt−m ∼ N(0, α0 + α1y
2
t−1 + · · · + αmy

2
t−m).

Another extension of ARCH is the generalized ARCH or GARCH model de-
veloped by Bollerslev (1986). For example, a GARCH(1, 1) model retains (5.3),
yt = σt ε t , but extends (5.4) as follows:
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σ2
t = α0 + α1y

2
t−1 + β1σ

2
t−1. (5.16)

Under the condition that α1 + β1 < 1, using similar manipulations as in (5.6), the
GARCH(1, 1) model, (5.3) and (5.16), admits a non-Gaussian ARMA(1, 1) model
for the squared process

y2
t = α0 + (α1 + β1)y2

t−1 + vt − β1vt−1, (5.17)

where vt is as defined in (5.6). Representation (5.17) follows by writing (5.3) as

y2
t − σ

2
t = σ

2
t (ε2

t − 1)
β1(y2

t−1 − σ
2
t−1) = β1σ

2
t−1(ε2

t−1 − 1),

subtracting the second equation from the first, and using the fact that, from (5.16),
σ2
t − β1σ

2
t−1 = α0 + α1y

2
t−1, on the left-hand side of the result. The GARCH(m, r)

model retains (5.3) and extends (5.16) to

σ2
t = α0 +

m∑
j=1

α j y
2
t−j +

r∑
j=1

β jσ
2
t−j . (5.18)

Conditional maximum likelihood estimation of the GARCH(m, r) model param-
eters is similar to the ARCH(m) case, wherein the conditional likelihood, (5.15), is
the product of N(0, σ2

t ) densities with σ2
t given by (5.18) and where the conditioning

is on the first max(m, r) observations, with σ2
1 = · · · = σ

2
r = 0. Once the parameter

estimates are obtained, the model can be used to obtain one-step-ahead forecasts of
the volatility, say σ̂2

t+1, given by

σ̂2
t+1 = α̂0 +

m∑
j=1

α̂ j y
2
t+1−j +

r∑
j=1

β̂ j σ̂
2
t+1−j . (5.19)

We explore these concepts in the following example.

Example 5.2 GARCH Analysis of the NYSE Returns
As previously mentioned, the daily returns of the NYSE shown in Figure 1.4 exhibit
classicGARCH features.We used theR fGarch package to fit aGARCH(1, 1) model
to the series with the following results:
library(fGarch)
nyse = astsa::nyse # fGarch has one too
summary(nyse.g <- garchFit(~garch(1,1), nyse))

Estimate Std. Error t value Pr(>t)
mu 7.369e-04 1.786e-04 4.126 3.69e-05
omega 6.542e-06 1.455e-06 4.495 6.94e-06
alpha1 1.141e-01 1.604e-02 7.114 1.13e-12
beta1 8.061e-01 2.973e-02 27.112 < 2e-16
Standardised Residuals Tests:

Statistic p-Value
Jarque-Bera Test R Chi^2 3628.415 0
Shapiro-Wilk Test R W 0.9515562 0
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Fig. 5.2. GARCH predictions of the NYSE volatility, ±2σ̂t , displayed as dashed lines.

Ljung-Box Test R Q(10) 29.69242 0.0009616813
Ljung-Box Test R Q(15) 30.50938 0.01021164
Ljung-Box Test R Q(20) 32.81143 0.03538324
Ljung-Box Test R^2 Q(10) 3.510505 0.9667405
Ljung-Box Test R^2 Q(15) 4.408852 0.9960585
Ljung-Box Test R^2 Q(20) 6.68935 0.9975864
LM Arch Test R TR^2 3.967784 0.9840107

To explore the GARCH predictions of volatility, we calculated and plotted the
100 observations from the middle of the data (which includes the October 19, 1987
crash) along with the one-step-ahead predictions of the corresponding volatility,
σ2
t . The results are displayed as the data ±2σ̂t as a dashed line surrounding the data

in Figure 5.2.
u = nyse.g@sigma.t
plot(window(nyse, start=900, end=1000), ylim=c(-.22,.2), ylab="NYSE Returns")
lines(window(nyse-2*u, start=900, end=1000), lty=2, col=4)
lines(window(nyse+2*u, start=900, end=1000), lty=2, col=4)

Some key points can be gleaned from the examples of this section. First, it is
apparent that the conditional distribution of the returns is rarely normal. fGarch
allows for various distributions to be fit to the data; see the help file for information.
Some drawbacks of the GARCH model are: (i) the model assumes positive and
negative returns have the same effect because volatility depends on squared returns;
(ii) the model is restrictive because of the tight constraints on the model parameters
(e.g., for an ARCH(1), 0 ≤ α2

1 < 1
3 ); (iii) the likelihood is flat unless n is very

large; (iv) the model tends to overpredict volatility because it responds slowly to large
isolated returns.

Various extensions to the original model have been proposed to overcome some
of the shortcomings we have just mentioned. For example, we have already discussed
the fact that the S-PLUS Garch module will fit some non-normal, albeit symmetric,
distributions. For asymmetric return dynamics, one can use the EGARCH (exponen-
tial GARCH) model, which is a complex model that has different components for
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positive returns and for negative returns. In the case of persistence in volatility, the
integrated GARCH (IGARCH) model may be used. Recall (5.17) where we showed
the GARCH(1, 1) model can be written as

y2
t = α0 + (α1 + β1)y2

t−1 + vt − β1vt−1

and y2
t is stationary if α1 + β1 < 1. The IGARCH model sets α1 + β1 = 1, in which

case the IGARCH(1, 1) model is

yt = σt ε t and σ2
t = α0 + (1 − β1)y2

t−1 + β1σ
2
t−1.

There are many different extensions to the basic ARCH model that were developed
to handle the various situations noticed in practice. Interested readers might find the
general discussions in Engle et al. (1994) and Shephard (1996) worthwhile reading.
Also, Gouriéroux (1997) gives a detailed presentation of ARCH and related models
with financial applications and contains an extensive bibliography. Two excellent texts
on financial time series analysis are Chan (2002) and Tsay (2002).

5.2 Long Memory ARMA and Fractional Differencing

The conventional ARMA(p, q) process is often referred to as a short-memory process
because the coefficients in the representation

xt =
∞∑
j=0

ψ jwt−j,

obtained by solving
φ(z)ψ(z) = θ(z),

are dominated by exponential decay. As pointed out in Chapter 3, this result implies
the ACF of the short memory process ρ(h) → 0 exponentially fast as h → ∞. When
the sample ACF of a time series decays slowly, the advice given in Chapter 3 has
been to difference the series until it seems stationary. Following this advice with
the glacial varve series first presented in Example 3.20 leads to the first difference
of the logarithms of the data being represented as a first-order moving average. In
Example 3.32, further analysis of the residuals leads to fitting an ARIMA(1, 1, 1)
model,

∇xt = φ∇xt−1 + wt + θwt−1,

where we understand xt is the log-transformed varve series. In particular, the esti-
mates of the parameters (and the standard errors) were φ̂ = .23(.05), θ̂ = −.89(.03),
and σ̂2

w = .23. The use of the first difference∇xt = (1−B)xt can be too severe a mod-
ification in the sense that the nonstationarymodel might represent an overdifferencing
of the original process.

Long memory (or persistent) time series were considered in Hosking (1981) and
Granger and Joyeux (1980) as intermediate compromises between the short memory
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Fig. 5.3. Sample ACF of the log transformed varve series.

ARMA type models and the fully integrated nonstationary processes in the Box–
Jenkins class. The easiest way to generate a long memory series is to think of using
the difference operator (1− B)d for fractional values of d, say, 0 < d < .5, so a basic
long memory series gets generated as

(1 − B)dxt = wt, (5.20)

where wt still denotes white noise with variance σ2
w . The fractionally differenced

series (5.20), for |d | < .5, is often called fractional noise (except when d is zero).
Now, d becomes a parameter to be estimated along withσ2

w . Differencing the original
process, as in the Box–Jenkins approach, may be thought of as simply assigning a
value of d = 1. This idea has been extended to the class of fractionally integrated
ARMA, or ARFIMA models, where −.5 < d < .5; when d is negative, the term
antipersistent is used. Long memory processes occur in hydrology (see Hurst, 1951,
and McLeod and Hipel, 1978) and in environmental series, such as the varve data we
have previously analyzed, to mention a few examples. Long memory time series data
tend to exhibit sample autocorrelations that are not necessarily large (as in the case
of d = 1), but persist for a long time. Figure 5.3 shows the sample ACF, to lag 100,
of the log-transformed varve series, which exhibits classic long memory behavior:
u = acf(log(varve), 100, plot=FALSE)
plot(u[1:100], ylim=c(-.1,1), main="log(varve)") # get rid of lag 0

To investigate its properties, we can use the binomial expansion (d > −1) to write

wt = (1 − B)dxt =
∞∑
j=0

πjB j xt =
∞∑
j=0

πj xt−j (5.21)

where
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πj =
Γ ( j − d)

Γ ( j + 1)Γ (−d)
(5.22)

with Γ (x + 1) = xΓ (x) being the gamma function. Similarly (d < 1), we can write

xt = (1 − B)−dwt =

∞∑
j=0

ψ jB jwt =

∞∑
j=0

ψ jwt−j (5.23)

where
ψ j =

Γ ( j + d)
Γ ( j + 1)Γ (d)

. (5.24)

When |d | < .5, the processes (5.21) and (5.23) are well-defined stationary processes
(see Brockwell and Davis, 1991, for details). In the case of fractional differencing,
however, the coefficients satisfy

∑
π2
j < ∞ and

∑
ψ2
j < ∞ as opposed to the absolute

summability of the coefficients in ARMA processes.
Using the representation (5.23)–(5.24), and after some nontrivial manipulations,

it can be shown that the ACF of xt is

ρ(h) =
Γ (h + d)Γ (1 − d)
Γ (h − d + 1)Γ (d)

∼ h2d−1 (5.25)

for large h. From this we see that for 0 < d < .5

∞∑
h=−∞

|ρ(h) | = ∞

and hence the term long memory.
In order to examine a series such as the varve series for a possible long memory

pattern, it is convenient to look at ways of estimating d. Using (5.22) it is easy to
derive the recursions

πj+1(d) =
( j − d)πj (d)

( j + 1)
, (5.26)

for j = 0, 1, . . ., with π0(d) = 1. Maximizing the joint likelihood of the errors under
normality, say, wt (d), will involve minimizing the sum of squared errors

Q(d) =
∑

w2
t (d).

The usual Gauss–Newton method, described in §3.6, leads to the expansion

wt (d) = wt (d0) + w′t (d0)(d − d0),

where
w′t (d0) =

∂wt

∂d
����d=d0

and d0 is an initial estimate (guess) at to the value of d. Setting up the usual regression
leads to
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Fig. 5.4. Coefficients πj (.384), j = 1, 2, . . . , 30 in the representation (5.26).

d = d0 −

∑
t w
′
t (d0)wt (d0)∑
t w
′
t (d0)2 . (5.27)

The derivatives are computed recursively by differentiating (5.26) successively with
respect to d: π′

j+1(d) = [( j − d)π′j (d) − πj (d)]/( j + 1), where π′0(d) = 0. The errors
are computed from an approximation to (5.21), namely,

wt (d) =
t∑

j=0
πj (d)xt−j . (5.28)

It is advisable to omit a number of initial terms from the computation and start the
sum, (5.27), at some fairly large value of t to have a reasonable approximation.

Example 5.3 Long Memory Fitting of the Glacial Varve Series
We consider analyzing the glacial varve series discussed in Example 2.6 and Exam-
ple 3.20. Figure 2.6 shows the original and log-transformed series (which we denote
by xt ). In Example 3.32, we noted that xt could be modeled as an ARIMA(1, 1, 1)
process. We fit the fractionally differenced model, (5.20), to the mean-adjusted se-
ries, xt − x̄. Applying the Gauss–Newton iterative procedure previously described,
starting with d = .1 and omitting the first 30 points from the computation, leads to
a final value of d = .384, which implies the set of coefficients πj (.384), as given
in Figure 5.4 with π0(.384) = 1. We can compare roughly the performance of the
fractional difference operator with the ARIMA model by examining the autocorre-
lation functions of the two residual series as shown in Figure 5.5. The ACFs of the
two residual series are roughly comparable with the white noise model.

To perform this analysis in R, first download and install the fracdiff package.
Then use
library(fracdiff)
lvarve = log(varve)-mean(log(varve))
varve.fd = fracdiff(lvarve, nar=0, nma=0, M=30)
varve.fd$d # = 0.3841688
varve.fd$stderror.dpq # = 4.589514e-06 (questionable result!!)
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Fig. 5.5. ACF of residuals from the ARIMA(1, 1, 1) fit to the logged varve series (top) and of
the residuals from the long memory model fit, (1 − B)d xt = wt , with d = .384 (bottom).

p = rep(1,31)
for (k in 1:30){ p[k+1] = (k-varve.fd$d)*p[k]/(k+1) }
plot(1:30, p[-1], ylab=expression(pi(d)), xlab="Index", type="h")
res.fd = diffseries(log(varve), varve.fd$d) # frac diff resids
res.arima = resid(arima(log(varve), order=c(1,1,1))) # arima resids
par(mfrow=c(2,1))
acf(res.arima, 100, xlim=c(4,97), ylim=c(-.2,.2), main="")
acf(res.fd, 100, xlim=c(4,97), ylim=c(-.2,.2), main="")

The R package uses a truncated maximum likelihood procedure that was discussed
in Haslett and Raftery (1989), which is a little more elaborate than simply zeroing
out initial values. The default truncation value in R is M = 100. In the default case,
the estimate is d̂ = .37 with approximately the same (questionable) standard error.

Forecasting long memory processes is similar to forecasting ARIMA models.
That is, (5.21) and (5.26) can be used to obtain the truncated forecasts

x̃nn+m = −
n∑
j=1

πj (d̂) x̃nn+m−j, (5.29)

for m = 1, 2, . . . . Error bounds can be approximated by using

Pn
n+m = σ̂

2
w

*.
,

m−1∑
j=0

ψ2
j (d̂)+/

-
(5.30)
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where, as in (5.26),

ψ j (d̂) =
( j + d̂)ψ j (d̂)

( j + 1)
, (5.31)

with ψ0(d̂) = 1.
No obvious short memory ARMA-type component can be seen in the ACF of

the residuals from the fractionally differenced varve series shown in Figure 5.5.
It is natural, however, that cases will exist in which substantial short memory-type
components will also be present in data that exhibits longmemory. Hence, it is natural
to define the general ARFIMA(p, d, q), −.5 < d < .5 process as

φ(B)∇d (xt − µ) = θ(B)wt, (5.32)

where φ(B) and θ(B) are as given in Chapter 3. Writing the model in the form

φ(B)πd (B)(xt − µ) = θ(B)wt (5.33)

makes it clear howwe go about estimating the parameters for the more general model.
Forecasting for the ARFIMA(p, d, q) series can be easily done, noting that we may
equate coefficients in

φ(z)ψ(z) = (1 − z)−dθ(z) (5.34)

and
θ(z)π(z) = (1 − z)dφ(z) (5.35)

to obtain the representations

xt = µ +
∞∑
j=0

ψ jwt−j

and

wt =

∞∑
j=0

πj (xt−j − µ).

We then can proceed as discussed in (5.29) and (5.30).
Comprehensive treatments of long memory time series models are given in the

texts by Beran (1994), Palma (2007), and Robinson (2003), and it should be noted that
several other techniques for estimating the parameters, especially, the long memory
parameter, can be developed in the frequency domain. In this case, we may think of
the equations as generated by an infinite order autoregressive series with coefficients
πj given by (5.26) . Using the same approach as before, we obtain

fx (ω) =
σ2
w

|
∑∞

k=0 πkε
−2πikω |2

= σ2
w |1 − e−2πiω |−2d = [4 sin2(πω)]−dσ2

w

(5.36)

as equivalent representations of the spectrum of a long memory process. The long
memory spectrum approaches infinity as the frequency ω → 0.



i
i

“tsa3EZ” — 2015/12/26 — 11:53 — page 170 — #176 i
i

i
i

i
i

170 5 Some Additional Topics **

The main reason for defining the Whittle approximation to the log likelihood
is to propose its use for estimating the parameter d in the long memory case as
an alternative to the time domain method previously mentioned. The time domain
approach is useful because of its simplicity and easily computed standard errors. One
may also use an exact likelihood approach by developing an innovations form of the
likelihood as in Brockwell and Davis (1991).

For the approximate approach using the Whittle likelihood, we consider using
the approach of Fox and Taqqu (1986) who showed that maximizing the Whittle log
likelihood leads to a consistent estimator with the usual asymptotic normal distribu-
tion that would be obtained by treating the Whittle likelihood as a conventional log
likelihood (see also Dahlhaus, 1989; Robinson, 1995; Hurvich et al., 1998). Unfortu-
nately, the periodogram ordinates are not asymptotically independent (Hurvich and
Beltrao, 1993), although a quasi-likelihood in the form of the Whittle approximation
works well and has good asymptotic properties.

To see how this would work for the purely long memory case, write the long
memory spectrum as

fx (ωk ; d, σ2
w ) = σ2

wg
−d
k , (5.37)

where
gk = 4 sin2(πωk ). (5.38)

Then, differentiating the log likelihood, say,

ln L(xxx; d, σ2
w ) ≈ −m lnσ2

w + d
m∑
k=1

ln gk −
1
σ2
w

m∑
k=1

gdk I (ωk ) (5.39)

at m = n/2 − 1 frequencies and solving for σ2
w yields

σ2
w (d) =

1
m

m∑
k=1

gdk I (ωk ) (5.40)

as the approximate maximum likelihood estimator for the variance parameter. To
estimate d, we can use a grid search of the concentrated log likelihood

ln L(xxx; d) ≈ −m lnσ2
w (d) + d

m∑
k=1

ln gk − m (5.41)

over the interval (−.5, .5), followed by a Newton–Raphson procedure to convergence.

Example 5.4 Long Memory Spectra for the Varve Series
In Example 5.3, we fit a long memory model to the glacial varve data via time
domain methods. Fitting the same model using frequency domain methods and the
Whittle approximation above gives d̂ = .380, with an estimated standard error of
.028. The earlier time domain method gave d̂ = .384 with M = 30 and d̂ = .370
with M = 100. Both estimates obtained via time domain methods had a standard
error of about 4.6 × 10−6, which seems implausible. The error variance estimate in
this case is σ̂2

w = .2293; in Example 5.3, we could have used var(res.fd) as an
estimate, in which case we obtain .2298. The R code to perform this analysis is
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Fig. 5.6. LongMemory (d = .380) [solid line] and autoregressive AR(8) [dashed line] spectral
estimators for the paleoclimatic glacial varve series.

series = log(varve) # specify series to be analyzed
d0 = .1 # initial value of d
n.per = nextn(length(series))
m = (n.per)/2 - 1
per = abs(fft(series-mean(series))[-1])^2 # remove 0 freq
per = per/n.per # and scale the peridogram
g = 4*(sin(pi*((1:m)/n.per))^2)
# Function to calculate -log.likelihood
whit.like = function(d){
g.d=g^d
sig2 = (sum(g.d*per[1:m])/m)
log.like = m*log(sig2) - d*sum(log(g)) + m
return(log.like) }
# Estimation (?optim for details - output not shown)
(est = optim(d0, whit.like, gr=NULL, method="L-BFGS-B", hessian=TRUE,

lower=-.5, upper=.5, control=list(trace=1,REPORT=1)))
# Results: d.hat = .380, se(dhat) = .028, and sig2hat = .229
cat("d.hat =", est$par, "se(dhat) = ",1/sqrt(est$hessian),"\n")
g.dhat = g^est$par; sig2 = sum(g.dhat*per[1:m])/m
cat("sig2hat =",sig2,"\n")

One might also consider fitting an autoregressive model to these data using a
procedure similar to that used in Example 4.12. Following this approach gave an
autoregressive model with p = 8 and φ̂φφ = (.34, .11, .04, .09, .08, .08, .02, .09)′, with
σ̂2
w = .2267 as the error variance. The two log spectra are plotted in Figure 5.6 for

ω > 0, and we note that long memory spectrum will eventually become infinite,
whereas the AR(8) spectrum is finite at ω = 0. The R code used for this part of the
example (assuming the previous values have been retained) is
u = spec.ar(log(varve), plot=FALSE) # produces AR(8)
g = 4*(sin(pi*((1:500)/2000))^2)
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fhat = sig2*g^{-est$par} # long memory spectral estimate
plot(1:500/2000, log(fhat), type="l", ylab="log(spectrum)", xlab="frequency")
lines(u$freq[1:250], log(u$spec[1:250]), lty="dashed")
ar.mle(log(varve)) # to get AR(8) estimates

Often, time series are not purely long memory. A common situation has the long
memory component multiplied by a short memory component, leading to an alternate
version of (5.37) of the form

fx (ωk ; d, θ) = g−dk f0(ωk ; θθθ), (5.42)

where f0(ωk ; θ) might be the spectrum of an autoregressive moving average process
with vector parameter θθθ, or it might be unspecified. If the spectrum has a parametric
form, the Whittle likelihood can be used. However, there is a substantial amount of
semiparametric literature that develops the estimators when the underlying spectrum
f0(ω; θθθ) is unknown. A class of Gaussian semi-parametric estimators simply uses
the sameWhittle likelihood (5.41), evaluated over a sub-band of low frequencies, say
m′ =

√
n. There is some latitude in selecting a band that is relatively free from low

frequency interference due to the short memory component in (5.42).
Geweke and Porter–Hudak (1983) developed an approximate method for estimat-

ing d based on a regression model, derived from (5.41). Note that we may write a
simple equation for the logarithm of the spectrum as

ln fx (ωk ; d) = ln f0(ωk ; θθθ) − d ln[4 sin2(πωk )], (5.43)

with the frequencies ωk = k/n restricted to a range k = 1, 2, . . . ,m′ near the zero
frequency with m′ =

√
n as the recommended value. Relationship (5.43) suggests

using a simple linear regression model of the form,

ln I (ωk ) = β0 − d ln[4 sin2(πωk )] + ek (5.44)

for the periodogram to estimate the parameters σ2
w and d. In this case, one performs

least squares using ln I (ωk ) as the dependent variable, and ln[4 sin2(πωk )] as the
independent variable for k = 1, 2, . . . ,m. The resulting slope estimate is then used as
an estimate of −d. For a good discussion of various alternative methods for selecting
m, see Hurvich and Deo (1999). The R package fracdiff also provides this method
via the command fdGPH(); see the help file for further information.

One of the above two procedures works well for estimating the longmemory com-
ponent but there will be cases (such as ARFIMA) where there will be a parameterized
short memory component f0(ωk ; θθθ) that needs to be estimated. If the spectrum is
highly parameterized, one might estimate using the Whittle log likelihood (5.38) and

fx (ωk ; θθθ) = g−dk f0(ωk ; θθθ)

and jointly estimating the parameters d and θθθ using the Newton–Raphson method.
If we are interested in a nonparametric estimator, using the conventional smoothed
spectral estimator for the periodogram, adjusted for the long memory component, say
gd
k

I (ωk ) might be a possible approach.
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5.3 Unit Root Testing

As discussed in the previous section, the use of the first difference ∇xt = (1 − B)xt
can be too severe a modification in the sense that the nonstationary model might
represent an overdifferencing of the original process.

Consider a causal AR(1) process (we assume throughout this section that the
noise is Gaussian),

xt = φxt−1 + wt . (5.45)

A unit root test provides a way to test whether (5.45) is a random walk (the null case)
as opposed to a causal process (the alternative). That is, it provides a procedure for
testing

H0 : φ = 1 versus H1 : |φ| < 1.

To see if it is reasonable to assume φ − 1 = 0, an obvious test statistic would be to
consider (φ̂ − 1), appropriately normalized, in the hope to develop an asymptotically
normal test statistic, where φ̂ is one of the optimal estimators discussed in Chapter 3,
§3.4. Based on Example 3.21, one might think

√
n(φ̂ − 1) is approximately normal.

Unfortunately, the theory of §3.4 will not work in the null case because the process
is nonstationary. However, the test statistic

U = n(φ̂ − 1)

can be used, and it is known as the unit root or Dickey-Fuller (DF) statistic (see Fuller,
1996), although the actual DF test statistic is normalized a little differently. In this
case, the distribution of the test statistic does not have a closed form and quantiles of
the distribution must be computed by numerical approximation or by simulation. The
R package tseries provides this test along with more general tests that we mention
briefly.

Toward a more general model, we note that the DF test was established by noting
that if xt = φxt−1 + wt , then ∇xt = (φ − 1)xt−1 + wt = γxt−1 + wt , and one
could test H0 : γ = 0 by regressing ∇xt on xt−1. They formed a Wald statistic
and derived its limiting distribution. The test was extended to accommodate AR(p)
models, xt =

∑p
j=1 φ j xt−j + wt, as follows. Subtract xt−1 from the model to obtain

∇xt = γxt−1 +

p−1∑
j=1

ψ j∇xt−j + wt, (5.46)

where γ =
∑p

j=1 φ j − 1 and ψ j = −
∑p

j=i φi for j = 2, . . . , p. For a quick check of
(5.46) when p = 2, note that xt = (φ1 + φ2)xt−1 − φ2(xt−1 − xt−2) +wt ; now subtract
xt−1 from both sides. To test the hypothesis that the process has a unit root at 1 (i.e.,
the AR polynoimial φ(z) = 0 when z = 1), we can test H0 : γ = 0 by estimating γ in
the regression of ∇xt on xt−1,∇xt−1, . . . ,∇xt−p+1, and forming a Wald test based on
tγ = γ̂/se(γ̂). This test leads to the so-called augmented Dickey-Fuller test (ADF).
While the calculations for obtaining the asymptotic null distribution change, the basic
ideas and machinery remain the same as in the simple case. The choice of p is crucial,
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and we will discuss some suggestions in the example. For ARMA(p, q) models, the
ADF test can be used by assuming p is large enough to capture the essential correlation
structure; another alternative is the Phillips-Perron (PP) test, which differs from the
ADF tests mainly in how they deal with serial correlation and heteroskedasticity in
the errors.

One can extend the model to include a constant, or even non-stochastic trend. For
example, consider the model

xt = β0 + β1t + φxt−1 + wt .

If we assume β1 = 0, then under the null hypothesis, φ = 1, the process is a random
walk with drift β0. Under the alternate hypothesis, the process is a causal AR(1) with
mean µx = β0(1 − φ). If we cannot assume β1 = 0, then the interest here is testing
the null that (β1, φ) = (0, 1), simultaneously, versus the alternative that β1 , 0 and
|φ| < 1. In this case, the null hypothesis is that the process is a random walk with
drift, versus the alternative hypothesis that the process is stationary around a global
trend (consider the global temperature series examined in Example 2.1).

Example 5.5 Testing Unit Roots in the Glacial Varve Series
In this example we use the R package tseries to test the null hypothesis that the
log of the glacial varve series has a unit root, versus the alternate hypothesis that
the process is stationary. We test the null hypothesis using the available DF, ADF
and PP tests; note that in each case, the general regression equation incorporates a
constant and a linear trend. In the ADF test, the default number of AR components
included in the model, say k, is [[(n − 1)

1
3 ]], which corresponds to the suggested

upper bound on the rate at which the number of lags, k, should be made to grow
with the sample size for the general ARMA(p, q) setup. For the PP test, the default
value of k is [[.04n

1
4 ]].

library(tseries)
adf.test(log(varve), k=0) # DF test
Dickey-Fuller = -12.8572, Lag order = 0, p-value < 0.01
alternative hypothesis: stationary

adf.test(log(varve)) # ADF test
Dickey-Fuller = -3.5166, Lag order = 8, p-value = 0.04071
alternative hypothesis: stationary

pp.test(log(varve)) # PP test
Dickey-Fuller Z(alpha) = -304.5376,
Truncation lag parameter = 6, p-value < 0.01
alternative hypothesis: stationary

In each test, we reject the null hypothesis that the logged varve series has a unit
root. The conclusion of these tests supports the conclusion of the previous section
that the logged varve series is long memory rather than integrated.
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Problems

5.1 Weekly crude oil spot prices in dollars per barrel are in oil. Investigatewhether the
growth rate of the weekly oil price exhibits GARCH behavior. If so, fit an appropriate
model to the growth rate.

5.2 The stats package of R contains the daily closing prices of four major European
stock indices; type help(EuStockMarkets) for details. Fit a GARCH model to the
returns of one of these series and discuss your findings. (Note: The data set contains
actual values, and not returns. Hence, the data must be transformed prior to the model
fitting.)

5.3 The data set arf is 1000 simulated observations from an ARFIMA(1, 1, 0) model
with φ = .75 and d = .4.

(a) Plot the data and comment.
(b) Plot the ACF and PACF of the data and comment.
(c) Estimate the parameters and test for the significance of the estimates φ̂ and d̂.
(d) Explain why, using the results of parts (a) and (b), it would seem reasonable to

difference the data prior to the analysis. That is, if xt represents the data, explain
why we might choose to fit an ARMA model to ∇xt .

(e) Plot the ACF and PACF of ∇xt and comment.
(f) Fit an ARMA model to ∇xt and comment.

5.4 Compute the sample ACF of the absolute values of the NYSE returns displayed in
Figure 1.4 up to lag 200, and comment on whether the ACF indicates long memory.
Fit an ARFIMA model to the absolute values and comment.

5.5 Plot the global temperature series, gtemp, and then test whether there is a unit root
versus the alternative that the process is stationary using the three tests, DF, ADF,
and PP, discussed in Example 5.5. Comment.

5.6 Plot the GNP series, gnp, and then test for a unit root against the alternative that
the process is explosive. State your conclusion.

5.7 Verify (5.46).
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Appendix R

R Supplement

R.1 First Things First

The website for the text is http://www.stat.pitt.edu/stoffer/tsa3/. If you do not al-
ready have R, point your browser to the Comprehensive R Archive Network (CRAN),
http://cran.r-project.org/ and download and install it. The installation includes help
files and some user manuals. You can find helpful tutorials by following CRAN’s link
to Contributed Documentation. If you are new to R/S-PLUS, then R for Beginners by
Emmanuel Paradis is a great introduction. There is also a lot of advice out there in
cyberspace, but some of it will be outdated because R goes through many revisions.
Also, beginners will find RStudio (https://www.rstudio.com/) helpful for using R.
[Advice: If you’ve never used a command based program, get R studio.]

R.2 ASTSA (astsa)

There is an R package for the text called astsa (Applied Statistical Time Series
Analysis), which was the name of the software distributed with the first and second
editions of this text, and the original version, Shumway (1988). The package can be
obtained from CRAN and its mirrors in the usual way. To download and install astsa,
start R and type
install.packages("astsa")

You will be asked to choose the closest CRAN mirror to you. As with all packages,
you have to load astsa before you use it by issuing the command
require(astsa)

All the data are loaded when the package is loaded. If you create a .First function
as follows,
.First <- function(){require(astsa)}

and save the workspace when you quit, astsa will be loaded at every start until you
change .First.

http://www.stat.pitt.edu/stoffer/tsa3/
http://cran.r-project.org/
https://www.rstudio.com/
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R is not consistent with help files across different operating systems. The
best help system is the html help, which can be started issuing the command
help.start() and then following the Packages link to astsa. In Windows, you
can type help(package=astsa) to get to html help quickly. Another option is
to type ?astsa and then use the link to the package Index at the bottom of
the page. A pdf version of the astsa manual may be found at CRAN: http:
//cran.r-project.org/web/packages/astsa/astsa.pdf. Further details on R packages
may be found in Section R.3.2. A useful command to see all the data files available
to you, including those loaded with astsa, is
data()

R.3 Getting Started

The best way to use the rest of this appendix is to start up R and enter the example
code as it is presented. Also, you can use the results and help files to get a better
understanding of how R works (or doesn’t work).

The convention throughout the text is that R code is in blue, output is purple
and comments are # green. Get comfortable, then start her up and try some simple
tasks.
2+2 # addition
[1] 5
5*5 + 2 # multiplication and addition
[1] 27
5/5 - 3 # division and subtraction
[1] -2
log(exp(pi)) # log, exponential, pi
[1] 3.141593
sin(pi/2) # sinusoids
[1] 1
exp(1)^(-2) # power
[1] 0.1353353
sqrt(8) # square root
[1] 2.828427
1:5 # sequences
[1] 1 2 3 4 5
seq(1, 10, by=2) # sequences
[1] 1 3 5 7 9
rep(2,3) # repeat 2 three times
[1] 2 2 2

Next, we’ll use assignment to make some objects:
x <- 1 + 2 # put 1 + 2 in object x
x = 1 + 2 # same as above with fewer keystrokes
1 + 2 -> x # same
x # view object x
[1] 3
(y = 9*3) # put 9 times 3 in y and view the result
[1] 27
(z = rnorm(5)) # put 5 standard normals into z and print z
[1] 0.96607946 1.98135811 -0.06064527 0.31028473 0.02046853

http://cran.r-project.org/web/packages/astsa/astsa.pdf
http://cran.r-project.org/web/packages/astsa/astsa.pdf
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It is worth pointing out R’s recycling rule for doing arithmetic. In the code below,
c() [concatenation] is used to create a vector. Note the use of the semicolon for
multiple commands on one line.
x = c(1, 2, 3, 4); y = c(2, 4, 6, 8); z = c(10, 20); w = c(8, 3, 2)
x*y # 1*2, 2*4, 3*6, 4*8
[1] 2 8 18 32
x+z # 1+10, 2+20, 3+10, 4+20
[1] 11 22 13 24
y+w # what happened here?
[1] 10 7 8 16
Warning message:
In y + w : longer object length is not a multiple of
shorter object length

To list your objects, remove objects, get help, find out which directory is current
(or to change it) or to quit, use the following commands:
ls() # list all objects
"dummy" "mydata" "x" "y" "z"
ls(pattern = "my") # list every object that contains "my"
"dummy" "mydata"
rm(dummy) # remove object "dummy"
rm(list=ls()) # remove almost everything (use with caution)
help.start() # html help and documentation (use it)
data() # list of available data sets
help(exp) # specific help (?exp is the same)
getwd() # get working directory
setwd() # change working directory
q() # end the session (keep reading)

When you quit, R will prompt you to save an image of your current workspace.
Answering “yes" will save all the work you have done so far, and load it up when you
next start R.
To create your own data set, you can make a data vector as follows:
mydata = c(1,2,3,2,1)

Now you have an object called mydata that contains five elements. R calls these
objects vectors even though they have no dimensions (no rows, no columns); they do
have order and length:
mydata # display the data
[1] 1 2 3 2 1
mydata[3] # the third element
[1] 3
mydata[3:5] # elements three through five
[1] 3 2 1
mydata[-(1:2)] # everything except the first two elements
[1] 3 2 1
length(mydata) # number of elements
[1] 5
dim(mydata) # no dimensions
NULL
mydata = as.matrix(mydata) # make it a matrix
dim(mydata) # now it has dimensions
[1] 5 1

If you have an external data set, you can use scan or read.table (or some
variant) to input the data. For example, suppose you have an ascii (text) data file
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called dummy.txt in your working directory, and the file looks like this:

1 2 3 2 1
9 0 2 1 0

(dummy = scan("dummy.txt")) # scan and view it
Read 10 items
[1] 1 2 3 2 1 9 0 2 1 0

(dummy = read.table("dummy.txt")) # read and view it
V1 V2 V3 V4 V5
1 2 3 2 1
9 0 2 1 0

There is a difference between scan and read.table. The former produced a data
vector of 10 items while the latter produced a data framewith names V1 to V5 and two
observations per variate. In this case, if you want to list (or use) the second variate,
V2, you would use
dummy$V2
[1] 2 0

and so on. You might want to look at the help files ?scan and ?read.table now.
Data frames (?data.frame) are “used as the fundamental data structure by most of
R’s modeling software." Notice that R gave the columns of dummy generic names, V1,
..., V5. You can provide your own names and then use the names to access the data
without the use of $ as above.
colnames(dummy) = c("Dog", "Cat", "Rat", "Pig", "Man")
attach(dummy)
Cat
[1] 2 0
Rat*(Pig - Man) # animal arithmetic
[1] 3 2
detach(dummy) # clean up (if desired)

R is case sensitive, thus cat and Cat are different. Also, cat is a reserved name (?cat)
in R, so using "cat" instead of "Cat"may cause problems later. You may also include
a header in the data file to avoid using line 5 above. For example, if the file dummy.txt
looks like this,
Dog Cat Rat Pig Man
1 2 3 2 1
9 0 2 1 0

then use the following command to read the data.
(dummy = read.table("dummy.txt", header=TRUE))

Dog Cat Rat Pig Man
1 1 2 3 2 1
2 9 0 2 1 0

Another popular format for data files is .csv (comma separated values). In this case,
use read.csv instead of read.table. The default for .csv files is header=TRUE; type
?read.table for further information.

Two commands that are used frequently to manipulate data are cbind for column
binding and rbind for row binding. The following is an example.
x = runif(4) # generate 4 values from a uniform(0,1) into object x
y = runif(4) # generate 4 more and put them into object y
(u = cbind(x,y)) # column bind the two vectors (4 by 2 matrix)
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x y
[1,] 0.6547304 0.7503984
[2,] 0.8222048 0.1335557
[3,] 0.4555755 0.2151735
[4,] 0.9843289 0.8483795

(u = rbind(x,y)) # row bind the two vectors (2 by 4 matrix)
[,1] [,2] [,3] [,4]

x 0.6547304 0.8222048 0.4555755 0.9843289
y 0.7503984 0.1335557 0.2151735 0.8483795

R.3.1 Basic Statistics

Summary statistics are fairly easy to obtain. We will simulate 25 normals with µ = 10
and σ = 4 and then perform some basic analyses.
set.seed(90210) # so you can reproduce these results
x = rnorm(25, 10, 4) # generate the data
mean(x)
[1] 9.473883
median(x) # compute the median
[1] 9.448511
var(x) # compute the variance
[1] 13.9267
sd(x) # compute the standard deviation
[1] 3.73185
max(x) # find the largest value
[1] 17.32609
which.max(x) # index of the max (x[25] in this case)
[1] 25
min(x) # find the smallest value
[1] 2.678173
summary(x) # a five number summary (with the mean added)

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.678 7.824 9.449 9.474 11.180 17.330

par(mfrow=c(1,2)) # multifigure setup (?par for info)
hist(x, col="lightblue", prob=TRUE) # see figure below
lines(density(x, bw=2)) # fit a density over it
boxplot(x, main="Boxplot of x", col="lightblue") # see figure below
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Fig. R.1. Histogram and boxplot of simulated normal data.
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Fig. R.2. Crazy example.

We introduced some R graphics without saying much about it. Aside from the
manual, there are many useful websites that expand on this topic; e.g., https://www.
stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html.

It can’t hurt to learn a little about programming in R because you will see some
of it along the way. Consider a simple program that we will call crazy to produce
a graph of a sequence of sample means of increasing sample sizes from a Cauchy
distribution with location parameter zero. The code is:
crazy <- function(num) {
x <- rep(NA, num)
for (n in 1:num) x[n] <- mean(rcauchy(n))
plot(x, type="l", xlab="sample size", ylab="sample mean")
}

The first line creates the function crazy and gives it one argument, num, that is the
sample size that will end the sequence. Line 2 makes a vector, x, of num missing
values NA, that will be used to store the sample means. Line 3 generates n random
Cauchy variates [rcauchy(n)], finds the mean of those values, and puts the result into
x[n], the n-th value of x. The process is repeated in a “do loop" num times so that
x[1] is the sample mean from a sample of size one, x[2] is the sample mean from a
sample of size two, and so on, until finally, x[num] is the sample mean from a sample
of size num. After the do loop is complete, the fourth line generates a graphic (see
Figure R.2). The fifth line closes the function. To use crazy with a limit sample size
of 100, for example, type
crazy(100)

and you will get a graphic that looks like Figure R.2

R.3.2 Packages

We have already discussed how to obtain and load the R package for this text, astsa.
You may want to use other R packages as we have done throughout the text. In this
case, you have to first download the package and then install it. For example,
install.packages(c("wavethresh", "tseries"))

https://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
https://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
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will download and install the packages wavethresh that we use in Chapter 4 and
tseries that we use in Chapter 5; you will be asked to choose the closest mirror to
you. To use a package, you have to load it at each start up of R, for example:
require(wavethresh) # load the wavethresh package

A good way to get help for a package is to use html help
help.start()

and follow the Packages link.
Tomake sure you have the current version of your R packages, periodically update

them by issuing the command
update.packages(ask=FALSE)

You will be asked to choose the nearest repository. Using "ask=FALSE" means you
won’t be asked about updating each package. If you want a list of your packages, run
installed.packages()[,1:3]

giving the first 3 columns of info: the [1] package name, [2] library path, and [3]
version number.

R.3.3 Word

Finally, a word of caution: TRUE and FALSE are reserved words, whereas T and F are
initially set to these. Get in the habit of using the words rather than the letters T or F
because you may get into trouble if you do something like
F = qf(p=.01, df1=3, df2=9)

so that F is no longer FALSE, but a quantile of the specified F-distribution. Better yet,
just remember not to use T or F for anything.

R.4 Time Series Primer

In this section, we give a brief introduction on using R for time series. We assume
that astsa has been loaded. To create a time series object, use the command ts.
Related commands are as.ts to coerce an object to a time series and is.ts to test
whether an object is a time series.

First, make a small data set:
(mydata = c(1,2,3,2,1)) # make it and view it
[1] 1 2 3 2 1

Now make it a time series:
(mydata = as.ts(mydata))
Time Series:
Start = 1
End = 5
Frequency = 1
[1] 1 2 3 2 1

Make it an annual time series that starts in 1950:
(mydata = ts(mydata, start=1950))
Time Series:
Start = 1950
End = 1954
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Frequency = 1
[1] 1 2 3 2 1

Now make it a quarterly time series that starts in 1950-III:
(mydata = ts(mydata, start=c(1950,3), frequency=4))

Qtr1 Qtr2 Qtr3 Qtr4
1950 1 2
1951 3 2 1

time(mydata) # view the sampled times
Qtr1 Qtr2 Qtr3 Qtr4

1950 1950.50 1950.75
1951 1951.00 1951.25 1951.50

To use part of a time series object, use window():
(x = window(mydata, start=c(1951,1), end=c(1951,3)))

Qtr1 Qtr2 Qtr3
1951 3 2 1

Next, we’ll look at lagging and differencing. First make a simple series, xt :
x = ts(1:5)

Now, column bind (cbind) lagged values of xt and you will notice that lag(x) is
forward lag, whereas lag(x, -1) is backward lag.
cbind(x, lag(x), lag(x,-1))

x lag(x) lag(x, -1)
0 NA 1 NA
1 1 2 NA
2 2 3 1
3 3 4 2 <- in this row, for example, x is 3,
4 4 5 3 lag(x) is ahead at 4, and
5 5 NA 4 lag(x,-1) is behind at 2
6 NA NA 5

Compare cbind and ts.intersect:
ts.intersect(x, lag(x,1), lag(x,-1))
Time Series: Start = 2 End = 4 Frequency = 1

x lag(x, 1) lag(x, -1)
2 2 3 1
3 3 4 2
4 4 5 3

To difference a series, ∇xt = xt − xt−1, use
diff(x)

but note that
diff(x, 2)

is not second order differencing, it is xt − xt−2. For second order differencing, that is,
∇2xt , do one of these:
diff(diff(x))
diff(x, diff=2) # same thing

and so on for higher order differencing.
For graphing time series, there a few standard plotting mechanisms that we use

repeatedly. If x is a time series, then plot(x) will produce a time plot. If x is not a
time series object, then plot.ts(x)will coerce it into a time plot as will ts.plot(x).
There are differences, which we explore in the following. It would be a good idea to
skim the graphical parameters help file (?par) while you are here. See Figure R.3 for
the resulting graphic.
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Fig. R.3. Demonstration of different R graphic tools for plotting time series.

x = -5:5 # x is NOT a time series object
y = 5*cos(x) # neither is y
par(mfrow=c(3,2)) # multifigure setup: 3 rows, 2 cols
plot(x, main="plot(x)")
plot(x, y, main="plot(x,y)")
plot.ts(x, main="plot.ts(x)")
plot.ts(x, y, main="plot.ts(x,y)")
ts.plot(x, main="ts.plot(x)")
ts.plot(ts(x), ts(y), col=1:2, main="ts.plot(x,y)")

We will also make use of regression via lm(). First, suppose we want to fit a
simple linear regression, y = α + βx + ε . In R, the formula is written as y~x:
set.seed(1999) # so you can reproduce the result
x = rnorm(10,0,1)
y = x + rnorm(10,0,1)
summary(fit <- lm(y~x))

Residuals:
Min 1Q Median 3Q Max

-0.8851 -0.3867 0.1325 0.3896 0.6561

Coefficients:
Estimate Std. Error t value Pr(>t)
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(Intercept) 0.2576 0.1892 1.362 0.2104
x 0.4577 0.2016 2.270 0.0529

Residual standard error: 0.58 on 8 degrees of freedom
Multiple R-squared: 0.3918, Adjusted R-squared: 0.3157
F-statistic: 5.153 on 1 and 8 DF, p-value: 0.05289

plot(x, y) # draw a scatterplot of the data (not shown)
abline(fit) # add the fitted line to the plot (not shown)

All sorts of information can be extracted from the lm object, which we called fit.
For example,
resid(fit) # will display the residuals (not shown)
fitted(fit) # will display the fitted values (not shown)
lm(y ~ 0 + x) # will exclude the intercept (not shown)

You have to be careful if you use lm() for lagged values of a time series. If you use
lm(), then what you have to do is “tie" the series together using ts.intersect. If you
do not tie the series together, theywill not be aligned properly. Please read the warning
Using time series in the lm() help file [help(lm)]. Here is an example regressing
astsa data, weekly cardiovascular mortality (cmort) on particulate pollution (part) at
the present value and lagged four weeks (part4). First, we create ded, which consists
of the intersection of the three series:
ded = ts.intersect(cmort, part, part4=lag(part,-4))

Now the series are all aligned and the regression will work.
fit = lm(cmort~part+part4, data=ded, na.action=NULL)
summary(fit)

Coefficients:
Estimate Std. Error t value

(Intercept) 69.01020 1.37498 50.190
part 0.15140 0.02898 5.225
part4 0.26297 0.02899 9.071

Residual standard error: 8.323 on 501 degrees of freedom
Multiple R-Squared: 0.3091, Adjusted R-squared: 0.3063
F-statistic: 112.1 on 2 and 501 DF, p-value: < 2.2e-16

There was no need to rename lag(part,-4) to part4, it’s just an example of what you
can do. There is a package called dynlm that makes it easy to fit lagged regressions.
The basic advantage of dynlm is that it avoids having to make a data frame; that is,
line 2 would be avoided.

In Problem 2.1, you are asked to fit a regression model

xt = βt + α1Q1(t) + α2Q2(t) + α3Q3(t) + α4Q4(t) + wt

where xt is logged Johnson & Johnson quarterly earnings (n = 84), and Qi (t) is the
indicator of quarter i = 1, 2, 3, 4. The indicators can be made using factor.
trend = time(jj) - 1970 # helps to `center' time
Q = factor(cycle(jj)) # make (Q)uarter factors
reg = lm(log(jj)~0 + trend + Q, na.action=NULL) # no intercept
model.matrix(reg) # view the model matrix

trend Q1 Q2 Q3 Q4
1 -10.00 1 0 0 0
2 -9.75 0 1 0 0
3 -9.50 0 0 1 0
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4 -9.25 0 0 0 1
. . . . . .
. . . . . .
83 10.50 0 0 1 0
84 10.75 0 0 0 1

summary(reg) # view the results (not shown)

The workhorse for ARIMA simulations is arima.sim. Here are some examples;
no output is shown here so you’re on your own.
x = arima.sim(list(order=c(1,0,0),ar=.9),n=100)+50 # AR(1) w/mean 50
x = arima.sim(list(order=c(2,0,0),ar=c(1,-.9)),n=100) # AR(2)
x = arima.sim(list(order=c(1,1,1),ar=.9,ma=-.5),n=200) # ARIMA(1,1,1)

Next, we’ll discuss ARIMA estimation. This gets a bit tricky because R is not
useR friendly when it comes to fitting ARIMA models. Much of the story is spelled
out in the “R Issues" page of the website for the text. In Chapter 3, we use the scripts
acf2, sarima, and sarima.for that are included with astsa. But we will also show
you how to use the scripts included with R.

First, we’ll fit an ARMA(1,1) model to some simulated data (with diagnostics
and forecasting):
set.seed(666)
x = 50 + arima.sim(list(order=c(1,0,1), ar=.9, ma=-.5), n=200)
acf(x); pacf(x) # display sample ACF and PACF ... or ...
acf2(x) # use our script (no output shown)
(x.fit = arima(x, order = c(1, 0, 1))) # fit the model
Call: arima(x = x, order = c(1, 0, 1))
Coefficients:

ar1 ma1 intercept
0.8340 -0.432 49.8960

s.e. 0.0645 0.111 0.2452
sigma^2 estimated as 1.070: log likelihood = -290.79, aic = 589.58

Note that the reported intercept estimate is an estimate of the mean and not the
constant. That is, the fitted model is

x̂t − 49.896 = .834(xt−1 − 49.896) + ŵt

where σ̂2
w = 1.070. Incorrect diagnostics can be accomplished as follows:

tsdiag(x.fit, gof.lag=20) # !!!! don't use this !!!!
That’s right, the Ljung-Box-Pierce test is not correct because it does not take into
account the fact that the residuals are from a fitted model. If the analysis is repeated
using the sarima script, a partial output would look like the following (sarima will
also display the correct diagnostics as a graphic; e.g., see Figure 3.17 and Figure R.4):
sarima(x, 1, 0, 1)
Coefficients:

ar1 ma1 xmean
0.8340 -0.432 49.8960

s.e. 0.0645 0.111 0.2452
sigma^2 estimated as 1.070: log likelihood = -290.79, aic = 589.58
$AIC [1] 1.097494 $AICc [1] 1.108519 $BIC [1] 0.1469684

An easy way to see a summary of the significance tests is to use the R package lmtest,
which has to be downloaded first:
require('lmtest') # addicted to p-values?
coeftest(sarima(x, 1,0,1)$fit)
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Fig. R.4. Diagnostics from sarima

Estimate Std.Error z.value p.value
ar1 0.83405 0.06448 12.9350 < 2.2e-16
ma1 -0.43199 0.11104 -3.8904 0.0001001
xmean 49.89622 0.24519 203.5003 < 2.2e-16

Note that the results of the sarima fit are in fit. Forecasting using the script
sarima.for can be accomplished in one line:
sarima.for(x, 10, 1, 0, 1)

If you don’t use astsa, you would obtain and plot the forecasts using the following:
x.fore = predict(x.fit, n.ahead=10)
U = x.fore$pred + 2*x.fore$se # x.fore$pred holds predicted values
L = x.fore$pred - 2*x.fore$se # x.fore$se holds stnd errors
miny = min(x,L); maxy = max(x,U)
ts.plot(x, x.fore$pred, col=1:2, ylim=c(miny, maxy))
lines(U, col="blue", lty="dashed")
lines(L, col="blue", lty="dashed")

We close this appendix with a quick spectral analysis. This material is covered in
detail in Chapter 4, so we will not discuss this example in much detail here. We will
simulate an AR(2) and then estimate the spectrum via nonparametric and parametric
methods. No graphics are shown, but we have confidence that you are proficient
enough in R to display them yourself.
x = arima.sim(list(order=c(2,0,0), ar=c(1,-.9)), n=2^8) # some data
(u = polyroot(c(1,-1,.9))) # x is AR(2) w/complex roots
[1] 0.5555556+0.8958064i 0.5555556-0.8958064i
Arg(u[1])/(2*pi) # dominant frequency around .16
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[1] 0.1616497
par(mfcol=c(2,2))
plot.ts(x)
mvspec(x, spans=c(5,5), taper=.1, log="no") # nonparametric estimate
spec.ar(x, log="no") # parametric spectral estimate
arma.spec(ar=c(1,-.9), log="no") # true spectral density

The script arma.spec is included in astsa. See spectrum and spec.pgram as alter-
natives to mvspec, which is part of astsa. Finally, note the easiest way to get a raw
periodogram is:
per = abs(fft(x))^2/length(x) # abs() and Mod() are same here
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ACF, 13, 15
large sample distribution, 21
of an AR(1), 56
of an AR(2), 65
of an ARMA(1,1), 66
of an MA(q), 64
sample, 20

AIC, 33, 95, 141
AICc, 33, 95
Aliasing, 113
Amplitude, 112
AR model, 7, 55
conditional sum of squares, 84
conditional likelihood, 84
likelihood, 83
maximum likelihood estimation, 83
spectral density, 120
unconditional sum of squares, 83

ARCH model
ARCH(m), 161
ARCH(1), 158
estimation, 159
GARCH, 161

ARFIMA model, 165, 169
ARIMA model, 85
fractionally integrated, 169
multiplicative seasonal models, 103

ARMA model, 59
pure seasonal models
behavior of ACF and PACF, 101

backcasts, 82
behavior of ACF and PACF, 69
causality, 61

conditional least squares, 72
forecasts
prediction intervals, 80

Gauss–Newton, 73
invertibility, 61
multiplicative seasonal model, 101
pure seasonal model, 99

Autocorrelation function, see ACF
Autocovariance

calculation, 12
Autocovariance function, 11, 15, 56

random sum of sines and cosines, 113
sample, 20

Autoregressive Integrated Moving Average
Model, see ARIMA model

Autoregressive models, see AR model

Backcasting, 81
Backshift operator, 40
Bandwidth, 128
Bartlett kernel, 137
BIC, 33, 95, 141
BLP

m-step-ahead prediction, 79
mean square prediction error, 79

one-step-ahead prediction, 77

Causal, 60
conditions for an AR(2), 63

CCF, 14, 17
large sample distribution, 23
sample, 22

Cepstral analysis, 154
Coherence, 147
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estimation, 149
hypothesis test, 150

Complex roots, 66
Convolution, 142
Cospectrum, 147
Cross-correlation function, see CCF
Cross-covariance function, 14
sample, 22

Cross-spectrum, 147
Cycle, 112

Daniell kernel, 135
modified, 135

Detrending, 29
DFT, 116
inverse, 122

Differencing, 39–41
Durbin–Levinson algorithm, 78

Exponentially Weighted Moving Averages,
87

Fejér kernel, 137
FFT, 116
Filter, 41
high-pass, 144
linear, 142
low-pass, 144

Folding frequency, 113, 116
Fourier frequency, 116, 122
Fractional difference, 165
fractional noise, 165

Frequency bands, 119, 127
Frequency response function, 143
of a first difference filter, 143
of a moving average filter, 143

Functional magnetic resonance imaging
series, 4

Fundamental frequency, 115, 116, 122

Glacial varve series, 42, 75, 94, 167, 174
Global temperature series, 2, 38, 42
Growth rate, 89, 157

Harmonics, 132

Impulse response function, 142
Innovations, 92
standardized, 92

Integrated models, 85, 87, 103

forecasting, 86
Invertible, 61

Johnson & Johnson quarterly earnings series,
1

LA Pollution – Mortality Study, 34, 51, 98
Lag, 13, 18
Lead, 18
Leakage, 139

sidelobe, 138
Likelihood

AR(1) model, 83
conditional, 84

Linear filter, see Filter
Ljung–Box–Pierce statistic, 93
Long memory, 165

estimation, 166
estimation of d, 170
spectral density, 169

LSE
conditional sum of squares, 84
Gauss–Newton, 72
unconditional, 83

MA model, 6, 57
autocovariance function, 12, 64
Gauss–Newton, 73
mean function, 11
spectral density, 120

Mean function, 10
Method of moments estimators, see

Yule–Walker
MLE

conditional likelihood, 84

New York Stock Exchange, 3
NYSE, see New York Stock Exchange

PACF, 68
of an MA(1), 69
iterative solution, 78
large sample results, 69
of an AR(p), 68
of an MA(q), 69

Parameter redundancy, 60
Partial autocorrelation function, see PACF
Period, 112
Periodogram, 116, 122

disribution, 124
Phase, 112
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Prewhiten, 24

Quadspectrum, 147

Random sum of sines and cosines, 113
Random walk, 8, 11, 86
autocovariance function, 13

Recruitment series, 4, 23, 43, 70, 80, 125,
129, 135, 150

Regression
ANOVA table, 32
autocorrelated errors, 96
Cochrane-Orcutt procedure, 97

model, 29
multiple correlation, 32
normal equations, 30

Return, 3, 89, 157

Scatterplot matrix, 36, 43
Scatterplot smoothers
kernel, 49
lowess, 50, 51
nearest neighbors, 50

SIC, 34
Signal plus noise, 9
mean function, 11

Signal-to-noise ratio, 9
Southern Oscillation Index, 4, 23, 43, 125,

129, 135, 139, 141, 143, 150
Spectral density, 118
autoregression, 140
estimation, 128
adjusted degrees of freedom, 129
bandwidth stability, 133
confidence interval, 129
degrees of freedom, 128
large sample distribution, 128
nonparametric, 140
parametric, 140
resolution, 133

matrix, 148
of a filtered series, 143
of a moving average, 120
of an AR(2), 120
of white noise, 119

Spectral Representation Theorem, 118
vector process, 148

Stationary
jointly, 17, 18
strictly, 14
weakly, 15

Stochastic trend, 85
Structural model, 51

Taper, 137, 139
cosine bell, 138

Transformation
Box-Cox, 42

Trend stationarity, 17

U.S. GNP series, 90, 93, 95, 160
U.S. population series, 95
Unit root tests, 173

Augmented Dickey-Fuller test, 173
Dickey-Fuller test, 173
Phillips-Perron test, 174

Varve series, 170
Volatility, 3, 157

White noise, 6
autocovariance function, 12
Gaussian, 6

Yule–Walker
equations, 71
estimators, 71
AR(2), 71
MA(1), 72
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