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Preface

The subject of stochastic dynamic programming, also known as stochastic opti-
mal control, Markov decision processes, or Markov decision chains, encom-
passes a wide variety of interest areas and is an important part of the curriculum
in operations research, management science, engineering, and applied mathe-
matics departments.

This book is unique in its total integration of theory and computation, and
these two strands are interleaved throughout. First the theory underlying a par-
ticular optimization criterion (goal for system operation) is developed, and it is
proved that optimal policies (rules for system operation that achieve an opti-
mization criterion) exist. Then a computational method is given so that these
policies may be numerically determined.

Stochastic dynamic programming encompasses many application areas. We
have chosen to illustrate the theory and computation with examples mostly
drawn from the control of queueing systems. Inventory models and a2 machine
replacement model are also treated. An advantage in focusing the examples
largely in one area is that it enables us to develop these important applications
in depth and to concomitantly expand the subject of control of queueing sys-
tems. However, the theory presented here is general and has applications in
diverse subject areas.

A total of nine numerical programs are fully discussed in the text. Text prob-
lems give suggestions for further exploration of these programs.

It is intended that the book can be successfully used by an audience ranging
from advanced undergraduates to researchers. This may be done as follows:

o For advanced undergraduates, omit all proofs. Focus on motivation of the
concepts, and exploration and extension of the nine programs.

o For first- and second-year graduate students, accompany the motivation of
the concepts by reading selected proofs under the direction of a professor.

o For advanced graduate students, professionals, and researchers, read a
selection of proofs as desired. The more difficult proofs are starred, and it
is suggested that these be deferred to a second reading.
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« For the reader whose primary interest is in applications and computation,
omit the proofs as desired and concentrate on the material relating to com-
putation.

The important background material is given in the appendixes. The ap-
pendixes are intended to be used as references, to be dipped into as needed.
Some of the appendix material includes proofs. These are for the convenience
of the interested reader and are not requisite to understanding the text.

The mathematical background necessary for comprehension of the text
would be encompassed by a semester course on basic probability and stochastic
processes, especially on the theory of Markov chains. However, since all the
necessary background results are reviewed in the appendixes, the number of
specific results the reader is expected to bring to the table is minimal. Perhaps
most important for the reader is a bit of that famous ever-vague “mathematical
maturity,” which is always helpful in understanding certain logical ideas that
recur in many of the arguments. The prospective student of this text should
keep in mind that understanding the basic arguments in stochastic dynamic pro-
gramming is a skill that is developed and refined with practice. It definitely gets
easier as one progresses!

The chapter dependencies are shown in the flowchart (Fig. P.1). Chapter 1 is
an introduction, and Chapter 2 gives the definitions of the optimization criteria.
Chapter 3 presents theory and computation for the finite horizon optimization

54—@4—-{@4—-&«——@&—1’04—-—‘

Figure P.1
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criterion, and Chapter 4 presents theory and computation for the infinite horizon
discounted optimization criterion. Chapter 5 presents an inventory model under
the infinite horizon discounted cost criterion. This model is not a prerequisite
to any other material.

Chapter 6 presents theory and computation for the average cost optimization
criterion, when the state space of the process is a finite set. For computation, a
thorough and very general treatment of value iteration is developed. Chapter 6
sets the stage for Chapter 8, which deals with the computation of average cost
optimal policies when the state space of the process is an infinite set. Most of
the material in Chapter 8 refers directly to resulis in Chapter 6. Chapter 7 deals
with the existence theory of average cost optimal policies when the state space
is infinite. The bulk of this material is not requisite to the computational results
in Chapter 8 and may be omitted or referred to as desired.

Chapter 9 deals with (discrete time) models in which actions may only be
taken at selected epochs. It is shown that the theory for this situation reduces to
the general theory previously given. The computational examples focus on the
average cost criterion. This material is not requisite to understanding Chapter
10.

Chapter 10 deals with the average cost optimization of certain continuous
time systems. Again the theory here is reduced to that previously given.

The text is unique in combining theory and programs. The computational
output from nine programs is presented and fully discussed. Numerous prob-
lems, both theoretical and computational, illuminate the text and give the reader
practice in applying the ideas. Some of the problems involve explorations of
the programs and include ideas for modifying them to obtain further insight.

I would like to express my profound thanks to Kevin Rock, a former stu-
dent and now an instructor at IHinois State University, who read the complete
manuscript carefully for understanding and identification of errors. He also
helped set up a web site for the book.

I would like to express my deep gratitude to Professor Apostolos Burnetas,
his Ph.D. student E. Lerzan Ormeci, and Professor Ulrich Rieder. Each of them
read large portions of the manuscript, identified some errors, and made many
helpful suggestions that improved the presentation. Any remaining mistakes, of
course, are my responsibility, I would like to express my thanks to Professor
Bob Cooper, who provided crucial references for Section 10.6 and checked the
formula in Proposition 10.6.1.

I would also like to thank other professional colleagues who have pro-
vided insights, support, and encouragement over the years, including Rolando
Cavazos-Cadena, Emmanuel Fernandez-Gaucherand, Onesimo Hemandez-
Lerma, Mary Johnson, Marty Puterman, Sheldon Ross, Henk Tijms, and Mark
VanOyen. | would like to thank friends and colleagues at Illinois State Uni-
versity for their support and wish particularly to mention Ken and Laura Berk,
Lotus Hershberger, Jan Neuleib, Virginia Owen, the late Bob Ritt, Paul Schol-
laert, and Jane Swafford. My thanks also go to Steve Quigley, my editor at John
Wiley & Sons, for his support and encouragement; his assistant Alison Bory;
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and associate managing editor Angioline Loredo, for her gracious and careful
attention to the book’s production.

Finally, I wish to express my appreciation to my husband Jim, my son Kyle,
and my new daughter-in-law Anastasia, for their love, understanding, and belief
in me.

This book is for the reader to delve into, to study, and ultimately to take
off from. Perhaps it will suggest new avenues for the reader’s exploration and
development and give impetus to the growth of this exciting and ever-develop-
ing field.

Comments are invited at sennott@math.ilstu.edu. The Pascal source code
for the programs is available for viewing and downloading on the Wiley web
site at http://www.wiley.com/products/subject/mathematics. The site contains a
link to the author’s own web site and is also a place where readers may discuss
developments on the programs or other aspects of the material. The source files
are also available via ftp at ftp://ftp.wiley.com/public/sci_tech_med/stochastic.
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CHAPTER 1

Introduction

We are considering systems, evolving in time, that have chance or random
aspects to their behavior. Such a system may evolve either in discrete or in
continuous time. In the discrete setting the time axis is partitioned into fixed
equal length segments, called slots or periods. Events affecting the systern may
take place during a slot, but typically they are registered by the system at the
beginning of the following slot. In contrast, in a continuous time system events
can occur at any instant of time and are registered as they occur. Many inter-
esting models occur naturally in discrete time, while others occur naturally in
continuous time. In this book attention is focused on discrete time systems, with
the exception of Chapter 10 which treats a class of continuous time systems.

Our focus is the sequential control (also known as dynamic or real time
control) of discrete time systems with random aspects. Such systems are called
discrete time controlled stochastic systems. With the advent of computer-con-
trolled processes, it is the case that control will often be applied at discrete time
steps, even if the system under control occurs in continuous time. Therefore the
control of an inherently continuous time model with random aspects is often
well treated as a discrete time controlled stochastic system.

To control such systems, various actions may be taken, at various times, to
affect the future behavior of the system. In the discrete time setting we assume
that control can only be exercised at the beginning of a given slot and not at
any other time during the slot. A fundamental dichotomy exists: Either control
is exercised at the beginning of every slot or only at the beginning of certain
selected slots, called epochs.

It turns out that the case of control available in every slot is more fundamen-
tal than the case of control available at selected epochs. The theory for control
available in every slot is developed in Chapters 2 through 8. The theory for
control available at selected epochs turns out to be a special case of this, and
no new theoretical results are needed. This topic is treated in Chapter 9.

A certain class of continuous time control processes may be treated within
the discrete time framework; this class consists of processes governed by expo-
nential distributions. This development is in Chapter 10.
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The next section illustrates control problems of the type that are covered in
the text. Let us emphasize that the theory developed in the book is of a general
nature and its applications are not limited to the particular models chosen for
illustration.

1.1 EXAMPLES

The theory of discrete time controlled stochastic systems is motivated by sys-
tems that arise in applications. We are especially interested in using these results
to gain an understanding of discrete time controlled queueing systems. A gueue-
ing system includes servers, customers and, usually, waiting lines or queues for
the customers awaiting service. In the discrete time setting the servers may, for
example, be transmitters, computers, or communication lines, or they may be
stations on a production line. The customers may be messages, or fixed length
groups of bits known as packets, or objects in the process of being manufac-
tured. The queues are often called buffers, and we usually employ this termi-
nology.

An inventory system is another example of a queueing system. In inven-
tory systems the “customers” are items in the inventory, and the “servers™ are
external demands that remove these customers from the system. This example
illustrates the importance of being very open in our thinking about what con-
stitutes a queueing system. As we develop this flexibility, we will begin to see
queueing systems everywhere,

In order to understand the types of control mechanisms that are of interest,
let us now examine some common queucing systems. In Section 1.2 we will
revisit some of these examples with more specificity.

Example 1.1.1. Single-Server Queue (Fig. 1.1). Packets (customers) enter
the buffer, wait their turn, are served by the single server, and depart the system.
Service is usually in the order of arrival, which is First Come First Served, but
can be by other service disciplines such as Last Come First Served or Service
in Random Order. Obviously, if the customers in a queueing system are human
beings, FCFS is preferred.

Now consider the control options. We might place the controller at the
entrance to the buffer to decide which packets to admit to the buffer. Or we
could impose a control on the server that would adjust the rate at which packets
are served. Both methods of control can be imposed simultaneously. g

Two questions arise as we begin to consider controlling queues. The first
question is: To what end are we controlling the system? Clearly the control
must be designed to achieve a goal. This goal is known as our optimization
criterion, on which we will have more to say in the next section. A policy is a
rule of operation that tells the controller which actions to choose, and an optimal
policy is one that realizes the goal of the particular optimization criterion.
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Customers completing
service depart

Buffer or
queue

oM X X X

Customers enter

Figure 1.1  Single-server single-buffer system.

The second question is: What information about the current system condi-
tion, or state, is known to the controller? In this example, it would certainly
be helpful to know how many packets are in the buffer before making a deci-
sion on admission or service rate. Throughout the book it is assumed that the
controller has full information about the system. This may be contrasted with
situations where the controller has only partial information, information cor-
rupted by observation errors, or information received with a time delay. The
full information case is fundamental to the development of a comprehensive
theory and needs to be well understood before the case of partial or delayed
information is treated.

Example 1.1.2. An Inventory Model. The demand for the product follows a
known probability distribution. The demand for a particular period is assumed
to be fully revealed just at the end of that period and is satisfied, as much
as possible, from existing inventory and/or items produced during that period.
Unfilled demand is backlogged, that is to say, these orders are registered to be
filled in the future as inventory comes available. For example, if 5 items are on
hand at the beginning of a period, 7 items are produced during that period, and
10 items are demanded during that period, then at the beginning of the next
period the inventory level is 2. If 15 items are demanded, then the level is a
backlog of 3 items.

The inventory level is observed at the beginning of each period. The control
actions that may be taken relate to the number of items that may be produced
during that period. o
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— XX X X .—-———PXX e X —_—

Figure 1.2 Tandem system.

Example 1.1.3. Tandem Queueing System (Fig. 1.2). Here we have a num-
ber of stations (servers) in series, There may or may not be buffers before each
station. Customers enter the system at the buffer of station 1, receive service at
station 1, enter the buffer at station 2, receive service at station 2, and so on,
until they pass through all stations and leave the system.

Control may be exercised by restricting entry to the system, by adjusting the
service rate of each of the servers, or by combinations of both. O

Example 1.1.4. Routing to Parallel Queues (Fig. 1.3). Here there are a
number of servers with individual buffers. Customers arrive at the router and
are sent to one of the buffers. It is assumed that once the routing has taken
place, the customer cannot switch from one queue to another (called jockey-
ing) and must therefore remain in the buffer to which it was routed until it
receives service and leaves the system.

Server Server
1

i s srrrr———— » X X
— >
e erre———- XXXXX,‘

Router

Customers arrive
Figure 1.3 Routing to paratle! buffers.
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Figure 1.4 Single-server serving multiple buffers/classes.

In this example we assume that the service rates of the servers are constant.
The control mechanism is invoked through the routing decision for each arriving
customer (or batch of customers). O

Example 1.1.5. A Single-Server, Multiple-Buffer Model (Fig. 1.4). A sin-
gle server is responsible for serving multiple queues. The server/controller may
be considered the same mechanism. The server must decide which buffer to
serve at a decision epoch and (possibly) how fast to serve.

It is important to note that the buffers need not be physically distinct. For
example, the buffers might represent priority classes. The customers might all
reside in the same location but be identified (or tagged) by their priority class.
The decision of which buffer to serve is then the decision of which priority
class to serve. The control options might also include the rate at which a given
class is served. 0

Example 1.1.6. A Single-Buffer, Multiple-Server Model (Fig. 1.5). In this
model the service rates are fixed, but they may vary server to server. At most
one customer can receive service from any server at any time. All customers
not receiving service are queued in the single buffer. If there is a customer
awaiting service and at least one server is free, then the control options include
sending the customer to a selected free server or letting the customer remain
in the queue. 0

Example 1.1.7. Queueing Network (Fig. 1.6). Here a number of stations
provide service to customers, and each station has its own buffer. Customers
arrive from outside (exogenous customers) to each buffer. In addition, when a
customer finishes service at a station, the customer may be routed to another
station (or back to the one it just left) according to known routing probabilities.
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Busy Idie idle

Server Server

[y
°

Routing
decisions

XXKX{
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Figure 1.5 Single buffer served by multiple servers.

\ Feedback
customer Departure from

system

Server /

Endogenous arrivals

Exogenous arrivals

Figure 1.6 Network.
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Figure 1.7 Polling system.

These are endogenous customers. It is assumed that every customer eventually
leaves the system. Such a structure is called an open network. Control options
include admission control and/or service control. ]

Example 1.1.8. Cyclic Polling System (Fig. 1.7). Here a number of sta-
tions, each with its own buffer, are arranged in a ring. A server travels around
the ring, say counterclockwise, from station 1 to station 2, then to station 3, and
so on. When at station k the server has the control option of remaining there
(idling if the buffer is empty, or serving packets in k’s buffer if it is nonempty)
or of moving to the next station. It is usually desirable 1o model a nonnegligible
transit time in moving from one station to another. O

Example 1.1.9. Machine Replacement. A machine may be in one of vari-
ous conditions, with condition 0 corresponding to a perfect machine and other
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conditions corresponding to various levels of wear. If the machine is in a state
of wear, then we may make the decision to replace it with a perfect machine or
to do nothing. A machine in a state of wear will continue to deteriorate accord-
ing to a certain probability distribution. A perfect machine may be assumed
to remain perfect for one slot and then begin to deteriorate. A more complex
model would also allow the option of repairing a worn machine to bring it into
a better condition than its present state. a

1.2 ASPECTS OF CONTROL

This section introduces the framework that will be employed for the control of
the models in Section 1.1 and other systems as well. The discussion is on a
general level with more precise definitions developed in Chapter 2.

The framework in which we will work is known as stochastic dynamic pro-
gramming. A stochastic dynamic program is also called a Markov decision pro-
cess. When time is discrete the process is (usually) called a Markov decision
chain.

A Markov decision chain consists of

1. States

2. Actions

3. Costs

4. State equations (optional)

5. Transition probability distributions
6. An optimization criterion

The state of the system is the relevant information needed to describe
the current condition of the system. The state space is the set of all system
states, Because we are treating the full information case, we need to include in
the state description all the relevant information concerning the current situa-
tion.

In Example 1.1.1 the relevant state information is the number i of packets
in the buffer at the beginning of a slot (this includes the packet being served,

In this example we are allowing the buffer to be of infinite capacity. This is
a useful modeling device, even though it is not physically realizable. One can
simply imagine that when a new batch of packets arrives, the capacity of the
physical buffer is increased to accommodate it.

Models involving infinite capacity buffers occur frequently. They may be
contrasted with models assuming finite capacity buffers. In the latter there is
a fixed capacity K for the buffer content, and no more than K customers can
reside in the buffer. In some models the assumption of finite capacity buffers is
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appropriate, whereas in other models the assumption of infinite capacity buffers
is more desirable. The following are possible reasons for allowing buffer capaci-
ties to be infinite: (1) We may not have information on the actual buffer capac-
ity. (2) We may not want to lose customers and may prefer to assume that
buffer capacity can be expanded as customers arrive. (3) We may wish to use
the model with infinite capacity buffers to gain information on the appropriate
sizing of buffer capacity.

The theoretical results developed in the text are general and apply to models
with either finite or infinite capacity buffers.

We are also interested in obtaining computational results, both for models
with finite buffer capacities and for those with infinite capacities. In the lit-
erature computational results have largely been confined to the case of finite
capacity buffers. Here an approach called the approximating sequence method
is developed that allows rigorous computation in the presence of infinite capac-
ity buffers. The idea is to replace the infinite capacity model with a sequence of
finite capacity models so that, as the capacities increase, the computatjons for
these models are guaranteed to converge to the correct result for the original
model. Nine computational examples are given in the book, and a program for
each example is available on the companion web page.

Various actions are available to the controller and the available actions may
depend on the current state of the system. Take Example 1.1.1. Let us assume
that the actions are the available service rates. Note that when the system is
empty, the server is idle and has only the “idle” action available.

There is a nonnegative cost associated with each state and available action
in that state. The cost is associated with the state-action pair. The subject of
stochastic dynamic programming has two major developmental strands. One
can seek to minimize costs or to maximize rewards. We choose to deal with
cost minimization because it is more congenial for the types of control problems
we are most interested in treating.

However, all is not lost for those who wish to maximize their rewards! A
reward associated with a particular state-action pair can be incorporated into this
framework as a negative cost (under some nonrestrictive conditions). Chapter
5 treats an inventory model in which costs are imposed for holding and/or
producing inventory and rewards are earned when inventory is sold. This model
shows, in detail, how to work with rewards.

In Example 1.1.1, where actions are service rate adjustments, we might
assume a cost for storing a packet in the buffer (related to delay in being served)
and a cost for serving a packet (faster service costing more).

Now consider Example 1.1.4. An appropriate system state is the vector i =
(i1, f2, ..., ig) of buffer contents, where i; is the number of packets in buffer
k. The cost is then a function of the pair (i, k), where k is the action chosen
(i.e., the server to which the customer is routed). This cost could consist of a
holding cost reflecting the number of customers in the system and a cost of
routing to server k.

Suppose that the packets that arrived in slot ¢ were routed to buffer 1 but
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that at the beginning of slot ¢ + 1 the controller wishes to route the newly arriv-
ing packets in the current slot to buffer 2. Under this circumstance it might be
assumed that a cost is incurred for switching the routing, namely for chang-
ing the routing from one slot to the next. To handle this situation, we would
enlarge the state description to be (i, 1), where the current buffer content vector
is augmented by the previous routing decision. The cost is then a function of
the state-action pair [(i, 1), 2]. By means of this augmenting device, additional
information can be built into the state description.

In this same example, let us now assume that there is no cost for switching
the routing and a cost of 1 unit for each slot of time a packet resides in one of
the buffers. Notice that the total cost over a time interval of T slots is the same
as the total amount of delay suffered by the packets in the system.

The delay incurred by a communication system is an important measure of
its performance. The minimization of delay may generally be modeled directly
in our framework. Another important measure is system throughput, a measure
of the number of packets successfully served. The maximization of throughput
may generally be modeled using the device for incorporating rewards into our
framework.

Assume that the system is in a given state and that the controller has decided
on an action. Then, as discussed above, there is a cost incurred. The state of the
system at the beginning of the following slot is governed by a transition prob-
ability distribution. This distribution will generally depend both on the current
state and on the chosen action. A representation of the evolution of the sys-
tem may be given by a state equation. The state equation, which is optional in
specifying the system, can be helpful in picturing how the system evolves in
time.

Consider Example 1.1.1 with the actions being service rate adjustments. The
state of the system at time t may be represented by a random variable X, (since
it will be a random quantity rather than a deterministic quantity). Let the random
variable Y, represent the number of new packets arriving in slot 1. Let Z, be an
indicator randorm variable that equals 0 if the buffer is empty or if a service is
not completed in slot ¢, and equals 1 if there is a service completion, Then the
evolution of the system is given by the state equation

X=X, +Y, -~ Z, 120 (L.1)

This follows since the buffer content at time ¢ + 1 is determined by the number
in the buffer at time ¢ plus any new arrivals during that slot minus 1 if there is
a service completion during that slot. Note that X, is the initial buffer content.

Let us assume that the distribution of Y, is independent of time. For example,
suppose that P(no packets arrive) = 0.5, P(a single packet arrives) = 0.3, and
P(two packets arrive) = 0.2. The distribution of Z, depends on whether or not
the buffer is empty and, if it is nonempty, on the service rate chosen by the
controller.
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Assume that the service rate adjustment takes place through a choice of the
probability of a successful service. For purposes of this example, let us assume
that the controller chooses the action of successfully serving a packet with prob-
ability 0.9. Finally let us assume that X, = 5. Then the probability distribution
of X, 18 P(X,,; = 4) = (0.5)0.9) = 0.45, P(X, .y = 5) = (0.3X0.9) + (0.5%0.1)
=032, P(X;,1 = 6)=(0.3)0.1) + (0.2)0.9) = 0.21, and P(X, . = 7) = (0.2)(0.1)
= 0.02. (Check these!) These calculations are valid under the assumption that
the chosen service rate does not influence the arrival process.

This information can be imparted in another way, namely by specifying the
transition probability distributions. This is the probability distribution of the
next state, given that the current state X, = i, and is given by

Py; = P(j arrive), j=0,1,2,
P 1 = (0.9P(0 arrives),
P;i = (0.1)P(0 arrives) + (0.9)P(1 arrives),
Pii. 1 = (0.1)P(1 arrives) + (0.9)P(2 arrive),
Piic2 = (0.1)P2 arrive), i21. (1.2)

The reader should realize that (1.2) contains a complete specification of how the
system probabilistically evolves. The state equation (1.1) is helpful but optional.

We require the transition probability distributions to be independent of time
(time homogeneous). This means that they cannot depend on the time slot num-
ber, undoubtedly a limitation in modeling some actual systems that do exhibit
time-varying transition behavior. However, one approach to overcome this lim-
itation is to build time-varying behavior into the state space description, at the
cost of increased complexity of the state space. Another approach is to argue
that if the system is slowly time varying, then we can analyze the system piece-
wise over those portions of time for which it is approximately time homoge-
neous, Considering the piecewise analyses together yields valuable information
about controlling the original system.

Finally we come to the optimization criterion, our goal in controlling the
system. The criteria are described here in general terms and more precisely in
Chapter 2.

We may be interested in optimizing system behavior over the finite horizon.
In this case the behavior of the system is considered for slots t = 0 to ¢t = K for
a fixed positive integer K.

Or, we may be interested in allowing the system to operate for an infinite
number of slots ¢ = 0, 1, 2, ... . This is the infinite horizon and is appropriate if
the system is to operate for a lengthy period and there is no a priori cutoff time.
One approach for optimizing operation over the infinite horizon is to consider
the total accumulation of costs where future costs have been discounted. Dis-
counting reflects the economic principle that costs incurred in the future have
a smaller present value.
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Another approach to working with the infinite horizon is by means of averag-
ing. We may look at the average cost incurred per slot over a fixed time horizon
and then let the time horizon become ever longer. In this way we obtain a limit
that reflects what happens on average far into the future.

There are other popular optimization criteria. However, these three are
arguably the most important and are the ones treated in the book.

1.3 GOALS AND SUMMARY OF CHAPTERS

The goals of the book are as follows:

Goal 1. To develop the theory for optimization under the finite horizon,
infinite horizon with discounting, and infinite horizon average cost cri-
teria.

Goal 2. To show how optimization may be performed computationally, both
when buffers are finite and when they are infinite.

Goal 3. To illustrate the theory and computational method with a rich set
of examples drawn largely from the field of queueing control.

This text is unique in its total integration of theoretical development and
computational method. For each optimization criterion, the theoretical devel-
opment yields conditions for the existence of a particularly desirable type of
policy that is optimal for that criterion. The approach to computation, known
as the approximating sequence method, is a flexible and rigorous method for the
computation of optimal policies in the presence of models with infinite buffers
(more generally, models with infinite state spaces). To carry out the method,
the original problem is replaced with a sequence of finite state approximation
problems for which the convergence to the true value in the original problem is
guaranteed. One may then compute optimal policies for a few members of the
sequence (usually 2 or 3 suffice) and be confident that a close approximation
to the optimal policy for the original problem has been attained.

The ability to compute optimal policies, while extremely valuable in itself,
has two important corollaries. First, it allows us to examine sensitivity issues.
This is done by varying the parameters of a problem to see whether the optimal
policy is affected and, if so, to what degree. Second, it allows us to compare
system performance under the optimal policy (which requires full informa-
tion about the system state) with system performance under various subopti-
mal policies that do not require full state information. There is usually some
cost involved in designing a system so that the controller has knowledge of the
system state. If, for example, there exists a suboptimal policy with a perfor-
mance within 5% of the optimal policy, this might be an acceptable level of
performance. Having this type of knowledge is valuable when designing a sys-
tem.
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For the convenience of the interested reader, a brief summary of the chapter
contents is given here. The Preface contains a discussion of chapter interde-
pendencies and the reader is particularly advised to look at the flowchart given
there.

In Chapter 2 notation and definitions are given. In Chapter 3 optimization
over the finite horizon is treated. The computational model is Example 1.1.1
with control exercised through the acceptance or rejection of arriving packets.

In Chapter 4 optimization over the infinite horizon with discounting is
treated. Chapter 5 illustrates the computational method under this criterion with
a detailed treatment of the inventory model Example 1.1.2, showing the com-
putation of optimal production levels.

In Chapter 6 optimization over the infinite horizon with averaging is treated
for systems with finite state spaces. In Chapter 7 the theory of optimization
over the infinite horizon with averaging is treated for systems with infinite state
spaces. Chapter 8 develops the approximating sequence method for this crite-
rion and illustrates it with two computational examples. The first is Example
1.1.1 with service rate control, and the second is Example 1.1.4.

In Chapter 9 we show how to treat the situation of control exercised only
at selected epochs. This idea is illustrated with computations involving Exam-
ple 1.1.1. Here the service time of a customer follows a general discrete time
probability distribution, and service may be adjusted only when one service is
completed and a new service is ready to commence.

Chapter 10 treats a class of continuous time systemns. Three computational
examples are given. The first is the service rate control of an M/M/! queue-
ing system. This is the continuous time analog of Example 1.1.1. The second
example assumes that there is a pool of servers available, and that servers can
be urned on or off. The problem is to determine the policy for dynamically
adjusting the number of servers tummed on. The third example is a continuous
time version of the polling system in Example 1.1.8.

Our hope is that this material will be both interesting in its own right and
an impetus to further development of the theoretical and computational aspects
of stochastic dynamic programming. It is especially important to expand our
knowledge (both theoretical and practical) concerning effective computational
methods, and it is hoped that the work presented here will contribute to enthu-
siastic efforts in this direction.

BIBLIOGRAFPHIC NOTES

Bellman (1957) is credited with founding the subject of stochastic dynamic
programming. A second important early researcher is Howard (1960). However,
the historical roots of the subject go deeper than Bellman’s work. See Puterman
(1994, p. 16) for interesting historical background.
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PROBLEMS

1.1. Identify at least eight queueing situations that one might meet in everyday
life. These systems have humans as the customers and/or the servers. For
each situation, discuss the nature of the customers, the servers, and the
queues.

1.2. For each of your examples in Problem 1.1 discuss whether and how it is
feasible to control the system.

1.3. Discuss the aspects of control as they might be applied to Examples 1.1.3
and 1.1.5.
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CHAPTER 2

Optimization Criteria

The mathematical structure we consider is known as a Markov decision chain.
The Markov decision chain (also known as a discrete time Markov decision
process or as a stochastic dynamic program) is a flexible construct for analyzing
the control of discrete time systems involving random aspects. This chapter sets
up the basic notation for a Markov decision chain and defines the important
concepts.

The efficiency of systern operation is measured by a suitable optimization
criterion. The optimization criteria treated in the book are defined. A policy
is a rule for the operation of the Markov decision chain. The various types of
policies are discussed. An optimal policy is the best rule of operation for the
system under the chosen criterion. Our goal is to show that optimal policies exist
and to compute them. To this end, the notation of an approximating sequence
is introduced. The approximating sequence method is the approach employed
to compute optimal policies when the state space of the system is infinite.

2.1 BASIC NOTATION

Recall that time is divided into distinct equal portions, called slots or periods.
A state represents the condition of the system at the beginning of a slot, and the
state space S is the collection of all states. We assume that § is a countable set,
which means that it is either a finite set or a denumerably infinite set. (A set is
denumerably infinite if its elements can be enumerated, i.e., put into one-to-one
correspondence with the natural numbers 1, 2, 3, ... )

When the system is in state / € S, the controller has available various actions.
These actions comprise a finite (and nonempty) set A;. For any system whose
control is digitally implemented, the assumption of finite action sets will suffice.
Besides being adequate for the majority of applications, this assumption also has
the advantage of simplifying the theory. When modeling a systern whose control
is implemented by an analog device, one may desire the flexibility of allowing the
action sets to be intervals of real numbers. We do not treat this case.

15
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Suppose that the system is currently in state i and that the action a € A; is
selected by the controller. Then a nonnegative (finite) cost C(i, a) is incurred.

Under some state-action pairs we may wish to assume, additionally, that a
nonnegative reward is earned. Rewards can be incorporated into the structure
under certain conditions. Suppose that a cost of C(i, @) is incurred and a reward
of R(i, a) is eamed. Then the net cost is C(i, @) - R(i, a) which may be negative.
Assume that there exists a nonnegative number B such that the net costs are
uniformly bounded below by - B, for all state-action pairs. Define a new cost
structure by C*(i,a) = Cli,a) - R(i,a) + B 2 0. We can then determine the
optimal policy for system operation under the C* cost structure. Because our
optimization criteria are not affected by the addition of a constant to all costs,
the optimal rule of operation just determined is also optimal for the system
operating under the original net cost structure. For this reason, if rewards are
present, then we can assume that they have been incorporated into the system as
negative costs and that the resulting (net) costs are nonnegative. Certain models
with unbounded rewards are not treatable within this framework. Chapter 5
contains an inventory example that shows the treatment of rewards in detail.

If the system is in state i and action g is chosen, then the state at the beginning
of the next slot is j with probability P;;(a), where 3, ¢ Pii(a) = 1. This means
that the next state is determined according to a probability distribution that may
depend on the current state-action pair. Since the transition probabilities sum
to one, exit from § is not possible. In the future a summation over j will be
understood to mean all states j € S. It may also be helpful (but is optional) to
indicate the evolution of the system by means of state equations.

The structure introduced above comprises a Markov decision chain (MDC)
which is denoted by the symbol A. Keep in mind that to define an MDC requires
the specification of four things: countable state space, finite action sets, non-
negative costs, and transition probability distributions.

Now we show how to model some of the examples from Chapter 1 as
Markov decision chains.

Example 2.1.1. This is Example 1.1.1 with arrival control. (See Fig. 2.1.)
The state of the system is the number of packets in the buffer at the beginning of
a slot, and thus § = {0, 1,2, .. .}. At the beginning of each slot a batch of packets
arrives and p; = P(a batch containing j packets arrives), where 3., p; = 1. In
every state there are two actions available: a = accept the incoming batch, or »
= reject the incoming batch. The action must be chosen before the size of the
batch is observed.

There is a nonnegative holding cost H(i) incurred when there are i packets
in the buffer, and we assume that H(0) = 0. The holding cost may be regarded
as a cost of delaying those packets. For example, if H(i) = i, then for every slot
in which a packet resides in the buffer, a delay cost of 1 unit is charged for
that packet. In addition there is a positive rejection cost R incurred whenever
a batch is rejected. The cost structure is C(i,a) = H(i) and C(i,r) = H()) + R.

Service occurs according to a geometric distribution with fixed rate u, where
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X XM X X X

Admit
or
reject

Decision
maker

Packets arrive

Figure 2.1 Example 2.1.1.

0 < u < 1. This means that the probability of a successful service in any slot is
. If the service is unsuccessful, then another try is made in the next slot with
the same probability of success, and this continues until the packet has been
successfully served. If a batch arrives to an empty buffer and is accepted, then
its packets are available for service at the beginning of the following slot.

If X,, Y,, and Z, are as in (1.1), then the state equation is

X1 = X, + I{a chosen)Y, - Z,, t20. 2.1)

The indicator random variable / is 1 if a is chosen (and hence the new batch
is admitted) and O if it is rejected.
The transition probability distributions are given by

Poofr) =1,
Pyi(a) = p;, J 20,

Pii_(r)=p,
Piir)=1-p, i1,
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{ Pii_ (@) = upy, (2.2)

Pii.j@) = ppjy + (1 - p)p;, izl,j20.

This specifies the states, actions, costs, and transition probability distribu-
tions, and hence this example has been modeled as an MDC., 0

Example 2.1.2. This is Example 1.1.1 with service rate control. The state
space is as in Example 2.1.1. In state O there is no control action available
since there are no packets to serve. We may think of this as the availability of
a single action, namely in this case “take no service action.” In any situation
where there is a single action available in a given state (which just means that
the controller has no choice), we refer to the single action as a null action.
In the case of a null action we omit the notation « when specifying the costs
and transition probabilities. In state i = | the actions consist of the allowable
service rates a; < ax < ... < ay, where O < a; and ay < 1. The conditions mean
that the server must serve if the buffer is nonempty and that perfect service is
unavailable.

The holding cost is as in Example 2.1.1. There is a nonnegative cost C(a)
of choosing to serve at rate a during a particular slot. The cost in state 0 is
then 0, and for i 2 1 we have C(i,a) = H(i) + C(a). Notice that we have the
opportunity to choose a new service rate at the beginning of each slot (if the
buffer is nonempty).

The state equation is given in (1.1). In state O the transition probabilities are
Py = p;. For service rate choice a, the transition probability distributions are
given by

(2.3)

P;;_(a) = apq,
P jla) = apj, 1 + (1 - a)p;, izl,j20.

(]

Example 2.1.3. This is similar to Example 2.1.1 except that the size of the
incoming batch may be observed before making a decision to accept or reject
it. At the beginning of a slot the state is (i, k), where i denotes the number of
packets in the buffer and & the number of packets in the incoming batch. The
state space §= {(i,k)[i=0,1,2,...,k=0,1,2,...} is a denumerable set.

The holding cost is as in Example 2.1.1. There is a positive rejection cost
R(k) incurred whenever a batch of size k 2 1 is rejected. If a batch of size
zero is observed, then there is no action taken and so C(i, 0) = H(i). A holding
cost is not incurred on newly accepted packets until the slot following their
arrival. Hence for k > 1 the cost structure is C[(i,k),a] = H(i) and C[(i, k), r]} =
H() + R(k).

The transition probabilities are somewhat more involved than when the batch
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size is unobserved. If k denotes the size of the current batch and j the size of
the next batch, then some of the transition probabilities are

P10, = P, iy (@) = pis k21,720,

P oyi- 1.5y = upjs
S . . 24
{P(i,oxi,j) = (1~ pp;, iz2l,j=20. 24

(Problem 2.1 asks you to develop all the transition probabilities for this exam-
ple.) O

Example 2.1.4. 'This is Example 1.1.4. Let us assume that the batch arrival
process is as in Example 2.1.1. The problem concems the routing of an incom-
ing batch to one of K parallel servers. Each server maintains its own queue, and
server k serves its packets at geometric rate u, where 0 <y < 1. There may
or may not be a cost associated with changing the routing to which the current
batch is to be sent. Let us model the system under the supposition that there is
a switching cost. We also assume that the routing decision is made before the
size of the incoming batch is observed. An arriving batch is not “counted” in
the buffer to which it is routed until the beginning of the following slot.

The state space S for this example is discussed in Chapter 1 and consists of
pairs (i, ), where i is the vector of buffer levels and u e {1,2,...,K} is the
previous routing decision.

There is a nonnegative holding cost Hy (i) associated with the contents of
buffer k. The total holding cost is H(i) = X, Hi(iy). In addition there is a
nonnegative cost C(u, k) for changing the routing from server u to server &,
where C(k, k) = 0. The cost structure is CI(i, u), k] = H@i) + C(u, k).

Some thoughtful notation can facilitate the writing of the transition proba-
bilities. Let j(k) be a vector with j in the kth place and 0’s elsewhere. Then
P oo (k) = pj.

Now let i be a state vector with at least one nonzero component. Let F = F(i)
be the set of nonzero coordinates of i, and let E = E(i) be a (possibly empty)
subset of F representing those servers who complete service during the current
slot (recall they can only serve packets already in their buffer). The probability
of this event is P(E) = IT;c g Il e p- £ (1 — pi). Finally let e(E) be a vector
with 1 in every coordinate k € E and 0’s elsewhere. Then we claim that

P uyii+ jo) - ). (k) = p;P(E). 2.5)

(Problem 2.2 asks you to explain this.) 0
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2.2 POLICIES

Informally a policy is a rule for the operation of a Markov decision chain. Let
t = 0 be the initial slot. The MDC may be operated in one of two modes. In
the infinite horizon mode the system is operated forslots 1 =0, 1,2, ... .1In
the finite horizon mode a fixed integer n 2 1 is specified, and the system is
operated forthe nslots t =0, 1, ... ,n— 1,

We first define a policy for the infinite mode of operation. The beginning
reader need not be overly concerned with the details, but it is important to
grasp both the general idea of how a policy governs the operation of the MDC
and the definition of a stationary policy.

Assume that the initial state / of the system is known. Here is how the
controller operates under a policy ¢. The history at time ¢ = 0 is given by
hy = (i). The initial action is chosen from A; according to the distribution 8(a}i)
= 0(a|hy). This is a probability distribution on the actions a € A,. Assume that
action ay 13 selected.

Then the state of the system at ¢ = | is determined by the transition prob-
ability distribution associated with i and ay. Suppose that this state is j. The
history at time ¢ = 1 is then given by A; = (i, ay,j). The action at time 7 = 1 is
chosen from A; according to the distribution 8(ali, ay,j) = 8(alh,).

Once this action has been chosen (say it is a;), then the state of the system
at t = 2 is determined by the distribution associated with j and a,. Suppose that
this state is k. The history at time ¢ = 2 is then given by h; = (i, aq,/,ay, k). The
process continues in this fashion.

Assume that the process has been operating for slots r = 0, 1, ..., n -1,
angd that the state at time ¢ = n has just been determined. A history at time n
is a tuple h, = (i,aq, iy, ay,...,04- 1,9, 1,8,) Of the past states and actions and

the current state. Then the action at n is chosen according to the probability
distribution @(alh,) on the action set associated with {,. Once this action has
been chosen, the state at ¢ = n + 1 may be determined. The process continues
in this way for infinitely many steps.

We see that the controller’s actions under a policy can be based on the pre-
vious states visited, the actions chosen in those states, and when those visits
occurred. There are several important types of policies. These are classified by
how much of the history may be utilized by the controller, We start with the
most restrictive (and most important) type and work toward the less restrictive.

A stationary policy, denoted by f, operates as follows: Associated with each
state / is a distinguished action f(/) € A,. If ar any time the controller finds
the system in state i, then the controller always chooses the action f(i). Thus
a stationary policy depends on the history of the process only through the cur-
rent state. To implement a stationary policy, the controller need only know the
current state of the system. Past states and actions are irrelevant. The advan-
tages for implementation of a stationary policy are clear, since it necessitates
the storage of less information than required to implement a general policy. The
stationary policy is by far the most important type of policy.
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A slightly less restrictive type of policy is the randomized stationary policy,
denoted by 8. Associated with each state { is a probability distribution 8({) on A;.
If at any time the controller finds the system in state i, then the controller always
chooses action a with probability 8(i)(a). As is the case for a stationary policy, a
randomized stationary policy depends on the history of the process only through
the current state. To implement it, the controller needs to know the current state
of the system. If f is a stationary policy, then it is a “degenerate” randomized
stationary policy, since we may define the distribution associated with state ¢
to be the degenerate distribution that chooses action f ({) with probability 1.

A deterministic Markov policy is a sequence 0 = (fo.f1,f2. . ..) of stationary
policies. It operates as follows: If the process is in state { at time ¢ = n, then the
controller chooses action f,(/). Thus a deterministic Markov policy depends on
the history of the process only through the current state and the time index. To
implement it, the controller needs to know the current state of the system and
the time index.

A randomized Markov pelicy is a sequence 8 = (8, 8,, 95, .. .) of randomized
stationary policies. It operates as follows. If the process is in state i at time
t = n, then the controller chooses action @ € A; with probability 6,(iXa). Thus
a randomized Markov policy depends on the history of the process only through
the current state and the time index. To implement it, the controller needs to
know the current state of the system and the time index.

The following example clarifies the various types of policies:

Example 2.2.1. This is Example 2.1.2 with M = 3 available service rates. If
the process is operating under a given policy, then a history is a list of the pre-
vious buffer levels and service rates employed up to the current time, together
with the current buffer level. If the buffer is empty at time ¢, then g, is the null
action. Now fix integers L < U with 1 < L, and let { be the current state.

The policy # operates as follows: Serve at rate a; if 1 <i< L, serve at rate
az if L<i< U, and serve at rate a3 if U <i. Then § is a stationary policy. To
implement it only requires the controller to monitor the current buffer level.

The policy ¥ operates just as the policy 8 except when i = U. In this case
the server randomizes equally between rates @; and 3. Then ¢ is a randomized
stationary policy. To implement it requires the controller to monitor the current
buffer level and to perform a randomization if the level is U.

The policy x operates as follows: If the current time is less than 50 (and
the buffer is nonempty), then serve at the lowest rate. If the current time is
50 or more (and the buffer is nonempty), then randomize equally between all
three service rates. Here the controller needs to monitor the current buffer level
(only to see that the buffer is nonempty) and the time index. If ¢ 2 50, then a
randomization must be performed. Hence x is a randomized Markov policy.

The policy £ operates as follows: Assume a given history at time 7, and let
w, be the average buffer level for slots = 0 to ¢ = n. Note that the average level
is a function of the history up to and including the current level. If w, € U,
then serve at lowest rate, while if w,, > U, then serve at highest rate. Because
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w, requires knowledge of the history of the process, this is a general policy.
However, it can be implemented in a more efficient way than through the his-
tories. If the controller keeps track of the current buffer level i, the time index
n, and the previous value w,_, then w, may be computed recursively since
w, = [i+nw,_}/(n+1). O

Now consider the meaning of a policy 6 for the process operating over the
finite n horizon, namely over slots ¢ = 0, 1, ..., n — 1. (This policy may be
denoted by 8,..) The policy is defined exactly as above, except that when the
history h, = (ip, Qo --. , in- 1, @u-1, i) is Observed, then the process stops. So
the state at time ¢ = n is determined, and then the process terminates. We often
assume that a terminal cost is incurred that is a function of the terminal state.
Observe that under this situation exactly n choices of actions will be made by
the controller.

Because the histories include the time index, under a general policy it is
always clear to the controller what the present time is, and hence how many
slots are left before termination. Because of this, the action chosen under & at
time 7 may also depend on the number n - ¢ of slots until termination, the steps
to go.

2.3 CONDITIONAL COST DISTRIBUTIONS

The purpose of this section is to clarify conceptually the meaning of the expec-
tation given in (2.6). These expectations are the building blocks of the opti-
mization criteria to be introduced in Section 2.4.

Assume that the initial state is { and that the process operates under an arbi-
trary policy 8. It is clear from the discussion in the previous section that the
state of the process at time ¢ depends on various probability distributions and
hence typically is not a deterministic quantity, The state at time ¢ is a random
variable, which we denote by X,. Similarly the action chosen at time ¢ is a
random variable, which we denote by A,. (Note that this notation is not to be
confused with the action set associated with a particular state.) The joint prob-
ability distribution of (X,, A,) is given by Pe(X, = j, A, = a|Xp = i), where
clearly we must have a € A;.

It is the case that this probability distribution is well-defined. We do not
prove this but instead show how it may be calculated for ¢ = 0, 1, 2. This will
be sufficient to indicate the operative ideas. Now Py(Xy = i, Ag = a|Xo = i) =
B(ali). For t = 1 we have

Po(X, = j,Ar = alXo =)= ) 6blDP(bY0(ali, b, )).
be A

Here a term is the probability of originally choosing action b, then transitioning
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to j, and then choosing action a; the terms are summed over the action b € A;.
For 1 = 2 we have

PoXz=jiAr = alXo =)= ) 0l
be A;

-(Z Pu(b) Y 0(dli,b,b)Py(d)W(ali, b,k,d,j)).
k

de Ay

This calculates the probability of a selection of actions and states leading to the
pair (j,a) and sums over all such selections.

Associated with the random pair (X, A,) is the cost C(X,, A;). This is the cost
incurred at time ¢ when the controller operates under 8. Because C(X;,A,) is also
a random variable, one effective way to assess it is to employ its expectation.
This is given by

ECK,ANXo=i1= 3 Y, CU,aPeXi=jA=alXo=1),  (26)

J aed;

and represents the statistical average cost at time t. Because the costs are non-
negative, it is the case that the expectation in (2.6) is well-defined. In some
examples, it may have value +oo,

Let us consider the important situation when 6 is a stationary policy f. In
this case we employ some special notation. The cost associated with state i is
denoted C(i, f ), where this is understood to be C(i, £(i)). Similarly the transition
probabilities are denoted Pj(f ), where this is understood to be Pj;(f(i)).

Then Pp(X; = j, A, = alXp = i) is zero unless a = f(j), and we have

Pi(X, = j, A, = f(D)Xo = §)
=Pr(X, = j|Xp = 1)

=2, Pu) Y, Pun(H) D Paylh)

kjeS kye S ki_1€8

= PP(f). @7

Then (2.6) becomes
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EfCX, A)Xo = il = 3 CULFIPX, = jIXo = i)
i

=Y CUSIPNS). 28)
¥

This is the expected cost at time 7 under the stationary policy f.

For most models it is impossible to obtain a closed form expression for the
quantity in (2.6) (or even for the quantity in (2.8)). The reader can relax—we
will not typically be calculating these quantities! What is crucial is a conceptual
understanding of (2.6) and (2.8) rather than facility in calculation.

2.4 OPTIMIZATION CRITERIA

Four optimization criteria will be treated in the book:

1. The finite horizon expected discounted cost criterion.
2. The finite horizon expected cost criterion.

3. The infinite horizon expected discounted cost criterion.
4. The long-run expected average cost criterion.

It will be seen shortly that each criterion is based on the fundamental build-
ing block of the statistical average cost Eg[C(X,, A,)] at time ¢, as defined in
(2.6). These basic building blocks are put together in different ways under each
criterion.

We first discuss the concept of discounted costs. A discount factor is a num-
ber o satisfying 0 < @ < 1 such that future costs are discounted at rate or. What
this means is that a cost of 3 units incurred at time 0 is considered to be a
cost of 3a when incurred at time 1, of 3a> when incurred at time 2, and in
general, of 3a’ when incurred at time ¢ 2 0. This embodies the economic idea
that a cost to be incurred in the future is discounted in today’s money. (It is
certainly possible to have a = 0, but this case is uninteresting.) Note that « =
1 corresponds to no discounting.

To define the criterion in 1, assume that the process operates over the finite
horizon n and that there is a nonnegative terminal cost F(k) incurred whenever
the process halts in state k. Let the initial state i, the horizon n, and the policy
@ be given. The n horizon expected (total) discounted cost under @ is denoted
b}’ Vg, u:.n(i)-

In defining this quantity, it is helpful to allow the possibility of n = 0. For n
= 0 we assume that the initial state is observed and the terminal cost assessed,
but that no action is taken. Hence vy , o(i) = F(i). For n 2 1 we define
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n-1
Up,anl)=Ea | D o/ COX,A) + 0" F(X,)|Xo = i

=0

n-1
=) CElCX,ANXo = il + S EFX )Xo = i) (29)
=6

The second line follows from the linearity of the expectation. The function
Vg, 15 well-defined but may be +ee.
The n horizon expected discounted value function is defined as

g, nli) = igf g, ee.nl), 2.10)

where the infimum is taken over all policies for the n horizon. The quantity
Ua,» 1s the greatest lower bound on all the n horizon expected discounted costs
and is the best result that could be desired. Here is the definition of an optimal
policy under this criterion.

Definition 2.4.1. Let 8 be a policy for the n horizon. Then @ is optimal for
the expected discounted cost criterion for the n horizon if Vg o, (i) = vy, (i) for
i€ §. 0

Remark 2.4.2. The quantities in (2.9-10) and others to be defined shortly
in (2.11-16) may equal +o0, and we denote +oc by eo. The approach of allow-
ing these quantities to be infinite (unless stated otherwise) gives us the greatest
degree of flexibility in our theoretical development, since we need not be con-
cerned with imposing potentially complicated conditions to make these quan-
tities finite. However, quantities introduced in a model such as a holding cost
or cost for service are always assumed to be finite quantities. This convention
is used without further mention. 4

To define the criterion in 2, assume that the process operates as in 1 but that
future costs are undiscounted. This comresponds to criterion 1, with & = 1. The
n horizon expected cost under & is denoted by vy ,, where vy (i) = F(i). From
(2.9-10) we have

n-1
vl = Y, EplCLANIXo = il + ElFX)IXo=i]  (2.11)

t=0

and
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Up(i) = igf vy, n (), (2.12)

where the infimum is taken over all policies for the n horizon. Here is the
definition of an optimal policy under this criterion.

Definition 2.4.3. Let § be a policy for the n horizon. Then @ is optimal for
the expected cast criterion for the n horizon if vy ,(i) = v,(¢) for i € §, O

The remaining two criteria deal with the infinite horizon case. Now assume
that @ is a policy for the infinite horizon. To define the criterion in 3, assume
that the discount factor a, initial state {, and policy ¢ are given. Here we must
have a < 1. The expected (total) discounted cost under € is denoted by Vy ,
and defined as

Vool =Eo| Y, o' CXiA)Xo = i
-0

=Y oE[C(X,, A)IXo = i, (2.13)
IEx i}

The expected discounted value function (discounted value function, for short)
is defined as

Vali) = inf Va,o(0), (2.14)

where the infimum is taken over all policies for the infinite horizon. The quan-
tity V, is the greatest lower bound on all the expected discounted costs, over
the infinite horizon, and is the best result that could be desired. Here is the
definition of an optimal policy under this criterion.

Definition 2.4.4. Let 8 be a policy for the infinite horizon, Then 0 is opti-
mal for the expected discounted cost criterion if Vg (i} = V(i) for i € S.
C

Analogously to the finite horizon case one is tempted to set o = 1 in (2.13)
to obtain an undiscounted criterion for the infinite horizon. The problem with
this approach is that for the systems we desire to model, the resulting expected
total cost would be oo for all policies. Instead, we employ the idea of averaging
the expected (total) cost over n steps and then use a limiting procedure.

Given initial state i, the long-run expected average cost under policy ¢ is
denoted by Ja(i) and defined by
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n~1
N 1 .
Jo(i) = lim sup o Eq [ E CX A Xo=1i

Uit =0

= lim sup

n-» oo

UO.n(i)
— (2.15)

The limit supremum concept is reviewed in Appendix A. The reader who is
uncomfortable with the limit supremum should feel free to think of this as a
limit until more experience with this concept is gained. There will be no loss
of understanding. The limit supremum is taken since the limit sometimes fails
to exist (see Example 6.2.1). The limit supremum is the largest limit point of
the expected average costs, and hence is the worst case situation.

We define the long-run expected average cost function (average cost, for
short) by

J() = iroxf Ja(i), (2.16)

where the infimum is taken over all policies for the infinite horizon. The quan-
tity J(-) is the greatest lower bound on the average costs, and is the best result
that could be desired. Here is the definition of an optimal policy under this
criterion.

Definition 2.4.5. Let @ be a policy for the infinite horizon. Then 0 is opti-
mal for the average cost criterion if Jo(i) = J(i) for i € §. ()

We very occasionally need the average cost concept but with the limit supre-
mum replaced by the limit infimum. The quantity J (i) is defined as in (2.15)
but with the limit supremum replaced by the limit infimum. This is the smallest
limit point of the expected average costs and hence is the best case situation.
The quantity J *(i) is defined analogously to (2.16).

This completes the definition of the optimization criteria. The deeper mean-
ing of each criterion will be revealed in subsequent chapters.

2.5 APPROXIMATING SEQUENCE METHOD

The approximating sequence method is a general framework for the compu-
tation of optimal policies when the state space is denumerably infinite. In this
section we define an approximating sequence and discuss some important ways
of constructing such sequences.

Now assume that the Markov decision chain (MDC) A is given, and recall
that it consists of four items: the state space S (assumed in this section to be
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denumerably infinite), the action sets A;, the costs C(i,a), and the transition
probabilities P;(a).

We define a sequence (Ay) of MDCs that approximates A. The state space
of each Ay is finite, and because of this the computation of an optimal policy
may be carried out in Ay. Then under certain conditions the results of these
computations will converge to an optimal policy for A. It will generally be
sufficient to compute for only two or three members of the sequence to get a
good approximation to an optimal policy for A.

Definition 2.5.1. Let N, be a nonnegative integer. The sequence (Ax)vzy,
is an approximating sequence (AS) for A if there exists an increasing sequence
(SnIv 2w, Of nonempty finite subsets of § such that USy = S. Each Ay is an
MDC with state space Sy satisfying two conditions:

(i) For { € Sy the action set is A; and the cost at a is C(i, a).

(1) For each i € Sy and a € A,, P,_(a;N) is a probability distribution on
Sw such that

Vlim Pita;N) = Pi(a), Jj€S. 2.17)
]

If we are dealing with the finite horizon case with a terminal cost F, then this
same terminal cost applies to Ay. The integer N is said to be the approximation
level.

At first glance this definition seems formidable, but in reality it is quite sim-
ple. The MDC Ay has as its state space a finite subset of S. On this finite subset
the action sets and costs for Ay are exactly the same as for A. Only the tran-
sition probabilities are different. These form distributions on the finite subset
that converge pointwise to the original distrcibutions on A. The distributions in
Definition 2.5.1(it) are called approximating distributions. Keep in mind that
only two items are required to specify an AS: the finite subsets and the approx-
imating distributions.

Example 2.5.2 Consider the state space § = {0, 1,2,...}; there is one action
in each state. We have Py; = (1/2)/*' for j20,and P;_y = 1 fori2 |,

Let Ng=2and Sy = {0,1,... ., N). Let P, . ((N)=P;;_y for 1 Si<N. The
distribution for 0 is given by

i i

Py(N) = 3TN
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. 1 .
POj(N)"’W, 1<jsN-1,
- | 1 1 1
PON(N)szZN 'QT;T""XI‘:?AT'F—IV—. (218)
This satisfies (2.17) and hence is an approximating distribution. =]

The most important way to define the approximating distributions is by
means of an augmentation procedure. This procedure is useful when the state
space is multidimensional as well as when it is one-dimensional. Informally the
idea is as follows:

Suppose that the process is in state i € Sy and action a is chosen. For j €
Sw the probability Pi(a) is left unchanged. Now assume that P;(a) > 0 for
some r € Sy. This means that under this probability the original process would
transition to state r outside of Sy. This is said to be excess probability associated
with (i, a, r, N), and something must be done with this excess probability. It
is redistributed (i.e., given or sent) to the states of Sy according to a specified
distribution. In full generality this distribution may depend on i, a, r, and N; it
is called the augmentation distribution associated with (i, a, r, N). Moreover it
is no loss of generality to require it to be defined even if P, (a) = 0. The formal
definition of an augmentation procedure is now given.

Definition 2.5.3. The approximating sequence (Ay) is an augmentation
type approximating sequence (ATAS) if the approximating distributions are
defined as follows: Given i € Sy and a € A;, for each r € Sy there exists
a probability distribution (g;(i,a,r, N));c sy, called the augmentation distribu-
tion associated with (i, a, r, N'), such that

Pj(@;N) = Py(a) + Z Pi(a)g(i,a,r,N), jeSy. (219)

re S-Sy
0

Under an augmentation procedure the original probabilities on Sy are never
decreased, but they may be augmented by the addition of portions of excess
probability (see Fig. 2.2). Note that Example 2.5.2 is not an ATAS.

To help the reader become comfortable with the concept of an ATAS, we
now give some terminology and examples. After these are completed, we prove
that (2.19) does indeed define an approximating probability distribution.

Here are some ATASs that arise frequently and the informal terminology
used to describe them. Suppose that there exists a finite subset G of S such that
it is always the case that Zj e 4ii,a,r,N) = 1. This means that all excess
probability is given, in some way, to the elements of G. We say that this ATAS
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S

Figure 2.2 Augmentation type approximating sequence.

sends excess probability to a finite subset, or that it sends excess probability to
G. i G = {x}, we say that it sends excess probability to x. (In defining such
an ATAS there is no loss in generality in assuming that N; is so large that Sy
contains G.)

IfS={0,1,...}, Sy = {0,1,...,N}, and gqy(i,a,r,N) = 1, then we say that
this ATAS sends excess probability to N.

The following examples illustrate the idea of an ATAS:

Example 2.5.4. The MDC A and Sy are as in Example 2.5.2. There is
excess probability associated only with 0. Hence for an ATAS we must have
Pii ((NY=P;_y,for 1 Si<N.Let Y(N)= 3" ., Po,. Here are four ways
of defining the approximating distribution (Pyi(N))p<;<n:

1. Let Py(N) = Py for 1 € j € N, and let PooN) = Poo + Y(N). This
defines an ATAS that sends excess probability to 0. Formally we have
qo(0,r,N)=1 for r 2 N + 1. This ATAS is shown in Fig. 2.3.

2. Let Pyi(N) = Py; for 2 < j < N. Let Poy(N) = Py + (0.5) Y(N) and
Py (N) = Pg; +(0.5) Y(N). This defines an ATAS that sends excess prob-
ability to {0,1}. Formally we have ¢o(0,r,N) = ¢4(0, r, N) = Q.5 for
r2N+1.

3. Let P()j(N) = P()j for 2 €j < N. Let Ppo{N) = Py + Pon+1 and Py (N) =
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Figure 2.3 [Excess probability in state 0 sent to 0.

Py1+3.7_y.» Por. This also defines an ATAS that sends excess probability
to {0, 1}. In this case we have gqo(O,N+ I,N) =1 and ¢,(0,r,N) =1 for
r2N+2.

4. Let P(}j(N) = Py; for 0 <j <N - I, and let Pon{N) = Pgy + Y(N). This
defines an ATAS that sends excess probability to N. We have gy(0,r,N) =
1 for r 2 N + 1. This ATAS is shown in Fig. 2.4. 0

Example 2.5.5. This is Example 2.1.4. Recall that this example concerns
the routing of batches of packets to one of K parallel servers. The state space
S consists of all pairs (i, u), where i is the vector of buffer levels and u is the
server to which the previous batch was routed.

Let Sy be the set of pairs (i, #), where i satisfies iy SN for 1 <k £ K. This
means that in the approximating sequence no buffer is allowed to contain more
than N packets. To simplify the definition of the ATAS, let us assume that K
= 2. How to approach the general situation will be clear from this case.

Let us first discuss a numerical example with N = 10. Assume that the cur-
rent state is [(8, 4), u], that action 1 is chosen, and that a batch of size 5 arrives.
The following states outside of $p may be reached on the next transition: [(12,
3), 11, 1(13, 3), 1], [(12, 4), 1], [(13, 4), 1]. The first state corresponds to service
completions at both buffers, the second state corresponds to a service comple-
tion only at the second buffer, and so on. The probability associated with the
states [(12, 3), 1] and [(13, 3), 1] is given to state [(10, 3), 1} € Syg. Similarly
the probability associated with the states [(12, 4), 1] and [(13, 4), 1] is given
to state [(10, 4), 1].

0 1=+ N N+t N+2 ===
7 ]
N’ ;
~ //

\'-—_f’

Figure 2.4 Excess probability in state 0 sent to N.
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Let us now describe generally how this operates. Suppose that the system is
in state [(#;, i2), u] € Sy and that action 1 is chosen. Only the level of buffer
1 may increase after this decision. The level of buffer 2 will either stay the
same or decrease by 1 (if there is a service completion). We see that the excess
probability associated with this state-action pair involves states of the form
[(r, x}, 1], where r > N. Here x = > if i = 0 or if there is no service com-
pletion at buffer 2, and x = i; — 1 if there is a service completion at buffer 2.
The excess probability involving [(r, x), 1] is sent to [(N, x), 1]}. Formally the
augmentation distribution is given by

q‘(N,.\‘).”([(ilr iz)v u]! ly [(r’ x)r IJ’ N) = lv r> N-. X = i2 or i2 -1 (2'20)
The augmentation distribution, if decision 2 is made, is defined similarly. O

Finally we show that (2.19) does indeed define an approximating probability
distribution.

Proposition 2.5.6. Equation (2.19) defines an approximating probability
distribution on Sy.

Proof: To show that (2.19) defines a probability distribution, note that

Y Pi@Ny=D Py@+ >, D Piulaglia,rnN)

jeSn je Sy JESN reSy
=Y Py@+ Yy, P.~,<a)( > gia, r,N))
e Sn reSy j& SN
=Y Pi@+ Y. Pila)
jeSn reSy
= Z Pija)
jes
= 1. (2.21)

The interchange of the order of summation in the second line is valid since
all terms are nonnegative. The third line follows since the probabilities in an
augmentation distribution sum to 1. The remaining lines are clear.

We now show that the distribution in (2.19) satisfies (2.17). First observe
that
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1= 3 Py@)+ Y, Pila). (2.22)

jeSn reSy

Since the finite sets Sy increase to S, it is the case that the first term on the
right of (2.22) approaches | as N —» oo, Hence we have

Jim z P.(a)=0. (2.23)

re SN

Now fix j € §, and assume that N is so large that j € Sy. Since the terms
in (2.19) are nonnegative and g; < 1, it follows that

Pya) < Pj(a;N) S Pij(a) + 2 P.(a). (2.24)

resSy

We take the limit in (2.24) as N —» oo, and the result follows from (2.23). O3
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PROBLEMS
2.1. Develop the transition probabilities for Example 2.1.3.
2.2. Explain the trassition probabilities in Example 2.1.4.

2.3. Consider a single server queue with batch packet arrivals. There is a prob-
ability p; that a batch of size j 2 0 will arrive at the beginning of any
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slot. The state i 2 0 denotes the number of packets currently in the buffer.
In state i 2 1 the action set is {0, 1,...,7}, where action k € {0,1,...,¢}
means that in the next slot a perfect (batch) service of & packets will occur.
(If £ = 0, then the server is idle during the next slot.) There are costs H(i)
and C(k) as usual. Model this as an MDC.

Formulate Example 1.1.3 as an MDC.
Formulate the priority queueing system in Example 1.1.5 as an MDC.

Consider the MDC in Example 2.1.1. Let the current state of the system
be i. For each policy specified below decide whether it is stationary, ran-
domized stationary, deterministic Markov, randomized Markov, or general.
Discuss what information is required to implement each policy.

(a) If i < 25, then accept incoming batches, while if i > 235, then reject
incoming batches. If i = 25, then accept them with probability 0.25
and reject them with probability 0.75.

(b) At ¢ = 0 accept the incoming batch with probability 0.5 and reject
it with probability 0.5. At time t 2 1, if the previous decision was
to accept, then reject the next batch, and vice versa if the previous
decision was to reject.

(¢) If { < 100, then accept, while if i 2 100, then reject.

(d) If the proportion of slots in which the batch was rejected does not
exceed 0.2, then reject the incoming batch. Otherwise, accept it.

{e) Assume that { < 100. If the time ¢ is even, then accept, while if it is
odd, then reject. If i > 100, then reject.

Consider an MDC with § = {0,1,2}. There is a single action in each
state, and we have Py = Ppp = Py = Py = 1 (deterministic tran-
sitions from 0 to 1 to 2 to | and back to 0). The costs are given by
C(1) = i+ 1. Calculate v,4(0) (assume a terminal cost of zero), V,(0), J(0),
and lim, . ;(l - a)V,(0). Compare the last two guantities.

For the priority queueing system modeled in Problem 2.5, discuss three
different ways to set up an ATAS for this MDC.
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CHAPTER 3

Finite Horizon Optimization

In this chapter we derive an equation for the finite horizon expected discounted
(or undiscounted) value functions. Necessary and sufficient conditions for a
policy to be optimal for the finite horizon criteria are given. It is shown that an
optimal deterministic Markov policy exists.

The remainder of the chapter is devoted to the topic of computation of opti-
mal policies when the state space is infinite. Conditions are given so that the
finite horizon expected value functions in an approximating sequence converge
to the analogous quantities in the original MDC and likewise for the optimal
policies. These ideas are illustrated with the development of an approximating
sequence for Example 2.1.1. A specific case of this is ProgramOne. Computa-
tional output is discussed for several scenarios, Suggestions for further explo-
ration of this model] are in the chapter problems.

3.1 FINITE HORIZON OPTIMALITY EQUATION

Let @ be an arbitrary policy for the r horizon. Recall that the n horizon expected
cost under @, defined in (2.11), may be obtained from the n horizon expected
discounted cost, defined in (2.9), by setting & = 1. With 0 < « £ | we may
develop the theory for the expected discounted and undiscounted cost criteria
at the same time. We speak in general of the n horizon expected value function.
Let it also be understood that « is fixed, and this convention will hold throughout
the chapter.

The expected value function v, , defined in (2.10) represents the smallest
expected discounted cost that can possibly be achieved when the process is
operated over the n horizon, namely over n time slots. We may think of an n
horizon as beginning from an arbitrary slot and continuing for » slots. The goals
of this section are as follows: First, we want to provide an equation satisfied
by the value function. This is the finite horizon optimality equation. Second,
we want to give necessary and sufficient conditions for an n horizon policy

35
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to be optimal. Third, we want to show that there exists an optimal policy of
deterministic Markov form.
It is helpful to introduce the auxiliary function

o, (i, @) =2 CG@) 40t Y Pyl@Wan-1(j),  n21. G.1)
j

Let Bi(a,n) = {b € Ailug 1(i,b) = minge 4, {#a,(i,a)}}. These actions are said
to achieve or realize the minimum. In most cases B;(a, n) is a singleton, but it
is possible for it to contain more than one action.

Remark 3.1.1. Quantities similar to the minimization above occur fre-
quently throughout the book. If the terms being minimized involve the state
i, then the minimization is understood to be over actions a € A; unless other-
wise specified. Subsequently these minimizations are denoted by min,. 0

Recall that vy, o(7) equals the terminal cost F(i). This implies that v, ¢ = F.
There are no actions to take for a horizon length of 0. Now assume thatn 2 1, so
that the process will be operated for at least one step and actions will be taken.
We engage in some informal reasoning, both to gain insight and to suggest the
statement of the major theorem. So suppose that the horizon n is given and that
the process is initially in state i. It is desired to operate the system as close to
optimality as possible. Some initial action must be taken {(or a randomization
among actions performed, on the basis of which one of them is chosen). Let
us assume that the controller tentatively selects action @ € A;. Then a cost of
C(i, a) is incurred and the process transitions to state j with probability P (a). It
is clear that to obtain the best overall result, the controller should act optimally
for the n — 1 horizon problem with initial state j. But this means that the n
horizon expected discounted cost is given by C(i,a) + aLiPij(a)vs.n-1(J). In
reconsidering what to do initially, the controller sees that the action that realizes
the minimum of these quantities should be chosen. This suggests that v, (i)
= min, {uy .(i,a)} and that, at time ¢ = 0, an optimal policy for the n horizon
problem should choose an action in B;(a, n).

This insight leads directly to the major theorem of this chapter. This result
gives a recursive equation satisfied by the finite horizon value functions. Parts
(i-ii) give necessary and sufficient conditions for an arbitrary policy to be opti-
mal for the n horizon optimization criterion.

The proof makes use of Proposition A.1.1 in Appendix A and the reader
interested in this proof should examine this result before proceeding.

Theorem 3.1.2. The finite horizon expected value function satisfies the
finite horizon optimality equation
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b i) = mind Cl.a)+a Y Py@lan (D), i€Snzl. (2
J

(i) A policy @ is optimal for the 1 horizon if and only if given initial state i,
the distribution @(a|i) is concentrated on the set B;(«, 1) (that is, equals
Zero outside this set).

(ii) A policy 6 is optimal for the n > 2 horizon if and only if
(1) Given initial state i, the distribution 8(a|i) is concentrated on the set
B,‘(a, n).
(2) Given the process moves to state j at ¢ == 1, then 8 follows ann - 1
horizon optimal policy with initial state /.

Proof: The proof is accomplished by induction on the horizon.

First assume that n = 1. In the one-period case the controller acts at ¢ = 0,
then observes the state at t = | and incurs the terminal cost. Let the initial state
be i, and let @ be an arbitrary policy for the 1 horizon. Then

Up, 1) = D, B(ali) Eg[C(Xo, Ao) + aF(X1)]Xo = i, Ao = a]

=) 0l  Clha+a Y Py@wa,ol)
a ‘ 7

=" 8aliuaili,a)
2 min (o, (G, @)). (3.3)

The first line follows from (2.9) by conditioning on the initial action chosen.
The other lines follow easily.

Since (3.3) holds for all 8, it follows that infy vg o (1) 2 min, {u, 1(i,a)}.
Then from (2.10) it follows that

V8. a.1(i) Z Uq,1(3) 2 min{ua(i, a)}. (3.4)

Observe that the last expression in (3.4) is the right side of (3.2).

Now let 8 be a policy with 8(a}i) concentrated on B;(«, 1). Proposition A.1.1
of Appendix A tells us that any such policy satisfies v, o, 1 (/) = min, {u,, (i, a)}.
That means that the terms in (3.4) are all equal. This implies that (3.2) holds
for n = 1 and that 8 is optimal.
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This proves the sufficiency of the condition in (i). To prove the necessity,
let @ be an arbitrary policy. It again follows from Proposition A.1.1 and (3.4)
that @ is optimal only if 8(ali) is concentrated on B;(a, 1). This completes the
proof forn = 1.

Now assume the truth of the statements for n - 1. The only assumption that
will be used in carrymg out the induction is the existence of an n — 1 horizon
optimal policy 0*. Using this, we will show the truth of the statements for n.

Let the initial state be i, and let & be an arbitrary policy for the n horizon
problem. If the initial action is a and the state at # = 1 is j, let ¥(i,a,j) be the
policy rule for the n — 1 horizon under @, starting at time ¢ = 1. Then

Up (i) = Y, 0(alDEs[C(Xo, Av)

+Q "2: o 'C(X,,A,) +a"F(X,)| Xo = i,Ap = a]
=1

= z 8(alH< Cli,a)+ Z Pij(a)u\b(i,a.j),a,n—I(j)}

a J
> 2 0(ali) {C(i,a)*-a z Pij(a)vav.a.u-l(j)}

a i
= z 8(ald) {C(i, a+ o Z Pi{a)ug,n - l(j)-}

a J ,

- Z 0(aliuq -0, @)

b4 main{ua,,,(i, ar}. (3.5)

From (3.5) it follows that vy o (i) 2 Uy (i) 2 min,{u, ,(i,a)}, where the
last term is the right side of (3.2).

Now dssume that 6(ali) is concentrated on B,(a,n) and then follows the
policy 8. From Proposmon A.1.1 it follows that the last line in (3.5) is an
equality. Since y(i,a,j) = 6%, it follows that the third line is an equality. Hence
(3.2) holds for n, and there exists an optimal policy of the claimed form. This
proves the sufficiency of (ii).

It remains to show the necessity of (ii). First assume that #(als) > 0, for some
a ¢ B(«,n). Then from Proposition A.1.1 it follows that the last inequality in



3.1 FINITE HORIZON OPTIMALITY EQUATION 39

(3.5) is strict, and hence 6 cannot be optimal. Now assume that 6(a}i) is con-
centrated on B;(a, n). Assume that there exists b € B;(c, n) such that 6(bji) >0
and j such that P;;(b) > 0. Note that this means that state j may be reached at
time ¢ = | under the policy @. Suppose that 6 does not act optimally for the n—1
horizon at j. This implies that Uy g j),a,n- 1{J) > Va,n-1(j). But this means that
the first inequality in (3.5) is strict, and hence 8 cannot be optimal. O

The form of an n horizon optimal policy embodies a famous result known
as Bellman's principle of optimality. The principle says that if a policy is to
have a chance of being optimal and certain actions have been taken for periods
0, ..., t—- 1, then the remaining actions must constitute an optimal policy for
the n — ¢ horizon.

The implication of Theorem 3.1.2 is that both the finite horizon value func-
tion and a finite horizon optimal policy can be built up inductively for n = 1,
then n = 2, and so on. The following example illustrates this procedure in a
simple setting. The reader may find it useful to work through the calculations
in detail.

Example 3.1.3. Consider an MDC wnh S = {0,1)}. State 0 has actnons a
and @”, while state 1 has acnons b and b*. We have C0,a) =1, C0,a ) =
0.75, C(l b) =4, and C(1, b* )} = 3. The terminal costs are F(0) = | and F(1) =
2. The transmon probabilities are completcly specified by the conditions Pgo{a)
= 0.5, Poo(a™) = 0.25, Py, (b) = 0, and Py (b*) = 0.5. See Fig. 3.1.

In this example let us assume that « = 1. In this case the set defined following
(3.1) is denoted by Bi{n). Our aim is to construct an optimal policy for the n =
2 horizon. Observe that

v1(0) = min{C(0,a) + 0.5 F(0) + 0.5 F(1), C(0, a*) + 0.25 F(0) + 0.75 F(1)}
= min{2.5,2.5}.

Figure 3.1 Example 3.1.3.
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Hence v (0) = 2.5 and B(,(l) {a,a }. Similarly we find that v, (1) = min{5,4.5}
= 4.5 and B;(1) = {b%).
For n = 2 we have

v2(0) = min{C(0, a) + 0.5 v;(0) + 0.5 v, (1), CO, a*) +0.25 v;(0) +0.75 1 (1)}
=min{4.5,4.75}.

Hence v7(0) = 4.5 and 80(2) {a}. Similarly we find that v2(1) = min{6.5,6.5}
= 6.5 and B;(2) = {b, b ).

Let’s build up an optimal policy for the 2 horizon. The policy will be of
determmlstlc Markov form. Define the stationary policies f and f2 by f1(0)
-a* L fi(l) = b* , f2(0) = a, and f2(1) = b. According to Theorem 3.1.2 the
deterministic Markov policy # = (f2,f) is optimal.

To check this out, note that

vg,1(0) = vy, 1(0)
= C0,f1)+ 025 F(0) +0.75 F(1)
=2.5,

and indeed vy 1(0) = v,(0). Similarly we can show that vy (1) = 4.5 = vi(1).
Then 09,2(0) = C(O,fz) + 0.5 Uayl(O) + 0.5 on;(l) =45 = 02(0). And ﬁnally
vg,2(1) = C(1,£2) + vp,1(0) = 6.5 = va(1).

Let us define a history dependent optimal policy ¥ under the assumption that
the process is in State 1 at t == (. The policy chooses action b with probabllxty
0.2 and action b* wnth probability 0.8. If the process is in state 1 at time ¢ =
1, then it chooses b*. If the process is in state 0 at this Ume and action b was
chosenatt =0, then action a is chosen, whereas if action b* was chosen at £ =
0, then action a” is chosen. It follows from Theorem 3.1.2 that ¥ is an optimal
2 horizon policy for initial state 1. (Problem 3.1 asks you to verify this.) O

Example 3.1.3 shows that there may be more than one optimal policy and
that an optimal policy may be history dependent. However, the most important
type of policy for the n horizon is a deterministic Markov policy. Theorem 3.1.2
tells us how to define such a policy to ensure that it is optimal. At time ¢t = 0 we
choose and fix an action in B;(«, n) for each i, and this defines the stationary
policy f,,. At time ¢ = | (since the policy from that point on must be optimal
for the n - 1 horizon) we choose and fix an action in B;(«a,n — 1) for each i,
and this defines the stationary policy f,,. ;. We continue in this way until time
t = n— 1 (the last time to make a decision). At this time we choose and fix an
action in B;(a, 1) for each i, and this defines the stationary policy f. Then the
policy 6 = (fu, fn-1....,f1) is optimal for the n horizon. The following result
formalizes this argument:

Corollary 3.1.4. Let the deterministic Markov policy 8 = (f,, fn-1,....f1)
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be defined as follows: The stationary policy f, _, satisfies f,_,(i) € Bi(a,n~t)
for 0<r<n- 1. Then @ is optimal for the n horizon.

Proof: The notation is set up so that ¢ represents the time period. So at
time t = 0 we employ f,, at time ¢ = 1 we employ f,_;, and so on.

The result is proved by induction on n. First let n = 1. Then 6 = f,, where
f1{D) € Bi{a, 1). By Theorem 3.1.2 this is optimal.

Now assume that the result is true for n— 1. Let us prove it for n. Let 8 =
(f,.,f,1 1> ..., f1) be as above. Let6* = (f,, 1» .-+, f1), and observe that 0 =
(fn 0%). Accordmg to the definition of #* and the 1ndu<.t10n hypothesis, 6" is

optimal for the n - I horizon. But it then follows from Theorem 3.1.2 that ¢ is
optimal for the n horizon. O

Our goals for this section have been achieved. In particular, we may use (3.2)
to recursively calculate v, ,, and then Corollary 3.1.4 may be used to identify
an optimal deterministic Markov policy.

3.2 ASM FOR THE FINITE HORIZON

The approximating sequence method (ASM) is used to calculate both the finite
horizon expected value function and a finite horizon optimal policy for the case
when the state space is denumerably infinite. At this point the reader may want
to review Definition 2.5.1.

Throughout this section let A be an MDC with a denumerable state space
and terminal cost F, and let (Ay) be an approximating sequence for A. Then
(2 ,,(i)),e sy 1s the expected value function in Ay. (In general, quantities occur-
ring in Ay are superscnpted with N.) An optimal pollcy for the n horizon in
Ay is given by 6% = (¢, e)_|, ..., €)), where ¢V is a stationary policy that
is optimal for time n-—t.

As we let N -— oo (with the horizon length n fixed), the questions of interest
are as follows:

QUESTION 1. When does vY | — vy, < o0?

QUESTION 2. When does 67 converge to an n horizon optimal policy in A?

We want to ensure both the finiteness of the value function in A and the
convergence. The next example shows that the desired convergence may not

hold.

Example 3.2. I This is Example 2.5.2 with C(¥) = f and zero terminal cost.
We claim that vy N(0) does not converge to v2(0). Observe that v,(j) = j. Then

va(0) = 3,7, j/2/* " = 1. (This follows by factoring out 3 and applying (A.25).)
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Now v} (j) =j for 0 <j < N, and hence
N
B O =Y PyN)j
j=0

zm +§_7~T+1

As N — oo the first term approaches 1 = v;(0) and the second term approaches
0. Hence limy _, .. vY(0) = 2> v,(0). o

The following result shows what can be proved without further assumptions.
The reader may wish to review the concept of the limit infimum (supremum)
of a sequence as discussed in Section A.1 of Appendix A. Recall that the limit
of a sequence exists if and only if the limit infimum of the sequence equals its
limit supremum (and the limit is then this common gquantity).

Lemma 3.2.2. We have limy .. vYy = 0. For n 2 1 we have lim
ian~»oo UZ'" ->- Ua’n.

Proof This is proved by induction on n. Let n = 0 and i € S. There exists
N* such that N =2 N* implies that i € Sy. Then va ol = F(i) = vy o(i) for
N 2 N*, which proves the first statement. Observe that if the limit exists, then
the hrmt infimum is equal to the limit. Hence the second statement is true for
n = 0 and may be used to start the induction.

Now assume that the result is true for n - 1. We show that it holds for n,
The » horizon optimality equation in Ay is

ol () = min{ CG,a) +a Y Py@Nwy, \()p, i€Sy. (36)
JjE SN
Take the limit infimum of both sides of (3.6) to obtain

o o , o e N .
lm}vmfvi,,(t)—rrgn C(t,a)+alxrr?wnnf Z Pya, Ny, ,_(j)

je Sy
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v

min{ CG,a)+a Y, Pya)timinf vy ,_ ()
i

v

min< CG,a)+ o Y, Pi(@an-1())
i

= Vg, pl0). 3.7

(Notice that *“--» oo™ has been suppressed and is understood in the limit infi-
mum. Recall our convention that "‘Zj" indicates a summation over j € S.) Here
the first line follows from Proposition A.1.3(i), which says that a limit infimum
can be “passed through™ a minimization over a finite set. The second line fol-
lows from the generalized Fatou's lemma (Proposition A.2.5). Since the costs
are nonnegative, it is the case that the value function is nonnegative. The third
line follows from the induction hypothesis, and the fourth line follows from
(3.2). This completes the induction. Hence the result holds for n 2 0. a

The following finite horizon assumption, for fixed o and fixed n 2 1, is the
key to answering the questions.

Assumption FH(o, n). For i e S we have lim supy, __ ., v'("t",,(i) = Wa () <
oo and wy (1) £ v, 2(D). t

The answer to Question 2 requires the concept of a stationary policy for A that
is a limit point of a sequence of stationary policies in (Ay). This is given in
Definition B.4 in Appendix B, and the reader may wish to refer to this definition
now. There is also some background information on sequences of stationary
policies.

Theorem 3.2.3. Let n 21 be fixed. The following are equivalent:

() Limy . VY, = v, < o0,
(ii) Assumption FH(c, 1) holds.

Assume that either (then both) of these holds, and let ¢ be a stationary policy
for Ay that is optimal for the n horizon at time ¢ = 0. Then any limit point of
the sequence (eX )y, is optimal in A for the n horizon at 1 = 0.

Proof: If (i) holds, then lim supy v , = limy vY , = vy, < oo, and then
clearly (ii) holds.
Now assume that (i) holds. Then lim supy v , S v, , < lim infy vY ., where

the last inequality follows from Lemma 3.2.2. Moreover the first term is finite.
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But this implies that all the terms are equal and finite, and thus (i) holds. This
proves the equivalence of (i} and (ii).

Now assume that (i) holds. By Proposition B.5 there exists a limit point
e, of the sequence (eﬁ’ Inznv,- Recall from Definition B.4 that there exists a
subsequence N, such that given i € S, we have €7 (i) = e,(/) for N, sufficiently
large (how large may depend on i).

For a fixed state i and N, sufficiently large, (3.6) may be written

oV ()= Cliren) +a D Pilens Nyl 1())- (3.8)

j€ SN

This follows since e” is n horizon optimal at # = 0 and chooses the same action
at i as e, for N, sufficiently large.

We now take the limit infimum of both sides of (3.8) as r —» oo (ie., take
the smallest limit point relative to the subsequence determined by N,). This
yields

liminf o7, (i) 2 Cl, ) + Y, Piten)timinf v}, ()
i

2 Cl.en) +a Y Pilea)liminf v, ()
)

2 Clen) +a ) Pilen)von- 1))
J

> n;m C(,a)+ a Z Pifa@)vy,n - 1(J)
= Ua,rt(i)' (39)

Here the first line follows from Proposition A.2.5. The second line follows since
the limit infimum over N is the smallest limit point. The third line follows from
Lemma 3.2.2. The fourth line is clear and the last line follows from (3.2).

But by (i) we have lim inf, vﬁ “o(§) = limy ©Y () = Uy, (i), and hence all the
terms of (3.9) are equal. This implies that ¢,(i) realizes the minimum in (3.2).
This argument may be carried out for each i, and hence by Theorem 3.1.2, ¢,
is optimal for the n horizon at time ¢ = 0. a
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3.3 WHEN DOES FH(c, n) HOLD?

In this section we give some sufficient conditions for FH(a, n) to hold. The first
result states that if the costs are bounded in A, then FH(«, n) holds.

Proposition 3.3.1, Assume that there exists a (finite) constant B such that
C(i,a) £ B and F(i) £ B, for all state-action pairs. Then FH(x, #) holds for all
candn21l.

Proof: First observe that v, , < B(n + 1), and hence the value functions in
A are finite. We show that Theorem 3.2.3(i) holds. The proof is by induction
on n. It holds for n = 0 by Lemma 3.2.2. Now assume that it is true for n — 1.
Observe that 0 < v’;’,, _1 S Bn, and hence this is a bounded function in N for n
fixed.

Consider (3.6). For a fixed action we wish to apply Corollary A.2.7 to the
summation using the bounding constant Bn. By the induction hypothesis it is
the case that limy UY ,_; = Ug.n—1. It then follows from Corollary A.2.7 that
limy X, o Py(@; N}, 1(j) = 3, Pij@e,n-1(j)- Using this and Propo-
sition A.1.3(ii) yields

lim o} () = min< CG,a)+« Z Pi(@Van-1(j)
7

= Ua'n(i) < oo, (3.‘0)

This completes the induction, and hence Theorem 3.2.3(i) holds for n 2 0.
1

Proposition 3.3.1 provides a complete answer to Questions 1 and 2 in the
case of bounded costs. The remainder of this section is of interest only when
the costs in A are unbounded. We develop two situations in which FH(«, n)
holds.

Proposition 3.3.2. Assume that v, , <oo, for n 2 1. Let (Ay) be an ATAS
that sends excess probability to a finite set. Then FH(a, n) holds for all & and
nzl.

*Proof: For n 2 1 consider the statement Z(«, n):

1. There exists a nonnegative function z¥ (i), of i € § and N = Ny, bounded
above by a (finite) constant Z,, ,.
2. 0¥ () S Vg uli) + 2 (D), for i € Sy and N 2 N,

» N -
3. Limy..wzy,=0.
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Suppose that we could prove that Z{a, n) holds. Then from (2) and (3) it fol-
lows that lim supy vY | S v, » < o, where the finiteness follows by assumption.
Thus FH(«x, n) holds. So we will show that Z(«, n) holds. (Note that assertion
I was not used, but it is needed later in the argument.)

Let us obtain some preliminary results. Let f,, be a stationary policy that is
optimal in A for the n horizon at 7 = 0. Then observe that

C(i’fll) +a 2 Pij(fn)ua,n ](}) < C(i,f,,) + z Pij(fn)va.n- l(.’)

je Sw J

= Ua,n(i)- (311)

Notice that on the left side we simply restrict the summation to states in Sy

and that the AS is not involved. The first line follows since the value function

is nonnegative. The second line follows from (3.2) and the optimality of f,,.
Let

YN = Y, Pulf (3.12)

re $-Sy

and note that limy YY(f,) = 0.

Let G be the finite set to which the excess probability is sent. We may assume
that Sy contains G for N = Ny. It is now shown by induction on n 2 1, that
Z(ce,n) holds. For n = 1 we have

DS CG )+ D PyfisNIFG)

je SN

=Clf0+a D, PyfOF()

je Sy

ra Y Pi,(fl)(z q,-(i,fl.r,N)m))

re S~ 8y je G

< 0g1(0) +aY,~”(f;)<Z F(j)). (3.13)

JEG

The first line follows from (3.6), and the second line follows from the definition
of the ATAS (Definition 2.5.3). The third line follows from (3.11-12) and the
fact that ¢; < 1.
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Set

) = aYi”(fn)(Z F(j)). (3.14)

je G

and let Zo,\ = a 3, ; F(j). Then Z(a, 1) clearly holds.
Now assume that Z(c, n — 1) holds; we should show that Z(«, n) holds. Sim-
ilar reasoning to that in (3.13) yields

DS Clf)+a Y, Py(faol . ()

je Sy

ro Yy Pir(fn)(z q,-a,f,,,r,N)vf,{,,_.(j)). (3.15)

re S-Sy J€G

Apply the induction hypothesis to the last two terms of (3.15). Some manipu-
lation and the fact that g; < 1 yields

Vo) S COL Y+ D Pif falan1(j) + 24 ,0)

J€ Sn

< U (i) + 2y 10, (3.16)

where we have defined

= a Y Pz, ()
J

+anV(fn)(2 Wan- 1) +2Y,. ,(j)}). (3.17)

je

To complete the induction, it is necessary to verify assertions (1-3) for the
function z¥ . Clearly assertion 2 holds by (3.16).

By the induction hypothesis we have z\ . _, < Z, .- . This implies that the
term in parenthesis in (3.17) is bounded in N. Then (3.12) implies that the limit
of the last term in (3.17) is 0. Now focus on the first term and apply Corollary
A.2.4 with bounding function Z, ,_ . Then
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(2% hgln Z P,‘j(fu)zz,n— I(J) - 2 Pu(fn)(hl\sn Zg.n - l(.’))
7 J

- 0,

where the second line follows from the induction hypothesis. This shows that
assertion 3 holds.

Finally we verify assertion 1. It follows from (3.17) and the induction hy-
pothesis that z¥¥  is nonnegative. From (3.17) we see that

“a,n

W DS AZan 1 (1+1GD+ & D Van 1) = Zan  (318)

jeG

Here |G| is the cardinality of the finite set G. This completes the induction and
the proof. 0

A special case of this result occurs when all the excess probability is sent
to a fixed state z, known as a distinguished state. In this case the finite horizon
optimality equation (3.6) has a simple and suggestive form.

Corollary 3.3.3. Assume that v, , < o, for n 2 I. Let (Ay) be an ATAS
that sends the excess probability to a distinguished state z. Then FH(e, n) holds
forallaandn 2 1. If rY¥ , = v}  — 0N (2) (known as a relative value function),
then the finite horizon optimality equation in Ay is

D=0, @+ming Cha)ra Y Pyary, (),
je Sy - {z}

i€ Sy,nzl. (3.19)

Proof: By Proposition 3.3.2 it is only necessary to show that (3.19) holds.
Equation {3.6) and the definition of an ATAS that sends the excess probability
to z yield
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o o) = ming Cha)+ o Y, Py(@wl . ,(j)

Je SN
+ a(l - 2 Pi,-(a))vﬁ,,,, 1@ s
je Sy
which is clearly equivalent to (3.19). ]

Equation (3.19) is particularly well-suited for computation. The value func-
tion increases with the horizon length. However, the relative value function is
more manageable. The computation can keep track of the relative value func-
tion together with the value function at z. The value function may be recovered
by adding these quantities.

Our next result is a structural condition on A involving the augmentation
distributions.

Proposition 3.3.4. Assume that v, , <o for n 2 1. Let (Ay) be an ATAS
such that the augmentation distributions satisfy

Z Qj(ir ar, N)vut,n(j) < voe‘n(r),

je Sy

i€ Sy,ae A,re S-Sy,n20. (3.20)
Then vl (i) S v, (i) for i € Sy, all a, and n 2 1. Hence FH(a, n) holds.

(Notice what hypothesis (3.20) says. If we have excess probability P;.(a)
and send it to the states of Sy by means of an augmentation distribution, then
the resulting weighted probability sum (called a convex combination) of values
cannot exceed the value function at r.)

Proof: The result is proved by induction on n. For n = 1 we have
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MIOE main{c(i, a)+« Z Pij(a;N)vﬁ,o(j)}

j€ Sy

= n}Iin Cli,a) +a 2 Pi(a)vs. 0(])

je Sy

Y P,-,(a)( Y aftia r,N)va,o(j))

re S-Sy je Sy

S ming C,a)+a D Py@)vaolj)

j€ SN

o Y Pid@ua()

re S-Sy
= Vg, 1(F). 3.21)
Here the first line follows from (3.6). The second line follows from the defini-
tion of an ATAS and the fact that v} , = v, o = F on Sy. The third line follows

from (3.20), and the fourth line from (3.2).
Now assume that the result holds for n— 1. Then similarly to (3.21) we obtain

j€ Sy

l]z.)l(") s n}lln{C(l, a) +o 2 Pij(a)vu,n— l(/)

+ o Z Pir(a)( Z q[(isa, r,N)Ua,n— |(}))

re S-Sy Jj€ SN

S ming Ch, @)+ > Py(@van-1())

JE€ SN

ra D Piul@uen ()

re S-Sy

= Vg u(i). (3.22)
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Here the first line follows from the induction hypothesis and the second line
follows from (3.20). The third line follows from (3.2). This completes the induc-
tion and the proof. 0

The following corollary involves a commonly occurring situation in which
Proposition 3.3.4 may be applied. (For S = {0, 1, 2, ...} we say that a function
f on § is increasing in i if i <j implies that f({) < f(j).)

Corellary 3.3.5. Assume that § = {0, 1, 2, ...} and that v, , is finite and
increasing in i for n 2 0. Let (Ay) be an ATAS with Sy = {0, 1, ..., N} that
sends the excess probability to N. Then FH(a, n) holds for all o and n 2 1.
If s, = v, — v¥ (N) is the relative value function, then the finite horizon
optimality equation in Ay is

N-1
Ui o) = avl (N + ming CG,a) + & z Py@s® () ¥,
§=0

i€ Sy,n21. (3.23)
Proof: This proof is assigned as Problem 3.6. 0

The example in the next section illustrates a computation using this re-
sult.

34. A QUEUEING EXAMPLE

In this section we treat Example 2.1.1. Let us set « = 1 and F = H. This is
the undiscounted case, and the terminal cost is the cost of holding the number
of packets left at the time the process stops. We first derive the finite horizon
optimality equation in A,

Lemma 3.4.1. Assume that H(i) is increasing in i. Then v, is increasing
in i (and finite). For n 2 1 the finite horizon optimality equation is

0(0) = mind > pvn- 1), R+, 1(0)
i
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V(i) = H(i) + min< p Z Pin- (i~ L +j)
J

i

+(1 - pu, 1) p, P21, (3.24)

Proof: Equation (3.24) follows easily from (3.2) and the transition proba-
bilities in Example 2.1.1. The first term in the minimum corresponds to admit-
ting the arriving batch, and the second term corresponds to rejecting it.

Let us now show that the value functions are finite. Let 6 be the policy that
always rejects the incoming batch. Then for a fixed n 2 1 we have v,(i} < vy (i)
S Rn+ H@i)n+ 1) < oo,

It is shown by induction on n 2 0 that the value function is increasing in i for
each fixed n. For n = 0 we have v, = H which is increasing by assumption. Now
assume that the result holds for n - 1. Observe that each term in the minimum
for v,(0) is bounded above by the cormresponding term for v,(1), and hence
va(0) S v,(1). Now consider the right side of the second equation of (3.24).
The H(i) term is increasing. Suppose that the optimal decision is to reject. By
the induction hypothesis both u,_ (i — 1) and v, - (i) are increasing in i. Hence
R + pu,_1(i - 1) + (1 — p)u,_1(i) 1s increasing in i (prove it!). Now suppose
that the optimal decision is to accept. For each fixed j we have v, _;(i - 1 +
J) mcreasmg in i. The term 3 p;jun-1(i — 1 + j) is a convex combination of
increasing functions and it is easy to see that it is increasing (prove it!). The
other sum is also increasing and hence so is [LZ PiVn-1G = 1L +j)+ (1 -
y)z PiUs-1(i + j). Thus both terms in the minimum are increasing. Since the
minimum of increasing functions is increasing (prove it!), this proves that v,
is increasing. a

Remark 3.4.2. It seems reasonable to hypothesize that the optimal n hori-
zon policy is of critical number form, namely that there exists 0 <if <o
such that it is optimal to accept when the buffer level i is, below i* but opumal
to reject when the level is at or above i*. (Note that i* = 0 means that it is
optimal to always reject, and i* = oo means that it is optimal always to accept.
Hence these two extreme policies are also of critical number form,) We will
not attempt to prove that the optimal policy is of critical number form. Even
if this structural result were obtained, we would not have the optimal policy
(since the cutoff i* would be unknown). Here we concentrate on numerically
calculating an optimal policy. O
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Now let us define an AS for this model. Since v, is increasing, this suggests
that we employ Corollary 3.3.5, letting Sy = {0, 1, ..., N} and sending the
excess probability to N. Recall that s¥(i) = vN (i) - vY(N) for 0SiSN-1. As
an aid in deriving the optimality equation (3.23) for the AS, we introduce the
auxiliary function

N-i-1

Wi = ) psii+j),  OSiSN-1, (3.25)
j=0

and note that (3.25) implies that i + j S N - 1. Then (3.23) becomes

) = v, (V) + min{w_ (0),R+5"_,(0))
vy () = v_ ((N)+ HG) + min{uw)_ G - 1)+ (1 - p)w,_ (),
Repsh (G-D+A-pws (D), 1<isN-1. (326)

Consider (3.23) for i = N. Observe that w¥_ (N - 1) = pgs¥_ (N - 1), and hence
awY_ (N~ 1) <R+ usY_ (N - 1). Then (3.23) becomes

VWN) =0l (N)+ H(N) + min{uw, (N - 1),R+psy_ (N - 1)}
=V (N)+ HN) +pwl_ (N - 1), (3.27)

and it is always optimal to accept in N. (Can you explain intuitively why this
is so?)

We employ (3.26-27) to compute an optimal policy when H(i) = Hi, for a
positive constant H, and assuming that the batch size follows a Poisson distri-
bution with mean A packets/batch. This is ProgramOne. The user is prompted
for the values H, R, A, and u. The approximation level N and the horizon length
are constants that may be changed in subsequent runs of the program.

In the following discussion of the structure of the program the superscript N
and subscript n are dropped for notational simplicity. The program carries along
three arrays. One array is for the current value of s and one is for the current
value of w. (The third will be discussed shortly.) The arrays are initialized by
so(i) = vo(i) — vo(N) = H(i - N) and wo(i) = He™ 3077 N +j - N)/jt.
The current value of U(N), called v, and the next value, called v, are also
maintained. These are constants.

Here is how the updating occurs. Given the current values v, s, and w, the
value Upw is obtained from (3.27). Then sypaxe. is obtained by calculating the
right side of (3.26) and subtracting Uney . Finally wypase is obtained from (3.25)
using Sypdae. For each iteration the optimal decision in a given state is main-
tained in the third array. At each iteration the optimal decision and current value
of v and s are printed out. The value function can be obtained by adding the
value of v to that of 5.
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Remark 3.4.3. Suppose that both H and R are multiplied by a positive
constant U. Then in (3.26-27) the effect is to multiply the value function by
U, an optimal policy remains the same. (You are asked to show this in Problem
3.7.) Hence it is only the value of R relative to that of H that is important in
the computation. For this reason there is no loss of generality in assuming that
H =1 and considering various values for R and the other parameters. In all
the scenarios we set H = 1. (This effect also holds in the original optimality
equation (3.24).) O

Let us also consider the effect of the mean batch size . Recall that at most
one packet can be served in any slot. If X > 1, then, on average, more than
one packet arrives in each slot. Hence the queue will rapidly build up, and we
would expect an optimal policy to invoke the reject option at small horizons and
for small buffer content levels. This is indeed what occurs. If A < 1, then, on
average, less than one packet arrives to the server in each slot. The queue will
not build up as rapidly, and we would expect an optimal policy to employ the
reject option at larger horizons and for larger buffer content levels. (Intuitively
the uncontrolled queue is stable if A < p.) Now consider the case A = 1. For
n = R a special situation obtains. Hand calculations show that forn = R = 1 it
is optimal either to accept or reject in all states. For n = R = 2 it is optimal to
accept in states 0 or 1 and to accept or reject in the other states. In this special
situation the solution is not unique, and the program gives an ambiguous result.

Scenario 3.4.4. LetR=10,\ =3, and u = 0.7. The objective is to determine
an optimal policy 8 o. Because this is our first scenario, we discuss the reasoning
in detail. Table 3.1 gives the pertinent results in summary form. Runs were
made for approximation levels N = 20, 30, and 50. The entries are the optimal
policies e”. For example, the entry under N = 30 and n = 5 is e3’, which is the
optimal policy for horizon 5 in Aj,. This says that egu(i) =r, for0<i<22,
and €2°(i) = a, for 23 <i < 30.

Remember that any limit point of e as N — oo is an n horizon optimal
policy for A. So we examine these policies to see if they are “settling down”
to a policy e,. With a high degree of confidence, it can then be asserted that e,
is n horizon optimal for A.

For horizons 1, 2, and 3, it is always optimal to accept in the AS (only
horizon 3 is shown in Table 3.1). So we may assert that e; = €; = €3 = a.

At horizon 4 a change is noted. For N = 20 it is optimal to accept in state
0, to reject in states 1 through 11, and to accept in the rest of the states. For
N = 30 and N = 50, it remains optimal to accept in 0, but the rejection region
expands. It is plausible that an optimal policy for A is of critical number form,
and this seems to be confirmed by the computations. Hence we assert that e4(0)
= a and e4{i) = r for i 2 1. If we wish to gain a greater degree of confidence,
we can take an even larger approximation level. The run time for this program
is not a significant factor.

Applying the same reasoning to horizons 5 through 10, we may assert that
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Table 3.1 Results for Scenario 3.4.4

n

N 3 4 5 10

20 [0, 20] a {0} a [0,12] r [0, 14 r
{1, i} r (13,20 a [15,20] a
[12, 20} a

30 [0, 30] {0} a [0, 221 r [0, 24] r
[1, 21] » [23, 30} a {25, 30} a
[22,30) a

50 [0, 50] a {0} a [0, 421 r [0, 44]) r
(1, 41] r [43, 50) a (45, 50] a
{42, 50} a

e, = r,for 5 < n £ 10. (The output for horizons 6 through 9 is not shown
in Table 3.1.) We can even be quite confident that e, = r for n 2 5. By this
reasoning we see that the optimal finite horizon policy in A has been determined
for all horizon lengths.

As a sample of the calculation of a value, this program output yields v79(50)
= 549.592 and 573(0) = —463.676. Hence v;4(0) ~ 15]3(0) = £9(0) + UI0(50) =
112.92. 0

Remark 3.4.5. In subsequent scenarios for this program, the reasoning pro-
cess discussed above is omitted. We give the values of N and n that are used
in making the inference of an optimal policy. The convergence of an optimal
n horizon policy for the AS to an optimal policy for A follows from Theorem
3.2.3. It is desirable to have a rate of convergence result, but this issue is not
discussed here. Although a rate of convergence result is of undeniable impor-
tance, employing such a result might well have some drawbacks. First, it might
greatly overestimate the approximation level necessary to have confidence in
the resulits. Second, the bound itself might involve tedious calculations. In any
case, the reader may note that the convergence is rigorously guaranteed by The-
orem 3.2.3; it is only the rate of convergence that is uncertain. Inferences drawn
from program output must be done with care and attention, and the determina-
tion of an optimal policy requires a bit of art. But this being said, the reader
can appreciate the power and elegance of this computational method. a

Scenarios 3.4.6. Additional output is given in Table 3.2. The detailed rea-
soning is omitted. Each column represents a different scenario. The parameter
values are in the first box. In the second box are the values {or value) of (n, N)
that were considered, The third box contains the optimal policy for A. Each
optimal policy is of critical number form. As a shorthand it is denoted by a
single interval representing the buffer content levels in which it is optimal to
accept. At the other levels it is optimal to reject. For example, e :[0, ) means
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that it is always optimal to accept, whereas e : & means that it is always optimal
to reject. The policy e:[0, 3] means that it is optimal to accept when the buffer
content level is 3 or less and to reject when the level is above 3.

Scenario 1 has a mean batch size modestly greater than 1. In Scenario 2 this
mean is slightly increased. The change in policy is modest and occurs only at
horizons 6 and 7. By horizon 8 there is no longer a difference. Scenario 3 is
as in the first scenario but with a service rate half as much. There is a change
in the optimal policy in the conservative direction as would be expected.

In Scenario 4 both the mean batch size and the rejection cost are large. The
optimal policy is very conservative and rejects all batches for horizons of 4 or
more. Scenario 5 is as in 4 but with the mean batch size cut in half. Note that
for both of these scenarios there is an abrupt change from always accepting to
rejecting almost always.

In Scenario 6 we have p < A < 1. Note that pg = ¢ *” = 0.47. This means
that 47% of the time no batches arrive, and hence this is a fairly lightly loaded
system. In this case the policy accepts all batches until horizon 34. At this point
it gradually reduces the acceptance region until horizon 40. From that point on
it accepts when there are three or less packets in the buffer. It is still the case
that for a long horizon the policy acts quite conservatively. See Fig. 3.2.

Rate
0.6

H(i) = F@) =i
R=25

Admit
or
reject
A=0.75
0 1 « =« = 33 34 35 36 37 38 39 40 - - o
F—t B s i me S e e Horizon
] ] | ] Bufier content
oo <6 <5 <4 <3 for admission

Figure 3.2 Scenario 6 from Table 3.2,
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Scenario 7 examines the outcome if both the mean batch size and the rejec-
tion cost are halved. We also have A < u. Note that py = ¢ %% = 0.69. This
means that 69% of the time no batches arrive to the controller, and hence this
is a very lightly loaded system. It is quite interesting that the horizons at which
changes occur are similar to the previous scenario, but the acceptance levels
are modestly expanded.

Scenario 8 considers the case in which A = 1. Since R = 8, an ambiguous
situation occurs at n = §. O

BIBLIOGRAPHIC NOTES
The material in Section 3.1 was developed primarily in Bellman (1957), Karlin
(1955), Hinderer (1970), Derman (1970), and Schal (1975), with a theoretical
emphasis in the latter.
The material in Sections 3.2 through 3.4 is new.

PROBLEMS

3.1. In Example 3.1.3 verify the claim made about the policy y.

3.2. Develop the finite horizon optimality equation (3.2) for Example 2.1.2.

3.3. Develop the finite horizon optimality equation for Example 2.1.3.

3.4. Develop the finite horizon optimality equation for Example 2.1.4.

3.5. Develop the finite horizon optimality equation for the MDC in Problem
2.4. Assume two stations.

3.6. Prove Corollary 3.3.5.
Problems 3.7-10 have to do with the model in Section 3.4.

3.7. Consider the optimality equation for Ay given in (3.26-27). Prove that if
H is replaced by UH and R by UR, then the value function is multiplied
by U and the optimal policy is unchanged. Hint: Prove this by induction
on 7. Introduce some appropriate notation.

WARNING! When running any of the programs, you should change only
the constants at the top of the program. If you wish to modify the program
itself, as called for in Problem 3.9, then copy the original program and give it
a new name before making any modifications.
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3.8.

3.9.

*3.10.

3.11.

.12,

Run ProgramOne for the following scenarios:
(@ H=05,R=5A=15,u=08.

b) H=1,R=5x=1,=09.

(©) H=1,R=5XA=038, p =099

(@ H=1,R=5\N=2,u=045.

© H=1,R=15A=05, u =045

(There are three constants to be chosen: “UB” = N, “B” = N ~ 1, and
“Horizon” = n. The program prompts you for the parameter values.) For
each scenario determine an optimal policy and discuss your conclusions.

In this problem you are asked to modify ProgramOne. Read the Waming
above before proceeding. Examine the code. Decide what needs to be
done to modify it for a holding cost of the form H(j) = Hi?. Carry out
the modification. Make some runs for the same parameter values as in
Section 3.4. Compare the results and discuss them.

Suppose that the distribution governing the batch sizes is bounded. For
example, assume that p; = P(batch size = j) > 0 for 0 < j < 5. In this case
at most five packets can enter the system in any slot. Write a program to
determine an optimal policy.

Consider the model in Problem 3.2 with a terminal cost of zero.

(a) If H({) is increasing, prove that the expected value function is increas-
ing in i.

(b) Develop an ATAS that sends the excess probability to N. Write the
optimality equation for Ay. Consider the cases i =0, | SiSN -1,
and i = N. Employ (3.25).

(¢) Prove that the expected value function in Ay is increasing in /.

Consider an ATAS for Problem 3.5 that sends the excess probability to
the zero state. Write the optimality equation for Ay.
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CHAPTER 4

Infinite Horizon Discounted
Cost Optimization

In Section 4.1 we derive an equation for the infinite horizon expected discounted
value function and prove that there exists an optimal stationary policy for the
expected discounted cost criterion. In Section 4.2 it is shown that the solution
to the optimality equation is not unique and various results relating to this are
given. In Section 4.3 the relationship between the finite horizon and infinite
horizon discounted value functions is treated. In Section 4.4 a characterization
of optimal policies for the discounted cost criterion is given. In Section 4.5 we
examine the behavior of the value function V(i) considered as a function of
the discount factor o with the initial state i fixed.

Sections 4.6 and 4.7 consider the computation of an optimal policy when the
state space is infinite. Conditions are given so that the value functions (respec-
tively, optimal stationary policies) in an approximating sequence converge to
the value function (respectively, optimal stationary policy) in the original MDC.
These ideas are illustrated in an inventory model presented in Chapter 5.

4.1 INFINITE HORIZON DISCOUNTED COST OPTIMALITY
EQUATION

With the exception of Section 4.5 the discount factor « € (0, 1) is considered
to be fixed throughout this chapter, and this is understood in our results. Notice
that we do not allow o = 1. The expected discounted value function V,,, defined
in (2.14), represents the smallest expected discounted cost that can possibly be
achieved when the process is operated over the infinite horizon. Recall that we
refer to V, as the discounted value function.

In this section we first derive an equation satisfied by V,,. This is the discount
optimality equation. Second, we show that there exists an optimal stationary
policy. These results form the centerpiece of the chapter.

Let us develop some preliminary results. Let 8 be an arbitrary policy for the

60
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infinite horizon. We may operate the system under @ for n steps, with a terminal
cost of zero. Under this condition @ becomes a policy for the n horizon, and
Ug.a.n is its value function. The next result relates this quantity to the infinite
horizon discounted value function under 8, defined in (2.13).

Lemma 4.1.1. The quantity vg ., is increasing in 7 and lim, . .. Ug o,n =
Vo o

Proof: This result follows immediately from (2.13). The sum of an infinite
series is defined as the limit of the sequence of its partial sums, if that limit
exists. Since all costs are nonnegative, it is the case that the partial sums are
increasing in n. Hence the partial sums form an increasing sequence. Such a
sequence has a limit (it may be ). Hence it follows that

n-1
[
= Hm g o n(d), i€ §, 4.1
and this completes the proof. O

Proposition 4.1.2. Let W be a nonnegative function and e a stationary pol-

icy such that

WiyzCl,e) + o 2 Pii(e)W()), iesS. 4.2)
i

Then
W) 2 Ve, o n(D) + &"E [W(X )Xo = i}, ieSn21, (4.3)
and W2V, ,.
Proof: 1f (4.3) can be shown, then from the nonnegativity of W, it follows
that W 2 v, , . Hence from Lemma 4.1.1 it will follow that W2V, ,.

Equation (4.3) may be formally proved by induction. Here is the idea behind
the proof. For n = 1 we have

W) 2 Cl,e) +a Y, Py(@W())
i

= Ue,q,1(0) + QEAW(X1)|Xp = i]. (4.4)
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Iterating (4.2) once yields
W(i) 2 CG, e) + « Z Pi(e)W(j)
J

2Cl,e)+a z P(e)C(j.e) +a Z Pi(e)W(k))
j k

= Vg 0,2(0) + o E[W(X2)| X0 = i]. 4.5)

The second line follows by applying (4.2) to each term of the summation in
the first line. The third line follows from (2.9).

It is clear that this argument can be continued to yield (4.3). (Problem 4.1
asks you to give a formal induction proof.) O

Corollary 4.1.3. Let W be a nonnegative function satisfying

W) 2 ming Cli,a)+a Y P,j(a)W(j)}, ies. (4.6)
j

Let f be a stationary policy that realizes the right side of (4.6); that is, for each
state /, f(i) is an action that achieves the minimum. Then W 2 V( , 2 V,,.

Proof: From (4.6) it follows that
W) 2 CGf ) + az PifOW(), ies. @7
J

Then the result follows from Proposition 4.1.2 and (2.14). 0

Let us introduce the auxillary function
Uali,a) =: Cli,@) + & 3 Pyf@)Valj). (4.8)
J

Let Bi(a) = {b € AU (i,b) = min, {U,(i,a)}}. These actions achieve or
realize the minimum. In most cases Bi(«r) is a singleton, but it may contain
more than one action.

We are now ready to state the major theorem of the chapter.
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Theorem 4.1.4. The discounted value function V, is the minimum non-
negative solution of the discount optimality equation

Vali) = rrtlin C(i,a)+ az Pia)Vo()) ¢, ie S 4.9
i

Any stationary policy f, that realizes the minimum in (4.9) is discount optimal.

Proof: Let 8 be an arbitrary policy for the infinite horizon. Given history
hy = (i, a,j), let ¥(i,a,j) be the policy followed by # from time 7 = 1 onward.
This policy may itself be considered a policy for the infinite horizon. This
involves reindexing time, so that 7 = 1 becomes ¢ = 0, etc. Then using reasoning
similar to that employed in (3.5) we have

Vool = Y, 0(@lDE(C(Xo. Ap) + & Y, o~ C(X,, A)|Xo = i, Ao = a]

t=1

= z 6(aii){C(i,a)+ 012 Pij(a)v\&(i.a.j).a(j)}
a J ]
> Z 0(a[i){C(i,a)+az Pij(a)vtx(j)}
a J

- 2 8(aliU.(i, a)

2 nzin{Uo,(i,a)}. 4.10)

Since 8 is arbitrary it follows that V(i) 2 min, {U,(i,a)}.

We now show that the reverse inequality holds. Fix e > 0. Define a policy §*
as follows: For initial state i the policy selects an action in B;(«). After having
done this, suppose that the next state is j. By (2.14) there exists a policy ¢(/)
such that Vi ;) o(j) € Va()j) + €. This follows since V,(j) is the infimum, and
hence there must be a policy achieving within e of it. Let 0" be the infinite
horizon policy that chooses b € B;(«) and then follows the appropriate policy
¥(J) depending on the next state. In a manner similar to (4.10) we have
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Voeald) = Clb) + @ 3 Pyb)Vyqi,ali)
J

SClib) +a Yy Pyb)Vali)+e]
i

= Ci,b)+a Y Py(bIValj)+ e
J
= main{Ua(i, a)} + ae. (4.11)

Thus V(i) £ min, {U,(i,a)} +e. Since € > 0 is arbitrary, we must have V,(i) <
min, {U,(i,a)}, and hence (4.9) holds.

Now let W be a nonnegative solution of (4.9). It follows from Corollary
4.1.3 that V, € W, and hence the discounted value function is the minimum
nonnegative solution of the discount optimality equation.

Now let the stationary policy f, realize the minimum in (4.9). Then from
Corollary 4.1.3 (with W = V) it follows that V, 2 V;_, 2 V,. Hence V, (i) =
Vi,.«(i) for i € S. Thus f, is optimal for the infinite horizon discounted cost
criterion. O

Corollary 4.1.5. If V,(i) < e and f, is the optimal stationary policy real-
izing (4.9), then

im o EfofVa(X.)|Xo = ] = 0. (4.12)
n-—e e

Proof: From Theorem 4.1.4 it follows that
Vo) = Clifo) + @ 3, Pilfa)Val)), @.13)
j

Iterating this yields (similarly to (4.3))
Vold) = Uy, n(i) + o"Ef, [Va(Xa)| Xo = 1. (4.14)

From Lemma 4.1.1 and Theorem 4.1.4 it follows that the limit of the first term
on the right of (4.14) exists and equals V,(i). Hence the limit of the second
term must exist and equal zero. (The validity of this step requires the finiteness
of the discounted value function.) 0
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4.2 SOLUTIONS TO THE OPTIMALITY EQUATION

The following example shows that the solution to (4.9) is not unique.
Example 4.2.1. Let § = {0,1,2,...} with one action in each state. The

transitions are Pj;., = 1, and the costs are C(i) = 1. The discount optimality

equation is V(i) = 1 + aV,(i+ 1). Clearly V(D = 1 + @+ a* +...= 1 /(1 - @)

is a constant that satisfies the optimality equation. Unfortunately, so do many

other functions.

To define a whole family of finite solutions, fix a number z > 1/(1-a). Then
it can be shown that

W) = v,,an(i%’g‘-(-’l) . i20,

is also a solution of the optimality equation. For example, suppose that « = %
so that V, = 2. If z = 3, then W(i) = 2+ 2'. Note that for every member of this
family of solutions, it is the case that im; , .(W(i) — V(i) = oo, 0

It is desirable to have a condition under which a nonnegative solution to the
discount optimality equation will equal V,,.

Proposition 4.2.2. Let W be a nonnegative solution of the discount opti-

mality equation (4.9). Let f, be an optimal stationary policy as in Theorem
4.14. 1If

liminf o"E;, [W(X,)|Xg =] =0, ie S, 4.15)
M —w- oo
then W = V.
Proof: Since W satisifies (4.9), it follows that

Wi s Cifa) + o Z Pi(fIW()), i€S. (4.16)
i

Iterating (4.16) yields (similarly to (4.3))
W) S Upy, an(i) + &"Ef [W(X,)| X0 = i) 4.17)

By Lemma 4.1.1 the limit of the first term on the right of (4.17) exists and equals
Vs, o(i). Since f, is optimal, we have V;, , = V,,. Take the limit infimum as
n—+oo in (4.17). This yields
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W(i) < Va() + liminf oE; [W(X,) X0 = i}
= Val(i). (4.18)

Since V,, is the minimum nonnegative solution of (4.9), it follows that W = V,,.
O

Example 4.2.3. We see that the condition in (4.15) is not satisfied for
Example 4.2.1. Observe that

-1
o EWX,)|Xo = 0] = S— +2,
-«
which approaches z - 1/(1 - a) >0 as n— oo, 0

Corollary 4.2.4. (i) Let W be a finite nonnegative solution of (4.9) that
satisfies W < V,, + B for some (finite) constant B. Then W= V. (ii)) If W is a
nonnegative bounded solution of (4.9), then W=V,

Proof: To prove (i), note that we have W(X,) € V,(X,) + B. Hence
o"Er [W(X,)|Xo = i] € o"Ep, [Va(Xa)|Xo = i] + a"B. (4.19)

Taking the limit infimum of both sides of (4.19) as n—» oo and using (4.12)
yields (4.15). Hence the result follows from Proposition 4.2.2.

To prove (ii), assume that W is a nonnegative solution of (4.9) satisfying
W < B < == for some constant B. Then the result follows from (i). [

4.3 CONVERGENCE OF FINITE HORIZON VALUE FUNCTIONS

Consider the finite horizon discounted value functions, defined in (2.10), and
let the terminal cost be zero. These are denoted by v, ,.

Proposition 4.3.1. The quantity v, , is increasing in 7 and lim,, . ..U, , =
Va. If fo 4 is a policy realizing the minimum in (3.2), then any limit point of
the sequence (f4 n)nz1 is discount optimal for the infinite horizon.

Proof: Because the costs are nonnegative, it is easy to see that v, , is
increasing in n#. Hence it forms a monotonically increasing sequence, and so
limy, .. o Ug p =2 W exists.

Now let f, be an optimal stationary policy as given in Theorem 4.1.4. Then
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from (2.10) and Lemma 4.1.1, it follows that v, , S Vr, o.n S V. This implies
that W< V.

Let f be a limit point of (fy, »)s> 1. From Definition B.1 in Appendix B, it
follows that there exists a sequence 71, such that given i, we have f, , (i} = f(i)
for n, sufficiently large.

Now fix i. It follows from (3.2) that for n, sufficiently large, we have

Vo,n, (D) = Cli,f )+ 2 Pii(f Yo, n, - 1(J) (4.20)
J

Take the limit infimum as r — oo of both sides of (4.20) and use the definition
of W and Proposition A.1.7 to obtain

WGi) 2 CGf )+ @ Y, Py(f W), @21)
¥

Since this argument may be repeated for every state, it follows that (4.21) holds
for all i. Then from Proposition 4.1.2 it follows that W 2 V, , =2 V. Since
W < Vg, this proves that W=V, =V, .. 0

44 CHARACTERIZATION OF OPTIMAL POLICIES

In this section we give necessary and sufficient conditions for an arbitrary infi-
nite horizon policy to be optimal for the expected discounted cost criterion.

Proposition 4.4.1. A policy 6 for the infinite horizon is optimal for the
infinite horizon expected o discounted cost criterion if and only if both of the
following hold:

(i) Given initial state i, the distribution @(al}i) is concentrated on the set
B,-(a).

(ii) For n 2 1, if A, is a history under @ with state i,, then the distribution
8(alh,) is concentrated on the set B;, (o).

(These conditions say that if the process finds itself in a state ¢ at any time,
then for optimality the distribution goveming the choice of an action in that
state must be concentrated on the set of actions realizing the minimum in (4.9).

This is not quite the same as requiring that the distribution be concentrated
on Bj(a) for all j. The reason is that for a given initial state i, some state j
may never be reached, and hence there is no necessity to restrict the choice of
actions in that state. For such a state j we will never have i, = j. This subtlety
is illustrated in Example 4.4.2.)
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Proof: Let us first prove the sufficiency of the conditions. Consider the
statement:

(*) Given any infinite horizon policy 8 satisfying (i—ii), we bave Up o, S V,
forn2z1.

If this can be proved, it will then follow from Lemma 4.1.1 that Vg , SV,
and hence 0 is optimal. Let 8 satisfy (i~ii). For n = 1 we have

Y 8alich,a)

a€ Bi{o)

Vg, a, t ()

A

Z 8(ali)< CG, a)+az Pi(a)Va(J)
i

ae Bile)

11

D 8G@lUa.a)

ae Bio)

= ITLiﬂ{Ua(i, a)}
= V,(i). (4.22)

The second line follows since V, is nonnegative. The third line follows from
(4.8). The fourth line follows from the definition of B;{«) and Proposition A.1.1.
The last line follows from (4.9).

Now assume that (*) holds for n-- 1. Assume a history hy = (i,a,j). Let ¥ . j)
be the policy followed, under 8, from time f = 1 onward. If time is reindexed
so that r = 1 becomes ¢t = 0, and so on, then this policy is an infinite horizon
policy with initial state j. Moreover it is the case that ¥ ; 4 ; also satisfies (i-ii).
We then have

Vo= O, 0(al)4 Cli,a)+ o D Pi(@Vyiiap.an- 1))
J

a€ Bix)

< Z 8ali) C(i,a)+az Pii@Vo())
J

ae Bi{o)

= min{Ua(i, @)}

= Vu(i). (4.23)
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The second line follows from the induction hypothesis, and the other lines fol-
low as before. This completes the induction, and hence (*) holds.

To prove the necessity, let # be an optimal policy. We must show that it
satisfies (i-ii). Look at (4.10). Since the last term equals V (i), for € to be
optimal it must be the case that both inequalities are equalities. By Proposition
A.1.1 the last inequality is an equality if and only if 6(a|i) is concentrated on
B;(a). Hence condition (i} holds.

For the first inequality to be an equality, it must be the case that Vi . 1(j) =
Vo(j) for each history hy = (i, a,j). This means that ¥ 4 ;, must itself be an
optimal policy for initial state j. But by the argument just given, this means
that ¥ . j(alj) must be concentrated on Bj(e). This proves that condition (ii)
holds for n = 1. A repetition of this argument shows that (ii) holds for n 2 1.
We omit the formal argument. 0

Example 4.4.2. The state space is § = {-1,0,1,2,...}. There is one action
in states [ 2 1 w1th Pi.i =1 and CG) = 1. We have A = {a,a } with

-1-1{a) = P.m(a ) = 1, and costs identically equal to C > 1. We have
A() = {b, b* } with Pyi(b) = Py (b ) = 1 and costs identically equal to 1. See
Fig. 4.1. (You are asked to verify the calculations for this example in Problem
4.7)

There are four stationary policies that may be specified by giving the action
chosen in ~1 followed by the actlon chosen in 0. They are f; = (a,b), f2 =
(a* .b), f3 = (a, b* ),andf4-(a b*). We find that

C _ 1
Via(-D= T Vi@ = T-a

o 1
Vj'g,(x("”l) =C+ 1- o > Vfg,a(o) = m“y
C aC
Visa(=1) = T Visa@ =1+ gyt
C+a 1+aC
Vige(~-1)= T o2 Via(®) = 1T

SofoJoJoR¥oRce

Figure 4.1 Example 44.2,
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It is easy to see that V,(0) = 1/(1 ~ a) and V,(-1) = C + a/(1 — ). The
optimality equation yields

Vo(—D = C+ amin{V.(-1), Va(0)},
Vo(0) =1+ amin{V,(0), V(- D}.

The second equation follows since V,(1) = V,(0). Since V,(0) < V, (-1}, we
obtain B_j(e) = {a*} and By(«) = {b}. We see that both f| and f, are optimal
policies for initial state 0. However, f, is not concentrated on B_;(«). This does
not affect its optimality, since the process never enters —1 from initial state 0
under f,. (|

4.5 ANALYTIC PROPERTIES OF THE VALUE FUNCTION

In this section we look at V,(i) as a function of the discount factor o with
the initial state i held fixed. Under this condition V,{i): (0,1) — [0, oo} is an
extended real-valued function of a real variable. It is then possible to examine
the analytic properties of this function. These include limits, continuity, and
differentiability. We also examine these properties for Vg ,(i).

Some of the material in this section is starred, and the reader need not be
overly concerned with the details. However, one result, Proposition 4.5.3, is
very important to the subsequent development.

Let 8 be a policy for the infinite horizon, and fix the initial state i (which we
suppress in this argument). Even though Vj . has not been defined for a = 0,
it is clear from (2.13) that we may set Vg o = EglC(Xg,A0)]. Thus Vi .1 [0, 1)
—= [0, o). Let u, = Eg[C(X,, A,)). Then from (2.13) it follows that

Vo= D, oty (4.24)

n=40

which is a power series in «. For completeness we allow a € [0, %) in (4.24).
Observe that uy = Eg[C(Xg, Ag)] < o, since the initial state i is given and A; is
finite.

The theory of power series is discussed briefly in Section A.3 of Appendix
A, and the reader may review this material. As a corollary of the material on
power series, we obtain the following result:

Proposition 4.5.1. Let 8 be a policy. For each initial state / there exists a
radius of convergence R; € [0,e0] for the power series (4.24). If R; > 0, then
V. (i) is infinitely differentiable (and hence continuous) for o € (0, R;).
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Val0)

]
1 «

=~ g g

Figure 4.2 Example 4.5.2.

Example 4.5.2. Llet S={0,1,2,...}. There is one action in each state and
Py.i=1fori20. Fix 8 € (0,1), and let C(i) = B~*. Then Vo (0) = 1 + (a/B)

+ (/B + ... . Then Ry = B, and the (geometric) power series converges to
1/11 = (a/B)] on [0, B) by (A.24). We have V,(0) = o for « € [B, 1). See Fig.
4.2. 0

The next result is needed in Chapter 6. Recall that a function r(a) is rational
if there exist polynomials p(«) and g(«r) such that r = p/q.

Proposition 4.5.3. Let S be finite, and let ¢ be a stationary policy. Then for
every initial state i, V, (i) is a finite, continuous, rational function of a € (0, 1).

Proof: It follows from (2.13) and (2.8) that
Veald =Y, a"(z C(j,e)P}}"(e>)
n=0 J
=Y <, e)(Z a’*Pj;"(e)). (4.25)
J

n=0

(A stationary policy induces a Markov chain on §. For the definition of the
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transition matrix associated with the Markov chain, see Appendix C.) Let P be
the (finite) transition matrix associated with ¢, C be a column vector of costs
under ¢, and finally V, , be a column vector of values. Then

Voo={T+aP+@P;P+..]C
={I-aP]'C. (4.26)

The first line is (4.25) expressed in matrix notation. The second line follows
from a well-known result in matrix theory. From the formula for the inverse of
a matrix, it is easily seen that each entry of [I- oP]™' is a rational function of
o. This implies that each entry of V, , is a rational function of a.

Since the state space is finite, the costs are bounded, say by B, and so V. , <
B/(1-a). Hence V, . is a finite function for & € (0, 1). Since a rational function
is continuous wherever it is defined (Apostol, 1974, p. 81), it follows that V, ,
is continuous on « € (0, 1). a

Since the rest of the material in the book does not require matrix theory, it
is unfortunate that a matrix theoretic proof of Proposition 4.5.3 is required. We
are not aware of a simple alternative proof for this result.

We are now ready to prove some properties of the discounted value function
in the general (countable state space) case.

*Proposition 4.5.4. The discounted value function V,, is increasing and left
continuous for « € (0, 1).

Proof: Let 6 be an arbitrary policy. Since the costs are nonnegative, it is
clear from (4.24) that V , is increasing. This means that for O < S 3 <1 we
have Vj , < Vy 5. Taking the infimum over @ of both sides of this inequality
yields V, < V3, and hence V,, is increasing.

Now fix 0 < B < 1. Since V, is increasing, it follows that lim,_, 3V, =
W exists and is bounded above by Vg. The proof will be completed if it can
be shown that W 2 V.

Let a, be an increasing sequence of positive numbers converging to 3. Equa-
tion (4.9) becomes

Ve, (i) = n}’in Cli,a) + oy 2 Pia)V,, (i) p, ie S (4.27
i

Take the limit infimum of both sides of (4.27). Use the definition of W and
Propositions A.1.3(i) and A.1.7 to obtain
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W) 2 nzin{C(i, D)+ B Y Py@W( j)}, ieS. (428
J

Then from Corollary 4.1.3 it follows that Vg < W. 0

Corollary 4.5.5. If there exists a (finite) constant B such that C(i,a) £ B
for all state-action pairs, then V, is finite and continuous for « € (0, 1).

*Proof: By Proposition 4.5.4 it is sufficient to prove that V,, is right con-
tinuous. Fix 0 < 8 < 1. Since V,, is increasing, it follows that lim, . g+V, =
W exists and W 2 Vg. The proof will be completed if it can be shown that
W< Vg

Let o, be a decreasmg sequence of positive numbers converging to 8. We
may assume that o, < a* < 1. Let [ be an optimal stationary policy. Then
from (4.9) it follows that

Va0 S Clf) + 0 3, PitflVa, () i€S.  (429)
i

We wish to apply Corollary A.2.4 to the right side of (4.29). Since W<V . <
B/(1 -« ) it follows that for the bounding function we may take the constant
B/l -« ) Taking the limit of both sides of (4.29) yields

W) S Clfa) +B Y, Py(fpW()), ieS. (4.30)
J

Iterating (4.30) yields

W) S U7 5,000 + B ErIW(X )Xo = i), i€ S. (4.31)

Taking the limit as n — oo and using the fact that W is bounded yields W < V.
[

A much stronger result than the above is given in Problem 4.8.

4.6 ASM FOR THE INFINITE HORIZON DISCOUNTED CASE

The approximating sequence method is used to calculate both the discounted
value function and an optimal stationary policy for the case when the state space
is denumerably infinite.

Throughout this section let A be an MDC with denumerable state space,
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and let (Ay) be an approximating sequence for A. Then (V¥(i)); ¢ sy 18 the dis-
counted value function in Ay, and f¥ is a discount optimal stationary policy
as given by Theorem 4.1.4.

The two questions of interest are as follows:

Question 1. When does VY —+ V, < co?
Question 2. When is a limit point of (f7)y>x, discount optimal for A?

We want to ensure both the finiteness of the discount value function in A
and the convergence. The next example shows that the desired convergence
may not hold,

Example 4.6.1. LetS={0,1,2,...}. There is one action in each state with
Pio=Piir = -% and C(i) = . Thus at each step the process is equally likely to
return to O or to move to the next higher state. We assume that o < % and that
the initial state is 0 (this is suppressed in the notation).

It is clear that the process eventually returns to (. Let T be the time of a first
passage back to 0. Then

71
Va®=E| Y a'com] + Ela1Va(0)
L 10

Fr—i
<E 2 X))

L 1=0

+ E[a7 1V,(0). (4.32)

Now P(T = n) = 27" and so E[a’] = 3 (a/2)" = (0.5a)/(1 - 0.5a). We
also have

< 2+, +(n-1)
E|Y cxal =3 > =D <o

Then from (4.32) we find that

DU-o/2) _

Va0) <
-«

(4.33)

To define Ay, let Sy = {0,1,...,N} for N 2 3. Define the approximating
distributions as follows: For0 <i S N-2let Po(N) = 0.5, P;; . ((N) = 0.5-1/N,
and P;py(N)=1/N. Let Py_1p{N)=1- l/N and Py_(y(N) = 1/N Let Pyny(N)
= 1.
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If the process starts in state 0, it will eventually reach N. Let U be the time of
first reaching N. Observe that from any state 0 < i < N- 1, there is a probability
1/N of next transitioning to N. Hence P(U =n) = (1 - 1/N)""'/N and

TS S A
Ele)= iy [“(1 N)]

L] ( a(l-»l/N))

N-1\1-al-1/N)

o
e 3
Nl ~a)+a’ 4349

The last line follows from some algebra.
Since state N is absorbing, we have VN¥(N)=N2/(1 - ). Then

U-1
vV = E { > a’C(X,)] + E[a? VYN

t=:0
2 Efa"IV¥N)

B aN?
T (d-a)[N - ) +al’

(4.35)

The second line follows since the costs are nonnegative. The third line follows
from (4.34). Since limy . .. V¥(0) = o, the convergence fails. 0

Example 4.6.1 shows that some assumption is necessary to have an affirma-
tive answer to Questions 1 and 2. The theoretical development of the ASM for
the infinite horizon discounted case completely parallels that for the finite horni-
zon case given in Sections 3.2 and 3.3. The next result is the analog of Lemma
322

Lemma 4.6.2. We have liminfy_ . V¥ 2 V.

o

Proof: The discount optimality equation for Ay is

VG) = ming Ca)+a Z PAa:NVVY() b,  ieSy. (436

j€ Sy

Taking the limit infimum of both sides of (4.36) yields
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jeSy

liminf V(i) = minq C(i,a) + o liminf Y Py NyVA( j)}

P R y . Ny oo .
2 rer C(t,a)+az P,,(a)(lm%’mf Vil ., ie S.

J

4.37)

The first line follows from Proposition A.1.3(i) and the second line from Propo-
sition A.1.8. The result then follows from Corollary 4.1.3. O

The following infinite horizon discounted cost assumption for fixed « enables
us to answer Questions 1 and 2.

Assumption DC(et), For i € § we have limsup,, __ ., VQ’(:’) =1 Wa(i) < oo
and W,(i) £ V(). ]

The next result is the analog of Theorem 3.2.3.
Theorem 4.6.3. The following are equivalent:

() Limy_, V¥ = V, < oo,
(i) Assumption DC(a) holds.

Assume that either (then both) of these holds, and let f ¥ be an optimal station-
ary policy for Ay determined by (4.36). Then any limit point of the sequence
(f¥Inzn, is optimal for A.

Proof: If (i) holds, then lim supy V¥ = limy V¥ = V,, < =, and then clearly
(i) holds. If (ii) holds, then limsup, V¥ < V, < liminfy V¥, where the last
inequality follows from Lemma 4.6.2. Moreover the first term is finite. But this
implies that all the terms are equal and finite, and thus (i) holds. This proves
the equivalence of (i) and (ii).

Now assume that (i) holds. By Proposition B.5 there exists a limit point f
of the sequence ( fﬁ’ )nzN,- Hence there exists a subsequence N, such that given
i € S, we have fg’(i) = f(#) for N, sufficiently large.

Now fix a state i. For N, sufficiently large, (4.36) may be written as

VIR = CGf )+ >, PyFiNIVNI()). (4.38)

j€ SN
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This follows since fg’ realizes the minimum in (4.36). Now take the limit infi-
mum as r —co of both sides of (4.38). Employing (i) and Proposition A.1.8
yields

Vel 2CG.f )+ & Y Pylf WVal)). (4.39)
i

Since this argument may be carried out for every state, it follows that (4.39)
holds for all i. Proposition 4.1.2 implies that V,, 2 V; ,, and hence V,, = V; ,
and f is optimal. O

4.7 WHEN DOES DC(a) HOLD?

In this section we give various sufficient conditions for DC(a) to hold. The
development parallels the results for the finite horizon in Section 3.3.

Proposition 4.7.1. Assume that there exists a (finite) constant B such that
C(i, a) = B, for all state action pairs. Then DC(«) holds for a € (0, 1).

Proof: We verify that Theorem 4.6.3(i) holds. Observe that V¥ < B/(1- a).
Fix a subsequence N,. It then follows from Proposition B.6 that there exist a
subsubsequence N, and a nonnegative function U, bounded above by B/(1-a),
such that lim; . .. Va'(i) = UG) for i € .

Take the limit of both sides of the optimality equation (4.36) through val-
ues of the subsequence N;. We apply Corollary A.2.7 (with bounding function
B/(1 — o)) and Proposition A.1.3(ii) to obtain

u@)= rrzin {C(i, a)+a Z P,-j(a)U(j)} , ie S. (4.40)
i

It then follows from Corollary 4.2.4(ii) that U = V,,. Because every subsequence
of V¥ has a subsequence converging to V,, it follows that Theorem 4.6.3(i)
holds. O

Proposition 4.7.1. provides a complete answer to Questions 1 and 2 in the
case of bounded costs. The remainder of this section is of interest only when
the costs in A are unbounded. We develop two situations for which convergence
holds. The first shows that if (Ay) is an ATAS that sends excess probability to a
finite set, then DC(a) holds. This development is starred. If the reader wishes,
the statements of the preliminary lemmas and the proof of Proposition 4.7.4
may be omitted.
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To set up some notation, let ¢ be a stationary policy for A, and fix states i
and j in S. The notation N‘P (e) denotes the taboo probability of transitioning
from i to j in 1 steps, whﬂe avoiding the set S ~ Sy during the intermediate
steps, that is, while remaining within Sy (except possibly at the beginning and
end).

*Lemma 4.7.2. Let ¢ be a stationary policy for A. Then
. () {1) . .
th n=Pi; (€)= P;j'(e), i,je S,t21. (4.41)

Proof: 'We prove (4.41) by induction on t. Reference to the policy e is
suppressed in the proof. We have y.P; = Pj;, and hence the result holds for
t=1.

Now assume that (4.41) holds for 1. We prove that it holds for ¢t + 1. Note

that N*P(” b < ff ”, and he{lce Iim s]upN N,P '< P “+D It is thus sufficient
to show that lim infy N.P‘” ' P(” '
Now
i
wP = Z Py weP). (4.42)
ke SN

Taking the limit infimum of both sides of (4.42) vields
lxm inf wP( b Z PikPi'}
k

= Pt (4.43)

The first line follows from Proposition A.1.8 and the induction hypothesis. The
second line follows from Section C.1 of Appendix C. a

*Lemma 4.7.3. Leti € S. Assume that N is so large that i € Sy, and
operate under the stationary policy e until the set § - Sy is reached. Let T;(N)
be the number of steps in this first passage. Then

Nlim E.[oa"™]=0. (4.44)

Proof: Reference to e is suppressed in the proof. Observe that
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Ela” ™)=Y a"P(Ti(N) = n) + OP(T/(N) = ). (4.45)

Let € > 0, and choose K so large that X /(1 — «) < €. Since probabilities are
bounded above by 1, we have

K~1 o0
Ela™™] < Z o PTN) =)+ Y o
LER! n=K

K~1
< Z o"P(TAN) = n) + €. (4.46)
nal
Suppose that
Jim PN =m=0. (4.47)

Then taking the limit supremum of both sides of (4.46) yields lim sup,, E[a”iV]
< ¢. Since the expectation is nonnegative and € > 0 is arbitrary, this proves
(4.44).

So it remains to prove (4.47). Since P(Ti(N) = n) S P(T{(NYsn)=1-
P(T(N) > n), it is sufficient to prove that

Jim PN >m = 1. (4.48)
Now
P(T{N) > n) = 2 P, (4.49)
je Sy

Take the limit infimum of both sides of (4.49) to obtain

liminf P(T{N) > n) 2 Z PP =1 (4.50)
This follows from Proposition A.1.8 and Lemma 4.7.2. Since probabilities are
bounded above by 1, this implies that (4.48) holds. O

Proposition 4.7.4. Assume that V, < oo, and let (Ay) be an ATAS that
sends excess probability to a finite set. Then DC(a) holds.
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*Proof: Let G be the finite set to which the excess probability is sent. Let
i € Sy be the initial state. Consider a policy for Ay which operates under f,
until § - Sy is reached, and then it operates under f¥. It follows that

TiN) -1
Vi) S E), [ D
t=0

(E:,; Vﬁm)

< Vaoli) + Z(NE;, [o7 ™), 4.51)

a‘C(X,,A,)} + Ef (o]

where we have defined Z(N) =: Zje G Vﬁ (/). Recall that Sy is finite and hence

Z(N) < . Equation (4.51) embodies some important observations. As long as
the process has not reached § — Sy, then A and Ay operate exactly the same
way under f,. The first term on the right of the first line is the expected dis-
counted cost of a first passage to § — Sy, and this is bounded above by the
total expected discounted cost V(i). Once the process reaches S — Sy, it goes
back to G according to some distribution, and Z(N) is an upper bound for the
remaining terms.

Let ZjeG V.(j) =t Z < oo. Let us add the equations in (4.51), for initial
states in G, and then solve for Z(N). This yields

A

ZN) < R
- %o Brale”™)

(4.52)

By Lemma 4.7.3 we have limsupy Z(N) < Z, and hence Z(N) is bounded.
Taking the limit supremum of both sides of (4.51) and again using Lemma
4.7.3 yields lim supy, Vﬁ () € V (i), and hence DC(a) holds. O

In the case that all the excess probability is sent to a distinguished state z,
the optimality equation (4.36) has a simple and suggestive form.

Corollary 4.7.5. Assume that V, < oo, and let (Ay) be an ATAS that sends
the excess probability to a distinguished state z. Then DC(a) holds. If RY =
VN — V¥(2) is the relative value function, then the discount optimality equation
for Ay is
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je Sy

Vi) = aV¥(2) + m‘fn{C(i, a)+« 2 Pi@RY(j) ¥,

i€ Sy. (4.53)
Proof: You are asked to prove this in Problem 4.9. 0

This result is utilized in the inventory model presented in Chapter 5. The
final result involves Proposition 3.3.4.

Proposition 4.7.6. Assume that V,, <o, and let (Ay) be an ATAS such that
the augmentation distributions satisfy (3.20). Then V’;’(i) SV,.(i)forie Su,
and hence DC(e) holds.

Proof: From Proposition 4.3.1 it follows that v, , < o for n 2 1. Propo-
sition 3.3.4 implies that v | < v, ,. Taking the limit of both sides as n — oo,

it follows from Proposition 4.3.1 and the hypothesis that V¥ <V, < . Hence
DC(«a) holds. 0

BIBLIOGRAPHIC NOTES

Sections 4.1 through 4.4 contain mostly classical results. Most of the results
in Section 4.5 can be found in the literature but are not presented in the form
given here.

Many of the important works have already been referenced. Here we add
Stidham (1981) and Lippman (1975).

The matenial on the approximating sequence method in Sections 4.6 and 4.7
is new. Recall that Langen (1991) mentioned earlier is a related treatment.

Other methods for calculation have been proposed. Fox (1971) proposed a
truncation scheme that is generalized by White (1980a, b, 1982) and Hernandez-
Lerma (1986). This scheme requires the rewards to be bounded. It is general-
ized by Cavazos-Cadena (1986) and Whitt (1978, 1979a, b). Puterman (1994)
presents an approach based on these works.

The philosophy behind these methods differs from the ASM approach, and
no direct comparison appears possible. In general terms, the ASM creates a
sequence of finite state MDCs and these can be studied in their own right. The
other schemes pass directly to a method of calculation.

PROBLEMS
4.1. Give an induction proof of (4.3).

4.2, Consider an MDC with S = {0, 1,2, ...}. There is one action in each state



82

43.

4.4.

4.5.

4.9.

4.10.

INFINITE HORIZON DISCOUNTED COST OPTIMIZATION

{21 such that P;;_; = 1 and C(i) = 1. We have Ay = {a, b}. Action a is

associated with distribution (p;);> such that Py;(a) = p;. Under action b

we have a similar distribution (g;);>:. Finally C(0,a) = C(0,5) = 0.

(a) Let f be the stationary policy that chooses a. Find a formula for
V/ o(0). This will involve the generating function G,(cx) = 3, pja’.
Do a similar calculation for the stationary policy e that chooses b.

(b) Determine a condition under which f is discount optimal.

{c) Assuming that f is optimal, determine V,(i) for i 2 0.

(d) What is the discount optimality equation (4.9)? Verify that the values
you found in (c) satisty (4.9).

Develop the discount optimality equation (4.9) for Example 2.1.2.
Develop the discount optimality equation (4.9) for Example 2.1.3.

Let A be an MDC with § = {0, 1,2,...}. Assume that there exists a non-
negative integer & such that for all i and a we have P;(a)=0,j > i+k.
That is, the process cannot move up more than k units in any transition.
Let W be a nonnegative solution of (4.9) satisfying W(i) < Di" for some
finite constant D and positive integer r. Use Proposition 4.2.2 to show
that W= V,.

Show that the conclusions of Proposition 4.3.1 hold if the value functions
Uq,n are defined for a nonnegative bounded terminal function.

. Verify the calculations in Example 4.4.2.

Fix the initial state i/ (and suppress it). Assume that V, , < o for all
stationary policies e and o € (0, 1). Prove that V,, is a continuous function
of a € (0, 1). Note that Corollary 4.5.5 follows from this more general
result.

Prove Corollary 4.7.5.

Let A be as in Problem 4.5. Define (Ay) by Sy = {0,1,...,N}, and
assume that P;i(a;N) = 0 for j > i + k. That is, the approximating distri-
butions satisfy the same condition as the original distributions. Assume
that there exist a finite constant D and a positive integer r such that
C(i,a) < Di" for all state-action pairs. Show that DC(a) holds.

Hint: Show that V¥(i) < Fi" for some constant F. Use this to obtain
an appropriate solution W of (4.9). Then apply the result in Problem 4.5.
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CHAPTER 5

An Inventory Model

In this chapter an inventory model is treated. In Section 5.1 the setup is
discussed, and the model is formulated as an MDC. In Section 5.2 the dis-
counted finite horizon and infinite horizon optimality equations for the model
are obtained. In Section 5.3 an approximating sequence for the MDC is formed,
and computational issues for the infinite horizon discounted cost criterion are
discussed. In Section 5.4 some numerical results for a specific case of the model
are presented. These utilize ProgramTwo. The chapter problems contain sug-
gestions for additional exploration.

5.1 FORMULATION OF THE MDC

An inventory model was introduced in Example 1.1.2 and is further developed
in this chapter. Our model takes into account both holding/penalty costs and
actual earned revenues. Let us now discuss the particulars of the model. At the
end of this section, a summary list of the operating assumptions is given for
the convenience of the reader.

The time slots are referred to as periods. They may be thought of as weeks,
months, quarters, or some other convenient unit. Consider the operation of the
system during a single time period. At the beginning of the period there is a
known inventory level x. Since unfilled orders are allowed (known as backlog-
ging), we have x € Z, where Z is the set of integers {... -2, -1,0,1,2,...}.
In actuality, of course, the inventory level cannot be unbounded. However, it
is a useful modeling device to place no a priori restrictions on the level. For
example, it can be assumed that additional warehouses may be built to con-
tain increasing inventory. Similarly it can be assumed that no orders are turned
away, and thus the level of backlogging has no a priori bound.

At the beginning of the period an order for & items is placed by the inven-
tory manager. This is the chosen action, and since action sets must be finite,
we assume that & is an element of a finite nonempty set A of nonnegative inte-
gers. The order may be thought of as being filled by an outside agency or as a

83
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production level at a plant. We will speak of the action throughout as the pro-
duction level, with the understanding that this should be broadly interpreted.
Since there is an upper bound on the number of items produced in one period,
this is called a capacitated system. It is assumed that the items in the order are
produced (or arrive from outside) during the period. (When during the period
they are assumed to actually arrive can affect the cost structure, as is discussed
below.) Once the production level is set, it cannot be changed during the period.
To avoid trivialities, let us assume that the largest element in A is a positive
number K so that it is possible to produce some items. For example, we might
have A = {100, 200, 300, 400}, so items may only be produced in lots of 100
with K = 400. It may or may not be an option to produce no items.

In each period there is a demand for the items that is stochastic in nature.
The number y of items demanded in one period lies in a finite nonempty set D
of nonnegative integers, and d, > 0 is the probability that y items are demanded,
where 3., dy = 1. It will be clear later why the demand is assumed to be
bounded. The demand is revealed over the course of the period so that at the
end of the period the value of y for that period is known. At the end of the
period, just before the beginning of the next period, the demand is filled as
much as possible. The total demand is given by y together with the backlogged
inventory if x < 0. To avoid trivialities, let us make the following assumption:
The largest element in D is a positive number ¥ and D # {Y }. This means
that there is a positive probability that some items are demanded and that the
demand is not constant.

In any realistic situation the demand distribution will change over time. Our
assumption that the demand distribution is unchanging may be viewed as an
approximation. The manager may use sales data to estimate the distribution gov-
erning demand. The optimal policy may then be computed under the assumption
that demand remains constant. This gives a benchmark for setting production
levels until conditions change.

We now discuss how to form an MDC for this model. The state of the system
at time ¢ is the triple o* k¥, y*), where x* is the inventory level at the begin-
ning of period £ - I, k* is the production level set at that time, and y* is the
demand occurring over period 1 — 1. The state of the system at a given period is
what transpired during the previous period. All of these quantities are known
to the manager. The state space §=Z x A x D.

It is helpful to fix firmly in mind that the current state is the triple of condi-
tions that prevailed during the previous period. Figure 5.1 shows the process.

Here is how this formulation is initialized. The state at period 0 may be any
triple x*, k¥, y*) with the interpretation that x* was the inventory level at time
t=-1,k" the production level at that time, and y* the demand revealed during
that period.

For the purposes of determining the transition probabilities and costs, let us
assume that the state at time 7 is (x™, k¥, y*). Then the current inventory level is
x* + k¥ - ¥*. A couple of examples will clarify this. If the state is (4, 5, 6), then
at time ¢ — 1 there were 4 items on hand and a decision to produce 5 items was
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Production e o
Lfk' /(x-k-y)-Stateatt

t-1 t t+1
t t } Time

\ \ Demand y" filled

x* = inventory ievel
k* = production leve!
¥* = number demanded

Figure 5.1 [Inventory model.

made. This gave 9 items at the end of ¢ — 1 and 6 were demanded, leaving 3 as
the current inventory level. If the state is (-4, 5, 6), then at time ¢ — 1 there were 4
items backordered, and a decision to produce 5 items was made. This gave 1 item
left over after the backorders were filled and 6 were demanded, leaving ~ 5 as the
current inventory level. For a given state «* K, y*) it is to be understood that x
is the current inventory level for that state, and thus

current inventory level x = POy S y*. (5.1}

The transition probabilities are now easy to determine. Assume that a produc-
tion level of k is set for period t. The state at time ¢ + 1 is the triple that prevailed
during period ¢, which is (x, k, y) with probability d,. Formally we have

P(,\;a_ko"yo)(x'k‘y)(k) = dy, ye D. (52)

We now determine the number s = s(x™, k*, y*) of items that were sold at
the end of period ¢ — 1. We claim that

"+ k%Y A Y, 20,
s= {k*, PAE (5.3)
[T+ AYTL K <x <0

To see this observe that if x* > 0, then there are no backlogged orders, and the
number sold is the minimum of the number y demanded and the number x* +
k* available to meet that demand If x* < - k™ then the total production goes to
fill backlogged orders. If —k* < x* < 0, then the backlog is eliminated, resulting
in —x” items sold, and there are x* + &* items left over to fill the demand. (The
reader may construct a few numerical examples to illustrate (5.3).)

A single expressxon can be given for the terms in (5.3). Let u = O for ¥ 20,
and let u = —x* for x™ < 0. Then

s=u+[(x*+k*) Ay 5.4)

works in all cases. (Check it out!) When reference to s is made for a state (x*,
K* y*), we are referring to s as defined in (5.4).



86 AN INVENTORY MODEL

The cost function has several components. For a current inventory level of x,
there is a nonnegative inventory cost I(x). For x 2 O this is interpreted as a cost
of holding x items in inventory. For x < 0 this is interpreted as a penalty cost for
having x items backordered. As an example we might have I(x) = 0.5 x forx 2 0
and I(x) = -0.1x> for x < 0. This is a mild penalty for a small backlog but even-
tually becomes much more severe. In addition there is a nonnegative cost C(k) of
producing k items. We could also assume a cost of changing the production level,
but for simplicity we will not incorporate such a cost into the model.

It is assumed that a revenue of R is earned for each item sold so that the
total revenue generated from the sale of s items is Rs. Recall from Section 2.1
that rewards may be accommodated into our model as negative costs So asa
first attempt to write the cost function, we associate with the state =*, K, ¥ *)
and decision k the cost /(x) + C(k) — Rs.

Note that the inventory cost is charged on the inventory level at time ¢. The
cost C(k) is charged at time ¢ on the production level for period ¢. If the items
are purchased, it is assumed that the cost is incurred at that time. If the items
are produced, then C(k) may include labor costs and may also include a cost
for holding produced items in the system during period ¢ until the demand is
cleared at the end of the period. The revenue from the items sold at the end of
period ¢ — 1 is accrued at time 1.

Recall that in the specification of an MDC the costs must be nonnegative.
As discussed in Section 2.1, rewards can be accommodated in the model as
negative costs, and then a constant added to the costs to make them nonnegative.
We thus require [(x) + C(k) — Rs 2 —Rs 2 —B for some (finite) nonnegative
constant B. This holds if Rs < B, that is, if the one period revenue is bounded
above. Consider the cases in (5.3). Under the first case, $ < y < Y Under the
second case, s = k¥ < K, and under the third case, s < —x* + x* +k =k*<K.
Hence we may set B = R(YvK). This leads to the cost function C[(x k* y *) k]
= I{x) + C(k) — Rs + B. Letting U(s) = B - Rs, we have formally

Clx™, k%, y™), k) = I(x) + C(k) + U(s), (5.5)

where x = x*+k* - y* and s is given in (5.4). Note that each of the constituent
functions is nonnegative.

The specification of the cost function illustrates why it is necessary to assume
that the demand distribution is over a finite set. If arbitrarily large numbers of
items could be demanded in one period, then the potential revenue would be
unbounded, and the MDC formulation in Chapter 2 cannot handle this situation.
In the Bibliographic Notes is discussed an approach for treating this case.

This completes the specification of an MDC A for the model. Here is a sum-
mary of the conditions that have been assumed:

1. The production level is k € A, a finite set of nonnegative integers. The
maximum number that may be produced is K > 0.

2. The demand is y € D (a finite set of nonnegative integers) with probability
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dy > 0. The maximum number that may be demanded is ¥ > 0 and
D# {Y}.

3. The state at period ¢ is x*, k¥, y*), where x* is the inventory level at
t—1, k¥ is the production level for period f - 1, and y* is the number of
items demanded during that period.

4. The transition probabilities for A are given by (5.2).

5. I(x) is the inventory function, C(k) the production cost, and U(s) a func-
tion incorporating the revenue earned from the sale of s items. These are
nonnegative functions (finite by Remark 2.4.2).

6. The cost function for A is given by (5.5).

5.2 OPTIMALITY EQUATIONS

In this section we develop the finite and infinite horizon expected discounted
cost optimality equations for A. The discount factor & € (0, 1) is assumed fixed
throughout the chapter.

To develop the finite horizon optimality equation, assume that the terminal
cost is zero. Then v, ¢ =0 and for n 2 1 (3.2) becomes

va,n(x*.k*,y*):I(x)+U(S)+n1gn Ck)+a Z dyUs - 1(x,k,y) p. (5.6)

ye D
Similarly the infinite horizon optimality equation (4.9) becomes
Vo Ky = I(x) + Uls) + mkin{ Ck) +a z d,Va(x,k, y)} . 6.7
yeD

The next result gives two situations in which V, is finite. These require some
mild additional assumptions on the model.

Propesition 5.2.1. Let

Fx) = Z o"l(x +nK), x>0,
n=0

F*x) = Z ol(x - nY), x<0. (5.8)

n=0

Then V, is finite under either of the following conditions:
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(1) Y <K and for x >0, [ is increasing and F is finite.
(i) 0 € A and for x <0, I is decreasing and F* is finite.

Proof: There exists a finite upper bound W for the term U(s) + C(k). For
any policy @ let Wy be the infinite horizon expected discounted inventory cost
under 6. Then clearly V, < Wy + W/(1 - &), and it is sufficient to find a policy
for which Wy < oo,

Let us assume that (i) holds, and let f be the slatxonary pohcy that always
orders K. Assume that the process starts in a state (x K, y ) such that the
current inventory level x < 0. The maximum number Y that can be demanded
is always less than or equal to the number ordered. Moreover by condition 2
(Section 5.1) sometimes less than Y will be demanded. It is clear that in a finite
expected amount of time, the process will reach a state with positive current
inventory level. During this first passage the penalty cost will not exceed the
maximum of the numbers {I(x), I(x + 1), ..., I(0)}.

By this reasoning it is sufficient to assume that the process starts in ", k¥,
¥*) such that x > 0. There is an initial holding cost of /(x), and during cach
subsequent period the process will either stay in the same state or will move
to a greater inventory level. Because I is increasing on positive inventory, it
is clear that an upper bound is obtained by assuming that there is never any
demand. Thus

W Ky 100+ Y o lx + nK), (5.9)

n=l

The right side of (5.9) is F(x) which is finite by assumption.
Now assume that (ii) holds, and let ¢ be the stationary policy that never
orders. The argument is the mirror of that above and is given as Problem 5.1.
0

Problems 5.2-3 show that if [ is composed of appropriate polynomials (so
that it is nonnegative), then the functions in (5.8) are finite. Problem 5.4 looks
at the possibility that /] may have an exponential form. If Y > K and (ii) fails,
then the situation is more complicated. We do not treat this case.

5.3 AN APPROXIMATING SEQUENCE

In this section we develop an approximating sequence for A and discuss issues
surrounding the computation of V. In developing the AS, we make some fur-
ther simplifying assumptions. In addition to conditions 1 through 6 given in
Section 5.1, assume that
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7. We have 0 € D, and thus it is possible to have no items demanded.
8. Proposition 5.2.1(ii) holds.
9. C(k) is increasing in k and C(0) = 0.

It then follows from Proposition 5.2.1 that V, < oo,

Here is how we define the ATAS for this model. Let Gy = {-N, ..., -1,
0,1,..., N} and Sy = Gy X A x D. Let the distinguished state z = (0, 0, 0).
Define the ATAS by sending the excess probability to z.

There are two ways to look at the calculation of V,. The first way involves
approximating V, by U, . Then v,_, may be approximated by v¥ ,. Under this
method the discounted value function in A is approximated by the finite horizon
value function in A. This in turn is approximated by the finite horizon value
function in Ay.

The second way involves approximating V, by VY. Then V¥ may be approx-
imated by v . Under this method the discounted value function in A is approx-
imated by the discounted value function in Ay. This in turn is approximated by
the finite horizon value function in Ay. Both ways end up in precisely the same
place.

We elaborate on the first way. For a fixed finite set of states in $, and for n
and N sufficiently large, we have

Voa=Uen=Uh, and fo=fan=fu, (5.10)

The first approximations (for the functions and policies) follow from Proposi-
tion 4.3.1. The second approximations follow from Corollary 3.3.3 and Theo-
rem 3.2.3. Note that we need v, , < oo, which follows from Propositions 4.3.1
and 5.2.1. (If we followed the second way, we would first appeal to Corollary
4.7.5 and Theorem 4.6.3, and then to Proposition 4.3.1 applied to 4y.)

In summary, our method of calculation is to compute in Ay the finite hori-
zon discounted value function and corresponding optimal policy for large N and
horizon. We now devclop the optimality equation (3.19). We have v,, o =

Let (x R k¥ , ¥ ) be a state in Sy such that x ¢ Gy. (Recall that x*is thc
inventory level at the beginning of the previous period, and x from (5.1) is
the current inventory level, which figures in the state at the beginning of
the subsequent penod) In this case it follows from (5.2) that all transitions
from state (x* k*, y ) end up outside of Sy. This means that the summation
on the right side of (3.19) vanishes. By condition 9 the minimization reduces
to ming {C(k)} = C(0) = 0. This yields
oV ek = a @+ I+ U, x ¢ Gy, (5.11)

an

and the optimal decision :s t() not produce.
Now consider states (x k* LY ) for which x € Gy. For these states all tran-
sitions remain within Sy, and hence (3.19) becomes
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o Gy = v @)+ 1) + UCs)

+minq Ck) +a Z‘;)d_,r;’l’.,,_,(x,k,y) :
123

x € Gy. (5.12)

Equations (5.11-12) are the equations used to compute the desired approxima-
tions.

Our work is not quite done because our interest is not in V, but in a related
quantity. Recall that the cost structure given in (5.5) involves the addition of the
constant B to all costs to make them nonnegative. To obtain the true minimum
expected discounted cost, we must subtract B/(1 — a) from V. The resulting
quantity then involves the incurred costs minus the eamed revenues. The neg-
ative of this quantity will involve the eamed revenues minus the incurred costs
and thus is the maximum expected discounted profit P,. So what we wish to
approximate is the quantity

B
Paﬁ -T_—a—~Va. (5.13)

Now Vo = v} =rY  +v¥ (2), and hence

[+ /)

P, = IB -rN Y (@) (5.14)

When the calculations in (5.11-12) have been carried out up to the specified
horizon length, then the optimal policy and the quantity in (5.14) are printed
out. These tell the manager approximately how much profit may be expected
and what an optimal production policy is.

Keep in mind that the quantity in (5.14) is the maximum expected dis-
counted profit, namely the maximum expected discounted revenue minus
inventory/production cost over the infinite horizon. This is under the assump-
tion, of course, that demand and monetary conditions (which might affect the
value of the discount factor) remain constant.

5.4 NUMERICAL RESULTS
In this section we discuss ProgramTwo. This program carries out the calculation

discussed in Section 5.3 under the special case that A= {0, 1,...,K}and D
={0, 1, ..., Y}, where ¥ < K. The inventory costs are given by
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Hx, x20, )
I(x) = { _Px, x<0, (5.15)

where H and P are positive constants. The cost of production is given by
Clk)=Cy + Cak, 1<ksK, (5.16)

where C is the setup cost (the fixed cost that is incurred whenever some items
are produced) and C; is the marginal cost of producing one item. These are
nonnegative numbers,

The user is prompted for the values of R, H, P, Cy, (3, «, and the values
of d,. The values of N, K, Y, and the horizon length are comtamb that may
be changed in subsequent runs of the program. The program operates much as
ProgramOne, and we will not repeat that discussion here.

Remark 5.4.1. SupposethatH,P,R,C y and C; are each multiplied by a pos-
itive constant . The effect is to multiply v | by Q. (You are asked to show this
in Problem 5.5.) Since B = RK, the effect is to multiply P, by Q. This means that
the values of P, R, C, and C; may be scaled relative to the value of H. In all sce-
narios (other than those specifically for checking the operation of the program)
we assume, without loss of generality, that H = 0.1. Thus the assumption is of a
holding cost of 10 cents per item per period. This value keeps the other numbers
within a smaller range. In all scenarios we set o = 0.95, ]

It is important to find some special cases in which the value of P, may be
determined. These cases are useful in confirming that the program is operating
correctly.

Checking Scenario 5.4.2. Assumethat H=P=-C;=C;=0and R>0.In
this situation there are no inventory or ordering costs. Since Y < K, it is clear
that the demand can always be taken care of in one period. Let A = 3" yd, be
the average demand.

Assume that the process starts in state (x k ¥ ), where x 2 0. In this
case it is clear that all future demands can be met without cost, and we have
P, (x*, k*,¥%) = R{s+(c\)/(1-a)]. This can be reasoned as follows: The revenue
eamned immediately is Rs, where s from (5.4) is the amount sold at the end of
the previous period. In each future period the average revenue is R\, and this
amount 15 discounted by o« because the revenue from the number sold in the
current period is not eamned until the following period.

ProgramTwo was run for ¥ = 3, K = 4, R = 10, N = 25, and n = 100. The
demand distribution is given by do = O 2,d,=03,d,=0.1, and d; = 0.4, which
gives A = 1.7. Note that Pa(x k* Y ) 10s + 323. For example, P,(7, ., 0)
= 323, while the program gives 325.72. Moreover P,(7, ., 1) = 333, while the
program gives 335.72.
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Now assume that the process starts in state (x*, k¥, y*) with x < 0. In this
case it would pay, at least for a while, to reduce the backlog as fast as possible.
For example, we have P,(-12,0,0) = (o + a? + o’ + a® + o) (4R) + a®(2.2R)
+ a’(AR)/(1 - &) = 425.53, while the program gives 427.65. The reasoning for
this is as follows: In the first period, 4 will be ordered and sold, and the new
inventory level will be, on average, -8 — 1.7 = ~9.7. The process is repeated,
giving average inventory levels of -7.4, -5.1, -2.8, and -0.5. In this last state,
on average, 0.5 + 1.7 = 2.2 will be sold. From then on, the reasoning is as in
the case of a nonnegative inventory level. ]

Checking Scenario 54.3. WeletH=1,P=R=0,C;=C;=5,andd; =1,
In this case there are no revenues to be eamed and it is optimal to never order.
Assume that the process starts in state (x k" .Y ) such that x > 0. Then exactly
one item is demanded every period, and we have Pa(x k* ,¥ )- —[x+alx- 1)
+ a*(x-2)+ ...+ o '] This program was run with K =4, Y = 1, N = 25,
and n = 50, For example, we have P,(4, 3, 0) = —25.36817, which agrees with
the program output. We also have P,(5, 0, 1) = -9.51238, which agrees with
the program output. O

The checking scenarios give us confidence that the program is working prop-
erly. Let us now discuss some more typical scenarios.

Scenarios 5.4.4. Recall that for each scenario we have H = 0.1 and o =
0.95. The results are summarized in Table 5.1.

Consider Scenario 1. The first box gives the values of the parameters, and
we see that ¥ = 3. The second box gives the demand pmbabilities in increasing
order of y, with dy = 0.1, and so on. The fourth box gives the values of N and
the horizon length n.

The first run is for N = 25 and n = 50. A cursory look at the output does
not yield the form of the optimal policy. However, a closer examination reveals
two interesting facts. First and perhaps not too surprisingly, the optimal policy
depends only on the current inventory level x. Second, the optimal policy is
bang-bang. That is, if the current inventory level is no more than 1, then the
manager should produce the maximum number 4 of items during that period.
However, if the current inventory level is at least 2, then the manager should
not produce at all. This is indicated in the third box by the notation B-B and
by giving the inventory level for full production. (Once this observation was
made, the program output instructions were modified to also print out the cur-
rent inventory level.)

Another run was made for n = 60 (not shown), and it is confirmed that the
policy is unchanging. It is suspected that the optimal policy is actually deter-
mined for substantially smaller values of n, but this was not tested.

However, the convergence of the value function is considerably slower. The
value for the distinguished state z = (0, 0, 0) is given. We see that the conver-
gence is pulling in by n = 125, Here we have P,(z) = 109.1, which implies that
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9 AN INVENTORY MODEL

the maximum expected discounted profit that can be made under these condi-
tions is about $109.

Scenarios 2, 3, and 4 explore changing one parameter in Scenario 1. Scenario
2 is as in Scenario 1 with the exception that the penalty cost is 5 times as much.
This is an important calculation, since all the parameters except P can be accu-
rately estimated. The penalty for backlogged orders is, in essence, a guess, and it is
important to see how sensitive the optimal policy is to a change in this guess. Here
the optimal policy is slightly more aggressive, producing the maximum number
when the current inventory is no greater than 2. Note that P, (z) is just slightly less
than in Scenario 1. This indicates that by adopting a more aggressive production
policy, the expected profit does not decrease by much.

Scenario 3 is as in Scenario 1 with the exception that the revenue per item
is doubled. The optimal policy remains the same. Here we have P,(z) = 303.1.
The reader may feel that this number should be roughly double the value in
Scenario 1. But this is not the case. Problem 5.6 asks you to explore this.

Scenario 4 is as in Scenario 1 with the exception that the maximum produc-
tion level is raised to 6. The optimal policy is still bang-bang, with maximum
production called for when the inventory level is no more than (). The maxi-
mum expected discounted profit in z is greater than in Scenario 1. This indicates
that an increased profit can be obtained by increasing the production capacity.
The manager could continue to explore this option, choosing greater production
capacities to determine the one that gives the maximum value of P, (z).

Scenario 5 explores a situation in which K is substantially greater than Y.
The optimal policy is still bang-bang. However, this does not always hold, as
we see in Scenano 6. Here the optimal policy has the so-called s-S form. This
is a standard name for this type of policy and should not be confused with our
notation. In this type of policy, if the inventory level is no more than s, then the
optimal decision is to produce enough to bring the level up to (but no greater
than) S, or as close as possible to this goal. If the inventory level exceeds s,
then no items should be produced. In Scenario 6 the optimal policy is 1-2.

In Scenario 7 we have K = Y, and the demand is concentrated on y = 3 or
4. The optimal policy goes into full production whenever the inventory level
is no more than 3. Note the aggressive policy, which holds since the demand
is, on average, almost 3 items every period. Again the manager can explore
increasing the value of X to see if an increased profit results. 0

Remark 5.4.5. Because of results in the literature (see the Bibliographic
Notes), one suspects that as K — oo the optimal policy is of 5-S form. This is
dependent on the parameter values in (5.15-16) and might not hold for other
choices. As discussed earlier, we have chosen to focus on computational issues
rather than attempting to prove that optimal policies have certain structures. (J

Remark 5.4.6. The array sizes required in ProgramTwo are of obvious con-
cern. Besides simply increasing memory, there are two simple strategics that
may help in smaller dimensional problems.



PROBLEMS 95

Suppose that a computation for a relatively small value of N indicates that
the optimal policy is bang-bang, and suppose that one desires a great deal of
accuracy in the expected profits. The program can be rewritten to eliminate all
production choices except {0, X }.

Another possibility is to allow the maximum inventory level and maximum
backlog to be different. Suppose that M(N ) is a sequence in N such that limy . ..
M(N) = oo, For example, N might be a multiple of 10 and M(N) = N/10. Then
Gy = {-M(N),...,~1,0,1,..., N} will also work in the AS. In this way a
more computationally efficient choice for Sy can be made. O

BIBLIOGRAPHIC NOTES

Various versions of this model have been extensively treated, usually from
a theoretical framework. Seminal work is contained in Scarf (1960), Veinott
(1966), and Schal (1976).

Bertsekas (1987, 1995a) treats a version in which the revenue to be gained
from the sale of items is ignored. Models in Denardo (1982) and Puterman
(1994) incorporate revenue. However, it is incorporated as an expectation of
revenue to be gained in a single period rather than as actual revenue gained.
So when the optimization is performed, it involves finding the expected dis-
counted value function of an expected revenue. Puterman (1994) allows a time-
dependent demand process. If one wishes to give a treatment in which rewards
may be unbounded, then Puterman (1994, Sec. 6.10) may be applied. Feder-
gruen and Zipkin (1986a, b) are further references.

The major emphasis of the literature has been on theoretically deriving the
form of an optimal ordering policy. In contrast, our focus is on showing how
an optimal policy may be computed.

PROBLEMS

5.1. Prove Proposition 5.2.1(ii).

5.2. Assume that ¥ < K and I(x) = Hx" for x > 0, where H is a positive
constant and r is a positive integer. Show that the condition in Proposition
5.2.1(i) holds.

5.3. Assume that 0 € A and I(x) = P|x’| for x < 0, where P is a positive
constant and r is a positive integer. Show that the condition in Proposition
5.2.1(ii) holds.

5.4. Assume that Y £ K. Let 8> 1 and I(x) = §* for x > 0. Determine when
the conditions in Proposition 5.2.1(i) hold.
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5.5.

5.6.

5.7.

5'8‘

5.9.

5.10.

*5.11.

AN INVENTORY MODEL
Verify the claim made in Remark 54.1.

It is desired to explain the difference between the value of P, for Scenario
3 and its value for Scenario 1. Note that the optlmal policy is the same.
Let P, denote the value for Scenario 1 and P the value for Scenario
3. Using the interpretation of the quantity in (5.14), evelop an expres-
sion for P, — P,. Note: An interesting inference concerning the average
number of items sold each period can be drawn from this. Do you see
what it is?

Develop the appropriate counterparts to the equations in this chapter when
a cost for changing production levels is present.

Run ProgramTwo under the following scenarios and discuss the output:

(@ a=09,H=01LP=10,C,=50,C,=05R=35Y=2,and X
= 4. Assume that dy = 0.5,d, = 0.3, and d = 0.2

(b) As in (a) but with X = 10.

(c) As in (a) but with K = 15.

Run ProgramTwo under some interesting scenarios of your own construc-
tion.

Let us develop an inventory model similar to the one presented in this

chapter but for which backloggmg is not allowed. Let the state space be

(x*, k¥, y*) such that x* = 0. If the demand during period 7 — 1 is not

met, then there is a fixed penalty cost of P > () assessed at the beginning

of period 1.

(a) What is the current inventory level x? Assume a nonnegative holding
cost H(x) assessed on current inventory. The other costs and revenues
are as in Section 5.1.

{b) Develop an MDC for this model.

(¢) Give the optimality equations, as in Section 5.2, for this model.

(d) Prove that if 0 € A, then V, < eo.

(e) Assume that 0 € D. Develop an appropriate ATAS for this model by
sending the excess probability to z. Give the optimality equations for
the AS under condition 9.

Suppose that we wish to treat the model in Section 5.4 with the exception
that I(x) = Px? for x < 0. Make a copy of ProgramTwo and rename
the copy. Examine the code to see what should be modified to handle a
quadratic penalty cost. Make the appropriate modifications and run the
program for some scenarios of your construction. What conclusions can
be drawn?
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CHAPTER 6

Average Cost Optimization for
Finite State Spaces

This chapter treats the average cost criterion when the MDC has a finite state
space S. In contrast to the finite horizon and infinite horizon discounted cost
optimization criteria, we will not treat the finite and denumerably infinite state
space cases together. Very special results hold when § is finite, and these results
are developed in this chapter.

Section 6.1 presents a fundamental relationship linking the discounted cost
and average cost under a fixed policy. This relationship holds for arbitrary
countable state spaces. In the remainder of the chapter, it is assumed that the
state space is finite. In Section 6.2 we prove that there always exists an optimal
stationary policy f for the average cost criterion. In Section 6.3 an average cost
optimality equation (ACOE) satisfied by f is developed.

In Section 6.4 we obtain a strengthening of the ACOE under the assumption
that the minimum average cost is a constant J. We also give various conditions
for the minimum average cost J(i) to be constant. In Section 6.5 we examine
what can be proved if one can find some solution to the ACOE. Can we then be
assured that the minimum average cost and an optimal policy have been found?

In Section 6.6 we develop a computational method, based on finite horizon
value iteration, for finding a solution to the average cost optimality equation
and an average cost optimal stationary policy. This development applies to any
MDC with a finite state space and constant minimum average cost. Section
6.7 illustrates the value iteration method using a simple example for which the
calculations may be carried out by hand.

6.1 A FUNDAMENTAL RELATIONSHIP FOR S COUNTABLE

In this section we have an MDC A with a countable state space S. The policy
@ denotes an arbitrary infinite horizon policy. Let / be the initial state. At this
time the reader may wish to reiew the definitions of the average cost Jg(i), the

97



98 AVERAGE COST OPTIMIZATION FOR FINITE STATE SPACES

minimum average cost J(i), an average cost optimal policy, and J ;(i) and J *(i).
These definitions are in Section 2.4,

We now present a fundamental relationship that will be seen shortly to pro-
vide a crucial link between the infinite horizon discounted cost and the average
cost optimization criteria.

Proposition 6.1.1. For any policy @ and initial state i, we have

J3() < lim inf (1~ c)Vp,o() < limsup (1 - Vs o) < Jo(i). 6.1)

a~-1"
The following are equivalent:

(i) All the terms in (6.1) are equal and finite.
() J ;‘(i) = Jg(i) < 0o, and hence the quantity in (2.15) is obtained as a limit.
(iil) Lim, . - (I — a)Vy (i) exists and is finite.

Proof: We have discussed in Section 4.5 how the value function Vj (i)
may be expressed as a power serics. Recall from (4.24) that if u, =
Eg[C(X,, A Xo = i}, then Vg (i) becomes the power series U(ax) given in
(A.20).

Similarly Jy(i) (respectively, J 8(9)) is the rightmost (respectively, leftmost)
term in (A.28). Then the statements in Proposition 6.1.1 follow immediately
from Theorem A.4.2. [

6.2 AN OPTIMAL STATIONARY POLICY EXISTS

Throughout the rest of Chapter 6, we assume that A is an MDC with a finite
state space S. For complete clarity this assumption is repeated in the hypotheses
of each result.

Here is an example showing that we may have J g # Js.

Example 6.2.1. The MDC has § = {0,1}, with Aq = {a.,a } and A, =
{b, b* }. All transitions are deterministic and are shown in Fig. 6.1. The costs
depend only on the states and satisfy C(0) = 1 and C(1) = 0.

Assume that the initial state is 0. The policy 8 is constructed to realize the
sequence of values in Example A.5.1. This may be done as follows: Choose
a ¢, — 1 times, then choose a (giving a transition to state 1), then choose b
g, - 1 times, then choose b* (giving a transition to state 0), and so on. Then the
deterministic sequence of generated costs is precisely the sequence in Exam—
ple A.5.1. Under Choice One in that example, we have J 3(0) =3 L and J4(0) =

D
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C@\-/QQIJ

b.
c(0)=1 c(1)=0
Figure 6.1 Example 6.2.1.

The next result shows that this behavior cannot occur when the policy is
stationary.

Proposition 6.2.2. Let ¢ be a stationary policy in an MDC with a finite
state space S. Then

Je(= lm (1-a)Veald)

i Ve, u{i)
= lim ==,

n—» oo

i€ S, 6.2)

Proof: Since the state space is finite, there exists a (finite) upper bound B
on all the costs. This readily implies that (1 - )V, (/) < B and J (i) £ B (show
it!).

Now fix the initial state i and suppress it in the rest of the proof. From
Proposition 4.5.3 it follows that V. , is a finite continuous rational function of
« € (0,1). Hence (1 - o)V, , has the same properties. A rational function can
have at most a finite number of critical points and inflection points. (You are
asked to show this in Problem 6.1). This means that a rational function cannot
oscillate an infinite number of times, and hence that left (or right) limits must
exist, although they may be infinite. Because (1 - )V, , is bounded, the limit
as a — 1~ exists and is finite. Then (6.2) follows immediately from Proposition
6.1.1. O

Here is the major result of this section, showing the existence of an average
cost optimal stationary policy of a very special type.

Proposition 6.2.3. Let A be an MDC with a finite state space S. Then the
following hold:

(i) There exist oep € (0, 1) and a stationary policy f such that f is « discount
optimal for a € (ay, 1).
(ii) The policy f is average cost optimal.
(iii) We have
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J@) = lin} (1~ a)V, (i)
a-+1"

) Ur (1)
= lim ———-————f"'(),

B e o

ies. 6.3)

Proof: Since § and each action set are finite, it is the case that there are
only a finite number of stationary policies for A. (Problem 6.2 asks you to
given an expression for the number of stationary policies.) Associated with each
o € (0,1) is an o discount optimal stationary policy. Because the number of
stationary policies is finite, there must exist a sequence o, — 1" and a stationary
policy f such that f is «, optimal for ali n.

We claim that (i) holds for f. This is proved by contradiction. Suppose that
it fails. Then there exists a sequence 8, — 1~ such that f is not 8, optimal.
Because the state space is finite, this implies that there exist iy € S and a
subsequence of 8, (call it 8, for convenience) such that Vs, (ip) < V. 5,(lo), for
all n,

By the same argument used to obtain f, we obtain a subsequence of 8, (call
if v, for convenience) and a stationary policy e such that e is vy, optimal for
all n.

We have the following situation. There are sequences of discount factors «,
and vy, converging to 1, and stationary policies f and ¢ such that

Vi anlio) £V, o, (o),
Veyalio) < Vr y,(io). (6.4)

This requires the function V., ,(ip) to dip below the function V/ ,(iy) for
infinitely many values but to be equal to or greater than it for infinitely many
values. It follows from Proposition 4.5.3 that both Vy ,(ip) and V, ,(ip) are
(finite) continuous rational functions of a € (0,1). Such functions cannot
exhibit the behavior in (6.4). (To see this, it helps to draw a picture of this
behavior.) Thus (i) must hold for the policy f.

We now show that f is average cost optimal. Let i be an arbitrary initial
state. It follows from (i) that (1 — a)Vy (i) = (1 — @)V, (i) for a € (ay, I). By
Proposition 6.2.2 the limit of the quantity on the left exists and equals J¢(i),
and hence so does the limit of the quantity on the right.

New let # be an arbitrary policy. From Proposition 6.1.1 and this argument,
it follows that

Jpli) = lin}w(l - o)V, () < limsup (1 — a)Vp (i) < Jo(i). {6.5)

o1

This proves that J(i) = J;({). Equation (6.3) follows from (6.2). a
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The conclusion of this section is the existence of a stationary policy that is
discount optimal on an interval (ay, 1) and also average cost optimal. (Such a
policy is said to be Blackwell optimal.) In Example 6.2.1 the stationary policy
f with f(0) = a* and f(1) = b is average cost optimal with J; = 0.

6.3 AN AVERAGE COST OPTIMALITY EQUATION

In this section we construct an average cost optimality equation (ACOE) for
the optimal policy found in Section 6.2.

Let f and ap be as in Proposition 6.2.3. The stationary policy f induces a
Markov chain with costs. The cost at | is C(i,f) = C(i,f(i)) and the probability
of transitioning from i to j is Pi(f) = Py(f(@)).

The structure of the Markov chain induced by f is discussed in Section C.3
of Appendix C. In the general case, with § finite, this Markov chain may have
multiple positive recurrent classes Ry, Ry, ..., Ry as well as a set U of transient
states. From each i € U a positive recurrent class is reached in finite expected
time and with finite expected cost. Let p;(i) be the probability that class R, is
reached (first), where 3, pi(i) = L.

It is the case that the average cost under f is constant on Ry, and we denote
it by Ji;. Moreover we have J(i)) = 3, pi(i)Jy fori € §S.

For 1 £k < K select a distinguished state z; € Ry, and let Z = U {z,} be the
set of distinguished states. If the process starts in transient state i and reaches
class Ry, then it will reach z; in finite expected time (denoted my;(f)) and
with finite expected cost (denoted c¢;jx(f)). Keep in mind that these quantities
are conditioned on the class reached. The quantity >, pi(Dlci(f)—=Jimy(f)]
= ¢iz(f) ~ X Jkpxmi () is fundamental to the development. Notice that if
i € Ry, then it equals ¢, (f) ~ Jum (f) (why?).

We emphasize that all of these concepts relate to the Markov chain induced
by the average cost optimal stationary policy f from Section 6.2. For details on
these ideas, the reader may review Appendix C.

Now let W, (i) =: 3, px(i)Vo(2k) for i € S. Note that if i € Ry, then W, (i) =
V.(z1). Lastly define wo(i) =: Vo (i) — Wo(i). This relative value function is
central to the development of the ACOE.

Here is what may be proved concerning the ACOE in the general case in
which the Markov chain induced by f may have multiple positive recurrent
classes, with unequal values of J;.

Theorem 6.3.1. Let the state space S be finite, and let W, and w, be as
defined above. Then for all i e §, the following hold:

(©) JG@) = limg . - (1 — )W, ().
(i) Limg 1 wa(D) =2 w(i) = 2, pe@lcin(f) = Jemip ().
(i1) Lim, . .,OE;[w(X,,)[Xo =i}/n=0.
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(iv) The average cost optimality equation is

I +w@) = Cf) + Y Py(fIw())
b

b3 muin Cli,a) + 2 Pi(aw(j) ¢, i€ S. (6.6)
i

(v) If ¢ is a stationary policy realizing the minimum in (6.6) and the Markov
chain induced by e is positive recurrent at /, then (6.6) is an equality at
i and J.() = J(i).

Proof: (We have not starred this proof because some of the techniques are
used later, However, the interested reader need not be overly concened with all
the details.)

The proof of (i) is given as Problem 6.3. We now prove (ii). First assume
that / = z;. Then w,({) = 0, and hence w(i) = 0. The expression in (ii) becomes
Cou{f) — Jumy (f), and this equals 0 by Proposition C.2.1(ii). This proves
(ii) for the states in Z.

Now assume that i ¢ Z. For & > ag we know that f is discount optimal.
Moreover the system operating under f reaches Z in finite expected time and
with finite expected cost. Let T be the time to reach Z. Suppressing the initial
state X;; = i, we have

T-1

Voli) = Er [z a’C(X,,f)] + Efla"Va(X1)l. 6.7
t.0

Subtract W, (i) from both sides, and observe that the result may be expressed as

T-1
wali) = E; [2 a‘C(x,,f)} -3 1 - @Valzl
1=0 k

( )=, oP(T=1,X7=2) )

-«

6.8

Now let a — 17. The limit of the first term on the right of (6.8) exists and equals
¢iz(f). In the second term the limit of the summand in square brackets equals
Ji. Hence the proof will be completed if it can be shown that the summand in
round brackets approaches pi(i)m;(f).

We have
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p() =27 & PHT =t,Xr = 2)
-«

— [ 1-¢
= P(T =1,Xr =
Z( ,wa) AT = 1. X7 = 2)

1=1

oo

:2(1+a+...+a'"“)P,(T;t,xr._—.zk)

t=1

— Y P(T=tXr=27) asa—1
t=1

=put) > tPAT = 1]X7 = 20)
1=1

= pr(Dmipe(f), 6.9)

where the convergence follows from Corollary A.2.4. This completes the proof
of (ii).

We now prove (iv). By conditioning on the first state visited, we see that
m) - Zj Pi(f)pi(j). This holds even if i is in a positive recurrent class.
Multiplying both sides of this by V,(z;) and summing yields

Wali) = 3 Py FIWa()). ©.10)
J
For a > ay the discount optimality equation (4.9) may be written as
(1 - Wol) +wald = CGf )+ 3 Pi(fIwa(), i€ S (61D
j

This follows since f is discount optimal. It is obtained from (4.9) by adding
and subtracting W, (i) from the left side, and by subtracting aW (i) from both
sides and using (6.10).

Now take the limit of both sides of (6.11) as o~ 1. Since S is finite, the
limit may be passed through the summation on the right. Using (i~ii) yields
(6.6), and this proves (iv).

To prove (iii), we let the process operate under f and first show that

Ef[J(X)|Xo = i] = J(D), ie S, t20. (6.12)
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This is clearly true for t+ = 0. Now assume that r 2 l Recall that pi(i) =

Z Pii(f)pe(j). lterating this, we see that p(i) = 2 P,J (fIpc(j). Using this
and the fact that J()) = 32, pe( My, it follows that

EWX)|Xo=i1= Y, PPUWG)

/

z Jk(z P (f)Pk(]))
DI/
k

= J(i). (6.13)
Suppressing the initial state X = 4, it follows from (6.6) that
J(X1) + w(X,) = CX,,f ) + Eglw(X, . OIX.], 120 (6.14)

Taking the expectation of both sides of (6.14), then using a property of expec-
tation (namely E[E[Y|X]] = E[Y]) together with (6.12), yields

J() + Efw(X )] = EfC(X, ) + EfIw(X, D), 120, (6.15)

These expectations are all finite (why?). Move the last term of (6.15) to the
left of the equality, add the terms, for 1 = 0 to t = n - 1, and divide by » to
obtain

J@) +

w(i) - Eflw(X,)]  vr.a(i)
n oo

(6.16)

Then (iii) follows from (6.3).
To prove (v), let ¢ be a stationary policy realizing the minimum in (6.6). By
assumption we may write

JG) + W) = Cli, &) + B + 3. Pylew(j),  i€S,  (6.17)
i

where ® is a nonnegative discrepancy function; that is, its value is what must
be added to the minimum in (6.6) to obtain equality.

Let R be a positive recurrent class in the Markov chain induced by e, and let
w;(e) be the steady state probability associated with i € R. Multiply both sides
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of (6.17) by =;(e), and sum over i € R. From Proposition C.2.1(i) it follows
that

D IO + Y mlew)

=Ir@)+ Y WO+ Y Tle) D, Pylew()),  (6.18)
i J

where Jp(e) is the constant average cost on R. Using Proposition C.1.2(i), we
see that the terms involving w on each side of (6.18) are equal (and finite), and
hence they cancel. Moreover we know that J(i) < J.(i) = Jg(e). This together
with the nonnegativity of the discrepancy function yields

Jale) > 2 %) (i) = Jp(e) + Z 7:(e)B () 2 Jule). (6.19)

Hence these terms are all equal and the discrepancy function is 0. This proves
that (6.6) is an equality on R.

To complete the proof, note that > w;(e) (Jr(e) - J(i)) = 0. Since each sum-
mand is nonnegative, it follows that J(i) = Jx(e) and e is average cost optimal
on R. O

The following example shows why it is difficult to strengthen the statement
of Theorem 6.3.1 in the general case.

Example 6.3.2. Consider the MDC A whose transition structure is shown
in Fig. 6.2, There are single actions in the states 1, 2, and 3, with C(1) = 0,
C(2) = 2, and C(3) = 1. In state O there are three actions with

®
Jo ojo

Figure 6.2 Example 6.3.2.
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Poi(a) = Pga(a) = C(0,a)=0 Policy f
Py (b) = Pos(b) = CO,b)=1 Policy g (6.20)
Pyi(c)=§ Pua(c)=§ CO,c)=§ Policy e

Pt D

Problem 6.4 asks you to confirm the result we give here. It is clear that
V(1) = 0, and we see that V(2) = (2+a)/(1 -a?) and V,(3) = Qa+1)/(1- o).

It can be shown that f is discount optimal and that V,(0) = a(2a+1)/2(1-a?).
The chain induced by f has two positive recurrent classes. Let us choose z, = |
and zz = 2. Then it can be shown that w(l) = w(2) = 0, w(3) = —%, and
w(0) = —-1.

It is the case that J(1) = 0, J(2) = J(3) = 3/2, and J(0) = 3/4. For state 0, f
and g are average cost optimal but ¢ is not. Moreover (6.6) becomes

(8]
—

4

. 1 3 5
> e — — e
-mm{ 4.4, 16}.

where the numbers in the minimum are associated with actions a, b, and ¢
respectively. The minimum is —5/16, associated with nonoptimal policy e. The
optimal policy g is associated with 3/4.

This example shows that the inequality in (6.6) may be strict. Moreover a
stationary policy realizing the minimum may not be optimal, and an optimal
stationary policy may not realize the minimum. a

4

The following important result is crucial to the development in the next sec-
tion:

Proposition 6.3.3. Assume that the hypotheses of Theorem 6.3.1 hold. Let
w (i) = w(i) = 3, pe(i) (T, g, ¥(FIW(). Then for i€ Sand € (0, 1), it
follows that

J(i)
-«

Voli) = +w (i) + eqd), (6.21)

where ¢,(i) is a function that approaches 0 as o —1".

*Proof: QObserve that Zse Ry . (f )w(s) is the average value of w on Ry.
Hence we may regard w” as a normalized version of w.

Subtracting >, pe(i) . g, Ts(f )w(s)) from both sides of (6.6) and using
the fact that pi(i) = 3, Pii(f)pi(j), we see that
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J@O+w @) = CG.f)+ Y PfW ), i€ (6.22)
J

The same argument used to derive (6.15) may be applied to (6.22), yielding

E[CX,f)) = J() + Eflw* X)) - Effw (X, 01, £20. (6.23)

Now multiply both sides of (6.23) by o and sum over ¢. Since f is discount
optimal for o € (o, 1), this yields

Val) = 5 ("

W) - (1 - @) Z o' Erlw" (X, )],

a € (o, 1). (6.24)

For a € (0,a] the function €,(7) may be defined to realize an equality in
(6.21). For a € (ap, 1) it is defined as the last term in (6.24). In this case it
may be expressed as

L o) lea e,
€ali) = - ggab"f[w*(x,)], (6.25)

o

The first term of (6.25) approaches 0 as a — 17. Focus on the second term,
and ignore the o in the denominator. What remains is (1- o) times the expected
discounted w”* cost over the infinite horlzon, for initial state i and under policy
f. Consider for a moment the average w" cost. Using results from Appendix
C, this is obtained asa limit and equals 3, pi()) ;¢ R Ts( f w* (s)). Using
the definition of w*, this is easily seen to be 0 (check it out!).

The desired result then follows from (A.28) in Appendlx A. Note: This
result was proved for nonnegative terms and the function w* may be nega-
tive. However, it is bounded below, say by ~L, and we may apply the theorem
to w” + L 2 0, yielding the desired result. 0

6.4 ACOE FOR CONSTANT MINIMUM AVERAGE COST

The situation illustrated in Example 6.3.2 is rather abnormal. The more typical
and important situation is that in which the minimum average cost is constant.
When J(i) = J, it follows that the average cost is independent of the initial
state, a property that holds in many models. The next result presents conditions
for this to hold. Recall from Section C.3 of Appendix C that a Markov chain
with a finite state space is unichain if it has a single positive recurrent class.
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Proposition 6.4.1. Let the hypotheses be as in Theorem 6.3.1. Consider
the following statements:

(1) Every stationary policy induces a unichain Markov chain.

(ii) The optimal stationary policy f induces a unichain Markov chain.

(iii) There exist z € S and a (finite) constant L such that |V (i)~ V,(2)| £ L
forie Sand x € (0, 1).

(iv) Given x € S, there exists a (finite) constant L such that |V (1)~ V. (x)] £
Lforie Sand o€ (0, 1).

(v) Given states { # j, there exists a stationary policy e(i,j) such that i
leads to j in the Markov chain induced by e(i, ).

(") We have J(i)=J fori e S.
Then

@)

Y

(i) (v) (6.26)
M y

Gii) & (iv) & (5

Proof: We will first show that (i) = (i) = (") = (iv) = (ii) = (). It is
clear that (i) tmplies (ii). If f induces a chain with a single positive recurrent
class R then the minimum average cost is constant, and hence (*) holds.

We now show that (") lmphes (lv) Fix x ¢ S. It follows from (6.21) and (%)
that |Vo(i) — V()] < [w ()] + |w (x)] + lea(z)] + leq(x)|. Since § is finite there
exists a bound @ on the absolute values of w.

Fix a state i. For a € (0, o] it is easy to see from (6.21) that e, (i) is bounded.
For a € (g, 1) it may be seen from (6.25) that it is bounded. Since § is finite,
there exists a (finite) constant E such that [e (/)] < Eforie S and @ € (0,1).
It follows that 2 (Q + E) will serve as the desired bound, and hence (iv) holds.

Clearly (iv) implies (iii). We now show that (iii) implies (*). Observe that
(I1-a) V(i) = (1 —a) (Vo (i)~ V() + (1 - o)V, (2). From Proposition 6.2.3(iii)
it follows that the left side approaches J(i), and the last term approaches J(z).
From (iii) it follows that the second term approaches 0. Hence J(i) = J(z) for
every i, and hence (") holds.

It remains to prove that (v) implies ("). Recall that J; is the average cost on
the positive recurrent class R; under the average cost optimal stationary policy
f. where 1 <k < K. Let Jy, be the smallest value and Jp,,, the largest value.
We know that any J(i) is 4 convex combination of the values of J;. If it can
be shown that Jmin = Jmax, then (*) will hold.

Choose and fix an clement i* of the positive recurrent class associated with
Jmax and an element f * of the positive recurrent class associated with Jo,,. Let
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e denote the stationary policy e(i*,j*) given in (v). By assumption, there exists
n 2 1 such that P{il.(e) > 0.
It follows from (4.9) that

Vald) S Cl, &) +a ), Pi(e)Valj)
J
< Cl, e) +Z Pie)Vo(j), i€S. (6.27)
i
Iterating (6.27) n — | times yields

Vali) SUa() + Y, PPVa0). (6.28)

J

We now let i = i* and multiply both sides of (6.28) by 1 — «. This yields

(L= Va0 S (1- v i)+ Y PREIT - )Va)l (629

i

Now let & — 1". The term on the left of (6.29) approaches J,.«, and the first
term on the right approaches 0. It follows from (6.3) that lim, . - (1-a)V,() =
J(.) € Jrmax. This yields

Tmax S P{L (@M min + (1 = Plor(@) max- (6.30)

Since the coefficient of Ju;, is positive, this leads to a contradiction unless
Jmin = Jmax. This proves that (*) holds. ]

Observe that (v) is a particularly useful condition that holds in many models
and is easily checked.

Proposition 6.4.1 has given us conditions under which J(i) = J. Under the
single assumption that J(i) = J, the following result derives a strengthened form
of the average cost optimality equation (ACOE) for A.

Theorem 6.4.2. Assume that J(i) = /. Fix a distinguished state z, let h,(/)
=: Vo(i) — V4(z), and let L be a bound for |h,| as in Proposition 6.4.1.

(i) For i € S we have lim, . ;- ho(i) =2 h(i) = w* (i) - w*(2).
(i1) The average cost optimality equation is
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J + h(@) = min C(i,a)+2 Piah(j)y. i€, (6.31)
i

and the optimal stationary policy f realizes the minimum.

(iii) If e is a stationary policy realizing the minimum in (6.31), then ¢ is
average cost optimal. Moreover lim,, . .. E [R(X,){Xo = il/n=0.

(iv) Define d,(i) =: h(i)+ nJ - v,(i) for i € S and n 2 0. (Recall that v, is
the minimum # horizon expected cost for a terminal cost of 0.) Then
|d.| € L.

(v) Forie S we have lim, , . v,(i)/n=J.

(vi) If f is unichain and z is the distinguished state in R, from Section 6.3,
then A(i) = w(i) = ¢c;i.(f)— Jm (f)forie §.

Proof: 1t follows from the assumption of constant minimum average cost
and (6.21) that h, (i) = w*(i) + €,(i) — w*(z) — €o(2). Then (i) follows from
Proposition 6.3.3. Note that || < L.

To prove (ii), observe that the discount optimality equation (4.9) may be
written as

(1 = 6WVa(2) + ha(i) = min { Cli,a)+ay, P.-_,-<a)ha(j)} ,
i

ies, (6.32)

where f realizes the minimum for o > ay. Equation (6.32) follows from (4.9)
by adding and subtracting V,(z) from the left side and subtracting aV,(z) from
both sides.

We may then let a— 1 in (6.32). Using (i), (6.3), and the assumption of
constant minimum average cost, and finally Proposition A.1.3(ii) and the fact
that the summation is over a finite set, we obtain (6.31), and this proves (ii).

Now let e realize the minimum in (6.31). In a manner similar to the derivation
of (6.16), we obtain

U, o(i) g h(i) - E.[MX )Xo = i]
-J+
R n
<ys HOFL (6.33)

n

Using (6.2), we may take the limit of both sides of the inequality in (6.33) to
obtain J,(f) < J. But this implies that J.(i) = J, and hence e is average cost
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optimal. Taking the limit of the equality in (6.33) and using the optimality of
e yields the second claim in (iii).

Let d,, be as in (iv), and observe that the bound holds for n = (. Now assume
that n 2 1. We have v, < v,,, where e is as in (6.33). Using this and multiplying
the inequality in (6.33) through by n proves that d,, 2 L.

We now obtain the upper bound. Let 6, be the n horizon optimal policy.
We may operate the process under 8, for n steps and then switch to a discount
optimal policy. Suppressing the initial state X, = {, this yields

V(i) < Uﬂn,a(i) + fx"Eo,, VX )]
Su(i) + a"Ey, [ V(X)) (6.34)

The second line follows since an expected discounted n horizon cost under a
policy is bounded above by the expected n horizon cost under the same policy,
and this policy is » horizon optimal. We now subtract V,(z) from both sides of
(6.34) and add and subtract o"V,(z) to the right side to obtain

1-o
ha(i) S v(i) + " Eg, [ha(X,)] - ( — ) [(1 - )Va(2)]
) I -ao”
Sop()+L- ( —a ) (1 - a)Va(2)] (6.35)

Now let a — 17. It follows from (i), the assumption of constant minimum
average cost and (6.3), that k(i) < v,(i) + L - nJ. This yields d, < L and proves
(iv).

Now write ~L < d, < L, then divide through by n, and pass to the limit to
obtain d,/n — 0. Using this and the definition of d,, yields (v).

It follows from the assumptions in (vi) and Theorem 6.3.1(ii) that w(i) =
ci.(f) - Jmi(f). It was also shown in the proof of that result that w(z) = 0.
From the definition in Proposition 6.3.3, it follows that w*(i) = w(i) —~ u, where
U=2er #%:(f Iw(s). It then follows from (i) that k(i) = w(i)— u— (W(z) - u) =
w(i), and this completes the proof of (vi). O

6.5 SOLUTIONS TO THE ACOE

In this section we start with an MDC A with a finite state space but with no
additional restrictions. We address the following question: Suppose that we have
been able to find some constant and some function satisfying the ACOE, then
are we assured of having found the minimum average cost and an optimal sta-
tionary policy? The answer is in the next result.
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Proposition 6.5.1. Let A be an MDC with a finite state space S.

(i) Assume that we have a (finite) constant F and a (finite) function r such
that

F+r()) 2ming C(i,a) + Y Piar)p, Q€S (6.36)
J

If ¢ is a stationary policy realizing the minimum in (6.36), then J (i) S F
for i € S. Hence, if F is a lower bound on the average costs, then
the minimum average cost equals the constant F, and e is average cost
optimal.

(ii) Assume that we have a (finite) constant F and a (finite) function r such
that

F+r(i)= nz'in Ci,a) + 2 Piay(j) ;. ied. (6.37)
) i

Then the minimum average cost equals the constant F, and any station-
ary policy realizing the minimum in (6.37) is average cost optimal. If A
is as in Theorem 6.4.2, then r(i) = h(D+r(z:) ~ h(zy) for i € R:. (Recall
that this is a positive recurrent class under f with distinguished state
z¢.) For i transient under f we have r(i) < h(i)+ 3, pr(i)r(ze) - Mzi)].
(iii) Assume that (6.37) holds, and let e be a stationary policy realizing the
minimum. Assume that both e and f are unichain with common positive
recurrent state x. If x is the distinguished state in Theorem 6.4.2 and in
Section 6.3 and if r(x) = 0, then r(i) = h(i) = ¢;.(€) — Jm;,(e) for all i.

Proof: To prove (i), assume that (6.36) holds, and let ¢ be a stationary
policy realizing the minimum. Using reasoning similar to that in (6.14-16), we
obtain for initial state { that

Ve.n(i) <
n

P E;:[r(Xn)]

RLUELE
n

<F (6.38)

where —M is a lower bound for r. Taking the limit of both sides yields that
J(iY < F. ¥ F is a lower bound on the average costs, then J(i) S J,() S F £
J(i). Hence we have J(i) = J (i) = F. This completes the proof of (i).
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If (6.37) holds, then it follows that

F+r(i) < CG,f) +Z Pi(f)r(j), i€Ss. (6.39)
i

Using similar reasoning as above, we obtain
Yl S g, 1)~ EflrXa))
n n

riy-M
o —
n

2 F , (6.40)

where M is an upper bound for r. Taking the limit of both sides and using the
optimality of f yields F < J(i). Hence the first statement in (ii) follows from
the second statement in (i).

We now have for all / that

J4ri) S CGf)+ Y Py,
i

J+hG@) = C.f) + Y PyfHR()), (6.41)
J

where the second equation follows from Theorem 6.4.2(ii), and F = J is the
minimum average cost. Let b = r - h. Subtracting the second equation from the
first in (6.41) yields

b(i)sz Pifb(j), iesS. (6.42)
i

Iterating (6.42), then adding the terms and dividing by n, we see that

I = 13 .
Z0E DY b(j)(-; D P )), ies. (6.43)
i '

-1

We know from Section C.1 of Appendix C that the limit of the quantity in
round brackets exists. If j is transient, then the limit is 0, whereas if j € Ry,
then the limit is py ()w;(f).

First assume that i € Ry, and let n — <o in (6.43) to obtain
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biYS Y UGS, i€ R (6.44)

jeRy

This says that every value of the function is less than or equal to a convex
combination of the values. This is possible if and only if the function b is a
constant B,. This implies that B; = b(z;) = r(zi) — h(zx). Hence r(i) = h(i)+ By =
h(D) + r(zi) — h(zp).

Now assume that i is transient under f. Let n — oo in (6.43}, and use the fact
that b = B, on R, to obtain

b()) < Z Pe(DBy. (6.45)
k

From (6.45) it is easy to see that the last staternent holds. This completes the
proof of (ii).

Assume that the hypotheses in (iti) hold. Note that h(x) = r(x) = 0 by
assumption, so we may assume that i # x. It follows from (ii) that r(j) <
k(i) + r(x) — hix) = h(i).

It follows from (6.31) that J + k(i) < C(i,e) + Z P,J(e)h( j) for all i. Using
reasoning sumilar to that in (6.14—16), we obtain for Xo =1,

- 1
E. [Z CX,, e)] — Tk 2 h(i) - EIh(X0)]. (6.46)
t=0

If T is the first passage time from i to x under e, then m;,(€) = D kP (T = k) < oo
by assumption. Let us multiply each term of (6.46) by P.(T = k) and sum over
k = 1. This yields

ciu(e) — Jm; (e} 2 (i) - h(x) = h(i). (6.47)

From (6.37) it follows that J+r(i) = C(i, e)+zj Pii(e)r(j) for all i. Repeating
the above argument on this equation yields

cixle) ~ Jmj(e) = r(i) — r(x) = r(i). (6.48)

The result now follows from (6.47-48) and the fact that r < h. This completes
the proof of (iii). d
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6.6 METHOD OF CALCULATION

Sections 6.2 through 6.5 give us a good theoretical understanding of the nature
of solutions to the ACOE. In this section we discuss how a solution may be
computed.

To compute a solution to (6.37), it is easier to work with finite horizon value
iteration than with the infinite horizon discounted value function. For this reason
we seek to construct a solution based on the finite horizon value function v,
rather than on the function h, from Theorem 6.4.2.

Before proving any results, we discuss the plan of action. Let x be a dis-
tinguished state of S (to be specified later), and let us define the finite horizon
relative value function r,(i) =: v,({) - v,(x), where the terminal cost of the finite
horizon value iteration is 0. The finite horizon optimality equation (3.2) may
be written.

[04(X) = B 1G] + 7() = min g Cla) + D Pyl@ra-1() ¢,
J

nzlield. (6.49)

This is obtained by subtracting v, . | (x) from both sides of (3.2) and adding and
subtracting v,(x) from the left side.

Suppose that it could be shown that the term in brackets approached a num-
ber F. Suppose in addition that we knew that r,, converged to some function r.
Then taking the limit of both sides of (6.49) would yield a solution to (6.37)
and hence J and an average optimal policy.

Carrying out this plan will require an additional assumption. To see why,
consider the following example:

Example 6.6.1. Let S = {0,1} with a single action in each state. Let C(0)
=0,C(1)=1,and Py; = Pp=1. Let x= 1.

One can easily show that v,(1) equals 0.5n for n even and equals 0.5 (n +
1) for n odd. Then v,(1) - v, - 1(1) equals O for n even, and equals 1 for n odd.
Hence the first term in (6.49) has no limit, and the program cannot be carried
out. O

Example 6.6.1 is a positive recurrent Markov chain with period 2. If the
chain begins in state 0, then it can only retum to state O at £ = 2, 4, 6, ... . The
concept of an aperiodic positive recurrent class, introduced in Section C.1 of
Appendix C, rules out this behavior. Here is a lemma related to this notion.

Lemma 6.6.2. Assume that the minimum average cost is a constant J, and
let d,; be as in Theorem 6.4.2(iv). Assume that e is an optimal stationary policy
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inducing an MC with an aperiodic positive recurrent class R. Then there exists
a (finite) constant D such that im, .. ~ d,({)= D for i € R.

*Proof: We first show that

Y Pyerd,(D<di,  nzlieR. (6.50)
j

From (3.2) it follows that v, (i) € C(i,e) + 2,' Pij(e)v, - 1(j). It follows from
(6.31) that J + h(i) < C(i,e) + Zj Pij(e)h(j). Since e is optimal, it is easy to
see that we must have equality at i € R (a proof similar to that in Theorem
6.3.1(v) will work). Hence we have J + h(i) = C(i, e) +Zj Pii(e)h(j) for i € R.
Subtracting the above inequality from this yields

J+hG) - o)z Y Py(eh() -~ v (D), i€ R, (6.51)
J

Then adding (r — 1)/ to both sides of (6.51) yields (6.50).

Let us omit notational reference to the policy e in the remainder of the proof.
It follows from Theorem 6.4.2(iv) that d,, is bounded. From Proposition B.6 it
follows that there exist a subsequence n; and a function d, with ~-L S d <L,
such that d,, —d.

We fix n and iterate (6.50) m times to obtain

S PPy Sduntd),  n20m2licR. (6.52)
i

Now hold n fixed, and let m — o through values such that n+m are members
of the sequence n;. Using the aperiodicity of R yields

Y mdu)<d@®, n20ieR. (6.53)
JjeR

Now let n = n; ~» o0 in (6.53). This yields

Z xd(j)<d@, ieR (6.54)

jeR

By the same argument given regarding (6.44), it follows that d(i) = D fori € R.
Suppose that we had another subsequence n, giving rise to a function g,
equal to a constant G on R. Letting n = n,, — oo in (6.53) yields
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G=Y me(j)sD. (6.55)
jeR

Because this argument could have been reversed, we must have G = D. This
proves that lim,, _, .. d,(i)=D for i € R. ]

Here is the assumption that will allow the plan to be carried out.

Assumption OPA. Let e be an optimal stationary policy. Then every pos-
itive recurrent class in the MC induced by ¢ is aperiodic. 0

Note that OPA stands for Optimal Policies are Aperiodic, and it is used
here to remind us that under this assumption every optimal stationary policy can
have only aperiodic positive recurrent classes. The next result shows that under
Assumption OPA the program may be carried out. Proposition 6.6.6 shows how
to carry out the program when Assumption OPA fails.

Proposition 6.6.3. Assume that the minimum average cost is a constant J
and that Assumption OPA holds. Let x be any distinguished state in S. Then
limy, o wltn(x) ~ U, . 1 ()] = J and lim, _. .. r (i) =: r(i) exists. Hence (6.49) may
be used to compute a solution to the ACOE (6.37). Any limit point of the finite
horizon optimal stationary policies f, realizes the minimum in (6.37) and hence
is average cost optimal.

Proof: Letf be the optimal stationary policy from Section 6.2. It must have
at least one positive recurrent class. Let R be one of the classes, and assume
first that x € R. At the end of the proof, we will argue that x may be chosen
arbitrarily.

The relationships

ro(i) = h(i) ~ h(x) — d, (i) + dn(x),
Un(X) = Up 1 (X) = J — dp(x) +d, - 1(x), (6.56)

enable us to translate results about d; into results about the quantities in (6.49).

It follows from Lemma 6.6.2 and the fact that x € R that there exists a
constant D such that d,(x) — D. The second equation in (6.56) then yields
Up(x) = Vg1 (x) > J.

Recall from Theorem 6.4.2(iv) that d,, is bounded. It then follows from (6.56)
that r, is bounded, Let r. (respectively, r*) be the limit infimum (respectively,
limit supremum) of r,.

Take the limit infimum of both sides of (6.49) to obtain
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J+ 1) 2 mind CG,a)+ Z Pyayrj)p, i€S. (6.57)
J

Let e be a stationary policy realizing the minimum in (6.57). It follows from
Proposition 6.5.1(i) that e is optimal.
Returning to (6.49), we see that

00 @)~ Vo 1 @)+ 1D S Clae) + Y, Py@ra- i), i€ S, (6.58)
J
Taking the limit supremum of both sides of (6.58) vields
T+ DS Clho+ Y Pyor'( e, (6.59)
J
Using (6.59) and the fact that ¢ realizes the minimum in (6.57) yields

Cli,e)—J + Z Pi@Irs(j) S reld) S () < Cliye) - J + Z P(e)r™*(j).
J J
(6.60)

Lets=r" - ry, and note that s 2 0. It follows from (6.60) that
)<Y Pyer(j),  ies. (6.61)
J

Let Uy, Ua, ..., Uy be the positive recurrent classes under e, and let g,,(i) be
the probability of reaching U, from state i under ¢. As in (6.42-44) we obtain

sy q,,,(i)( > wj(e)s(j)), ies. (6.62)

jebtim

We claim that the right side of (6.62) is 0. Recall that d,(x) — D. Fix atten-
tion on some U,,. It follows from Lemma 6.6.2 and Assumption OPA that there
exists a constant £ such that 4,(j)— E for j € U,,. Then from (6.56) it fol-
lows that r,(j)— h(j) — h{x) - E + D. Since the limit exists, it follows that
s(j) = 0. This proves that the right side of (6.62) is 0. Since s 2 0, it follows
that s = 0. This means that r(j) =: lim, . . r,(i) exists for i € §. This com-
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pletes the proof of the first statement when the distinguished state is chosen in
a positive recurrent class under f.

Now suppose that the distinguished state is chosen to be some arbitrary state
y. In this case v,(y)— Up- 1(¥) = () + [Unlx) = Vs - 1(X)] - r4- 1 (y). Using what
has been proved above shows that limy, . [V, ¥)~vn (W] = r(W)+T-r(y) = J.
Similarly v,(?) — v,(y) = rp(i)— r,(y), and hence lim, . (U} — v, (¥)) = r(i) -
r(¥). It remains to prove the last statement. Let e be a limit point of f,,. Then
there exists a subsequence n such that f,, — e. For a fixed i and n, sufficiently
large, we have

[vnk(x) = Upy - [(X)] + rnk(i) = C(l, 8) + 2 Pij(e)rnk - l(j)a (6-63)
J

and e realizes the minimum in (6.49) for i. Passing to the limit and using what
has been proved, we see that e realizes the minimum in (6.37) for the fixed .
Since this argument may be carried out for each i, it follows that e realizes the
minimum in (6.37). By Proposition 6.5.1(ii) it follows that e is average cost
optimal. ]

One may wonder how Assumption OPA can be verified without already
knowing the optimal stationary policies. In practice it will be shown that
Assumption OPA holds for all stationary policies. In certain cases it might be
possible to argue that the optimal stationary policies fall within a class of sta-
tionary policies each member of which satisfies Assumption OPA. If there is
any doubt that Assumption OPA holds, then the method to be presented in
Proposition 6.6.6 should be used.

The above development allows us to give the following value iteration algo-
rithm (VIA) for obtaining a solution to (6.37).

Value Iteration Algorithm 6.6.4. Let A be an MDC with a finite state
space. Assume that the minimum average cost is constant and that Assumption
OPA holds. Let x be a distinguished state and e a small positive number.

VIA Version 1:

I. Set n=0 and 4, =0.

2. Set wy(i) = ming{C(i, a) + 3, Pij(@)un( j)}.

3.Ifn=0,setd=1.Ifn21, then set 6 = |w,(x) — w,_ ((x)]. If d < ¢, go
to 6.

4. Set uy. () = wu(i) — wu(x).
Go to 2, and replace n by n + 1.
6. Print w,(x) and a stationary policy realizing min, {C(i, @)+ ; Pij(@)un(j)}.

bt
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VIA Version 2:

Follow Version 1, but set é = max;e 5 |w,(i) - w, . (})| in Step 3.

Justification: One can show, by induction on n, that 4, = r, and w, =
Frot +Upe1{x) — Ua(x) for n 2 0. Hence w,(x) = u,, ((x) — v,(x). (You are asked
to verify these claims in Problem 6.5.) The validity of the VIA then follows
from Proposition 6.6.3. 0

Since we know that w,(x) — J, it will be a good approximation to J for
n large. We know that u, converges to some function r. A stationary policy
realizing the minimum in Step 6 is optimal for the n + 1 horizon problem at
time 0. We have seen that any limit point of this sequence of policies is average
cost optimal. Hence this policy will be close to optimal for large n.

Note that there are two versions of the VIA. The more stringent Version
2 is suitable when the state space of the model is naturally finite and one is
applying the VIA a single time to compute an optimal policy. In Chapter 8 an
approximating sequence method is developed for the computation of an optimal
stationary policy when the state space is denumerable. This method uses the
VIA for a sequence of finite state MDCs with increasing state spaces. In this
case it is our opinion that Version 1 works well. The reason is that the VIA will
be executed several times for increasing state spaces in order to be confident
that a good approximation to an optimal policy for the original MDC with a
denumerably infinite state space has been obtained. For a particular finite state
space approximation, it is therefore less important to be sure that we are very
close to the minimum average cost for that single approximation. Of course
Version 2 could also be applied in this case; however, it would increase the
computation time.

We now discuss an approach to take when Assumption OPA fails (or we
suspect it may fail). This involves a transformation of the MDC which causes
Assumption OPA to be satisfied for the transformed MDC. (In fact in the
transformed MDC every stationary policy has only aperiodic positive recurrent
classes.)

Quantities in the transformed MDC will be superscripted with an asterisk.
First fix a number 7 with 0 < 7 < 1. The state space and action sets of A™ are
the same as those of A The costs are given by C (i, a) = 7C(i, a). The transition
probabilities are given by

Pj@) = 1Pja),  j*i,
Pl@) = tPi(a)+ (1 - 7). (6.64)

A stationary policy induces an MC in both A and A*, and the next result
relates properties of these two Markov chains.
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Lemma 6.6.5. For a fixed stationary policy, the following properties hold
for the Markov chains induced by the policy:

(i) The communicating classes are identical in A and A*, and hence the
positive recurrent classes are identical.

(i) Every positive recurrent class in A" is aperiodic.

(iii) For a positive recurrent class R we have ;= ; for j € R, and J; = 7Jp.

Proof: Let MC denote the Markov chain (with costs) induced in A, and let
MC" be the one induced in A*.

It is clear that i leads to j in MC if and only if i leads to j in MC’, and
thus the communicating classes are identical. If a class R is positive recurrent
in MC and transient in MC®, then this readily leads to a contradiction (why?).
Hence this (or the reverse situation) cannot happen. This proves (i).

Now let R be a positive recurrent class. From (6.64) it follows that P,, >0
for i € R, and hence R is aperiodic in MC”. This proves (ii).

For positive recurrent class R it is easy to see that (m;); ¢ ¢ satisfies the steady
state equation in Proposition C.1.2(i) for MC”. Hence 1rfz x; for j € R. More-
over the second statement is clear, and this proves (iii). O

Here is how the transformed MDC may be used to compute a solution to
(6.37).

Proposition 6.6.6. Assume that the mlmmum average cost in A is a con-
stant and that A has been transformed to yield A*. Then the minimum average
cost in A is a constant, and Assumptxon OPA holds. chce the results of Propo-
sition 6.6.3 are valid for A* and yield J* and a function r*. The pair (J /T, r*
satisfies (6.37) and hence produces an optimal stationary policy for A.

(The essence of this result is the following: The VIA may fail for A if
Assumption OPA fails to hold. By means of the transformation we are still
able to construct a solution to (6.37) based on value iteration. However, the
value iteration takes place not in A but in the transformed A%)

Proof: From Lemma 6.6.5 and previous results, it follows that the mini-
mum average cost in A* equals 7/ and hence is constant. (You are asked to
prove this in Problem 6.8.) Since Lemma 6.6.5 ylcEds that Assumption OPA
holds, we may apply Proposmon 6.6.3 to produce J* = 7J and a function r*
satisfying the ACOE for A*. This yields
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J
= main rC(i,a) + -rz Pi,-(a)r*(j) +(1 - 7)),
J

i€ S. (6.65)

From (6.65) we immediately obtain that (J */1, r*) is a solution of the ACOE
6.37). 0

6.7 AN EXAMPLE
In this section we present a simple example to illustrate the VIA.

Example 6.7.1. Single-Server Queue with Finite Waiting Room. There is a
single server and the actions are the (geometric) service rates a, and a,, where
0 < ay < ay; < 1. There is a probability p of a new customer arriving in any
slot, where 0 < p < 1. The waiting room can hold at most two customers,
one in service and one waiting for service. If a customer arrives to find a full
waiting room, it is turned away. If a customer arrives to an empty system, then
it may enter service immediately. Note that this is different from our typical
assumption.

The state space is S = {0, 1,2}, where i € S denotes the number in the sys-
tem. There is a holding cost of Hi, where H is a positive constant. The service
costs are C(a), for a = ay, a;. In this model the action set A = {a,,a,} is avail-
able in every state. In state O the server chooses a service rate in anticipation
of an arriving customer (if any). In each slot there is the opportunity to choose
anew a service rate.

It is clear that every stationary policy induces an irreducible aperiodic MC
on S, and hence the assumptions of VIA 6.6.4 hold. The VIA equations are
seen to be

wn(0) = rrgn{C(a) +[1 - p+ aplu,(0) + (1 - a)pu,(1)},
w,(l)=H+ main{C(a) +a(l — pu,(0)
+[ap + (1 - a)(1 — p)lup(1) + (1 - a)pu,(2)},
w,(2) = 2H + main{C(a) +a(l - pu, (1) +[1 ~ a(l - Pu,(2)}. (6.66)

For example, we have Py(a) = 1 - p + ap, since the system will remain in 0
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if there is no arrival, or if there is an arrival (which goes into service immedi-
ately) and a service completion. The other transition probabilities are obtained
similarly.

The specific calculation given here has H = 1, p = 0.5, a, = 0.4, a; = 0.7,
Clay) = 1, and C(a;) = 2. Note that for distinguished state x = 0, it follows
from Step 4 of the VIA that 4,(0) = 0. Using this and the specific values, it
can be seen that (6.66) becomes

w,(0) = 1 + min{0.3u,(1), 1 + 0.15u,(1)},
wu(1) = 2+ 0.50,(1) + min{0.3u,(2), | + 0.151,(2)},
wn(2) = 3 + min{0.2u,(1) + 0.8u,(2), 1 + 0.35u,(1) + 0.651,(2)}. (6.67)

Performing the VIA by hand is typically not feasible. However, for this sim-
ple example it is possible to perform a number of iterations. The calculations
given in Table 6.1 were done by hand and confirmed on an Excel spreadsheet.

We employ Version 2. The entries under u, and w, are the values for states
0, 1, and 2 with «,(0) omitted. The fourth column keeps track of the policy
realizing the minimum in Step 2. Only two policies arise. Policy ¢, always
chooses a;, whereas policy e; chooses a; in states {0,2} and a; in state 1. It is
seen that J == 2.15 and e, is the optimal average cost policy. Continuing to 25
iterations yields J = 2.20 accurate to two decimal places, with e, as the optimal
policy. Note that in state 1 it is optimal to serve at the faster rate in order to
attempt to prevent the system from transitioning to state 2 and incurring a larger
holding cost. However, in state 2 the capacity constraint on the waiting room
limits new customers from entering, and in this case it is optimal to drop to the
slower rate. This type of behavior will not generally arise when the buffer has
infinite capacity. a

BIBLIOGRAPHIC NOTES

The treatment given in this chapter owes most to Derman (1970), Bertsekas
(1987, 1995, vol. 2), and Puterman (1994).

Proposition 6.3.3 is from Derman (1970). The argument for the optimality
of f in Proposition 6.2.3 comes from Bertsekas (1987). The latter approach has
been expanded in Bertsekas (1995, vol. 2). A large part of this development
utilizes matrix methods. We have not favored this approach because it does
not generalize to the denumerable state space case. Rather we have favored
probabilistic methods, as in Derman (1970), because they do suggest the proper
generalizations, which will be seen to be extremely fruitful in Chapter 7.

Puterman (1994) has an extensive treatment. It begins with results for the
average cost determined by an MC and continues to various classes of finite
state MDCs. An MDC is unichain if every stationary policy induces an MC
with a single positive recurrent class. An ACOE is developed under the unichain
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Table 6.1 Results for Example 6.7.1

n Un Wn fn s
0 0 i €y I
0 2
3
1 H 1.3 €] 1.8
2 31
4.8
2 1.8 1.54 ey 1.36
35 395
6.16
3 241 1.723 €) 1.018
4.62 4.591
7.178
4 2.868 1.8604 €} 0.760
5.455 5.0705
7.9376
5 3.2101 1.96303 ey 0.566
6.0772 5.42821
8.50378
6 346518 2.039554 € 0.422
6.54075 5.694815
8.925636
7 3.655261 2.096578 €2 0314
6.886082 5.860543
9.239918
8 3.763965 2.129189 e 0.228
7.14334 5.953483
9.467465
9 3.824294 2147288 e 0.168
7.338275 6.012888
9.635479
10 3.8656 215968 e 0.128
7.488191 6.056029
9.763673

assumption. The Laurent series expansion treated in Puterman (1994) general-
izes Proposition 6.3.3.

Extensive further results for the multichain case are given in Puterman
(1994). The crucial Proposition 6.6.3 was suggested by Theorem 9.4.4 of Put-
erman (1994). This result (in a much more general form) is eriginally due to
Schweitzer and Federgruen (1978).

The value iteration algorithm developed in Section 6.6 is also developed
in Puterman (1994) and Bertsekas (1995, vol. 2) under the unichain assump-
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tion. Other important references for Section 6.6 include D. White (1963), Odoni
(1969), and Federgruen and Schweitzer (1980).

The aperiodicity transformation is taken from Puterman (1994, p. 371) and
is due to Schweitzer (1971).

PROBLEMS

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

Show that a rational function has at most a finite number of critical points
and inflection points.

Let A be an MDC with a finite state space. Give an expression for the total
number of stationary policies for A and show that there are a finite number
of them. (Hint: A stationary policy may be considered as a point in what
product space?)

Prove Theorem 6.3.1(i).
Confirm the results given in Example 6.3.2.
Verify the statements made in the justification of VIA 6.6.4.

Consider a service system with a total of K servers. At the beginning of
each time slot, there is a probability p that a new customer arrives to the
system, where 0 < p < 1. At this time, if there is a free server, then the
new customer is assigned to one of the free servers. Its service may not
start unti} the beginning of the following slot. If all of the servers are busy
when a new customer arrives, then that customer is turned away.

In this system there is no queueing. The state space S = {0,1,...,K},
where i € § denotes the number of busy servers. In state 1 </ < K -1
the decision maker has actions A; = {0,a;,...,ay}, where 0 < a; < a; <
... <ay < . Action 0 means that the servers are idle during that slot. If
action a is chosen, then all of the busy servers will serve at geometric rate a
during the next slot. This means that the probability that any server finishes
service during that slot equals a. We assume that Ay = {a,...,ay} so that
service must be rendered when the system is full. (This assumption is not
necessary to make the theory work, but it is evident that one would want
to make it.) The services are independent and independent of the arrival
process. At the beginning of the next slot, a new action may be chosen.

There is a cost C(a) of choosing to serve at rate ¢ and a cost H({} of
having i customers in the system. Tt is reasonable to assume that C(a) is
increasing in the service rate with C(0) = 0 and that H(i) is increasing in
i with H(0) = 0.
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(a) Set this model up as an MDC. Develop the transition probabilities.

(b) Prove that any stationary policy induces an irreducible aperiodic MC
on §S.

(c) Give the ACOE (6.31) with z = 0.

6.7. This is a service system with a single server and buffers for high-priority
(HP) customers and low-priority (LP) customers. The state space S con-
sists of ordered pairs (x, y) where x is the number of HP customers and y
is the number of LP customers present at the beginning of a slot. If one of
the buffers is empty but the other is not, then the server serves a customer
from the nonempty buffer in one slot (perfect service). If both buffers con-
tain customers, then the server may make decision a to (perfectly) serve
a HP customer or decision b to (perfectly) serve a LP customer. There is
a holding (delay) cost of H(.) imposed on the HP customers and of H*(.)
imposed on the LP customers. Reasonable assumptions on these costs are
that they are increasing in the number of customers, are 0 when no cus-
tomers are present, and that H(x) > H *(x); that is to say, it costs more to
delay HP customers.

The arrival process of new HP customers is Bernoulli ( p) and the arrival
process of new LP customers is Bernoulli (g), where we have 0 < p, g <
I. The arrival processes are independent and independent of the services
provided. There is a capacity K on the buffer of HP customers and the
same capacity K on the buffer of LP customers. If, say, there are K HP
customers present at the beginning of a slot, then a new arrival is turned
away. This happens before service (if any) is provided to that buffer.

(a) Set this up as an MDC and develop the transition probabilities. There
are a number of cases to consider.

{b) Verify that Proposition 6.4.1(v) holds and hence that the minimum
average cost is a constant J.

(¢) Prove that Assumption OPA holds. Hinz: Show that given any station-
ary policy e and state (x, y), we have P, yy, )(e) > 0.

6.8. Complete the proof of Proposition 6.6.6.

6.9. Confirm the validity of (6.66-67), and verify the entries in Table 6.1.
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CHAPTER 7

Average Cost Optimization Theory
for Countable State Spaces

Chapter 6 dealt with the average cost optimization criterion for an MDC with
a finite state space S. It was possible in the finite state space case to prove
very special results. In this chapter we present the general existence theory of
average cost optimization for countable state spaces. The results are primarily
of interest when S is denumerably infinite, but the theory is general and also
applies when § is finite.

In Chapter 8 we develop a method for the computation of optimal aver-
age cost stationary policies. This method is based on approximating sequences
and relies primarily on the results proved in Chapter 6, although occasionally
selected results from this chapter are called upon. The reader whose primary
interest is in computation may prefer to skip this chapter entirely. When certain
results from this chapter are called upon later, they can be read at that time.
The reader who wishes to obtain a complete picture of both the existence and
computation of optimal average cost stationary policies should read this chap-
ter.

We saw in Chapter 6 that an average cost optimal stationary policy always
exists when § is finite. The examples in Section 7.1 show that this is no longer
the case when § is denumerably infinite and that, indeed, an optimal policy
of any sort may not exist. These examples illustrate that some assumptions are
necessary to obtain the existence of an optimal stationary policy in the countable
state space case.

In addition to guaranteeing the existence of an optimal stationary policy, it
is also useful to require the minimum average cost to be constant. In Section
7.2 we present a set (SEN) of assumptions under which both goals are met.
The accompanying existence theorem obtains an inequality for the average cost
criterion, known as the average cost optimality inequality (ACOI). The (SEN)
assumptions are the centerpiece of Chapter 7, and the remainder of the chapter
is an exploration of various ramifications of these assumptions.

Section 7.3 presents a technical example showing that under the (SEN)

127
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assumptions an optimal stationary policy may induce a null recurrent MC. This
example may be omitted on first reading.

In Section 7.4 we present various results pertaining to the ACOIL Under quite
weak assumptions it is shown that the ACOI is an equality and hence the aver-
age cost optimality equation (ACOE) holds.

One way to verify the existence of an optimal stationary policy is to show
that the (SEN) assumptions hold. In Section 7.5 useful sufficient conditions are
given for (SEN) to hold. These include the (BOR) and (CAV) sets of assump-
tions which are usually easier to verify than (SEN) itself. An important result
in this section shows that under the (BOR) assumptions strong inferences con-
cerning the behavior of the MC induced by an optimal stationary policy may
be made.

In Section 7.6 we present three examples illustrating how the existence of
an average cost optimal stationary policy may be efficiently verified.

Section 7.7 contains a set (H) of assumptions that is weaker than (SEN).
Although normally more difficult to verify than (SEN), the (H) set is useful in
certain models. An example is given for which the (H) assumptions are valid
but for which one of the (SEN) assumptions fails to hold.

7.1 COUNTEREXAMPLES

In this section we have an MDC with a denumerably infinite state space S. We
present examples showing that the nice results obtained in Chapter 6 for finite
state spaces need no longer hold. Indeed, as we will see, quite pathological
situations may be created.

We first prove a result giving a basic property of the average cost. Namely,
in most cases, the costs accumulated over any fixed finite number of transitions
do not affect the average cost. This result is useful to keep in mind when we
present the counterexamples. In this chapter finite horizon value functions will
assume a terminal cost of 0.

Proposition 7.1.1. Let K be a positive integer. Let { be an initial state and
6 a policy such that v g (i) < o=. Then

1
Jo(i) = lim sup K Ey

Hsw N~

. 7.1)

n-1
Z C(X,, A X = i
t=K

Proof: For n> K and initial state X, = i, we have
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Figure 7.1 Example 7.1.2.

n—1|
Ug,n(i) _ Up.x(D) 1 n-K
I g E,,[g; C(X,,A,)]( . ) 1.2)

The limit of the first term on the right of (7.2) equals 0. Taking the limit supre-
mum of both sides of (7.2), we see that (7.1) follows. O

The right side of (7.1) is the expected average cost from time K onward. A
similar result to that in Proposition 7.1.1 holds for Ji. The next example shows
that (7.1) may be invalid if some of the expected costs are infinite.

Example 7.1.2. The structure of A is shown in Fig. 7.1. There is a null
action in each state. Here (p;) is a probability distribution on i 2 1. The costs
are C(0) = C(O*) = 0, and C(i) chosen to satisfy > C({)p; = o= for i 2 1.

There is a single policy, and it has the property that E[C(X,)|X¢ = 0] = oo,
This means that J(0) = co. However, we see that E[C(X;)|X, = 0] = 0 for t 2 2.
Hence, if K 2 2, then the right side of (7.1) equals 0. a

We are now ready to present the counterexamples. The first example shows
that an average cost optimal policy may not exist.

Example 7.1.3. The state space is shown in Fig. 7.2. For each i* there is
a null action, and we have Py = 1 and C(G¥) = 1 /i. Por each i there are two
actions, and we have P;;, (@) = 1 and P;«(b) = 1. Finally C({/) = 1, for i 2 1.

Once the process reaches the lower level, it remains there. On the upper level
the controller may choose at any time to enter the lower level, or to advance
to one higher state on the upper level.
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Figure 7.2 Example 7.1.3.

Let fx, K 2 1, be the stationary policy that chooses a in states 1 Si< K ~1,
then chooses b in state K. It follows from Proposition 7.1.1 that J¢, (1) = 1/K.
It is clear that J(1) = O and that no policy achieves this value. However, given
€ > 0, there exists a stationary policy fx for which Jy (1) <e. 0

The next example shows that even if an average cost optimal policy exists,
it may be other than stationary.

Example 7.1.4. We have S = {1, 2, 3, ...}. There are two actions in each
state with P;;, (@) = Py(b) = 1, C(i,a) = 1, and C(i,b) = 1/i. At any time we
may advance to the next state and pay 1 unit or choose to stay where we are
and pay 1/i units.

Let fx be the stationary policy that chooses a in states 1 </ < K - | and
chooses b in state K. Then it follows from Proposition 7.1.1 that J¢, (1) = 1/K.

Let 6 operate as follows: When the process enters state i, choose b i times,
then choose a. For X, = 1 the sequence of costs generated under # is

11 1 11 [ I N | 1
1,1’555’ 1’373?3)1373'3'93’;9 l,.... (7'3)
Problem 7.1 asks you to show that Jg(1) = 0. d

In both of the above examples it is the case that there exists a stationary
policy that is within e of J(1). If this were always the case, we would probably
be satisfied to know that we could produce a stationary policy with any desired
degree of closeness to the optimal value. However, the next example shows
that that hope is illusory.



7.1 COUNTEREXAMPLES 131

O

po -

OO 60 -

Figure 7.3 Example 7.1.5.

Example 7.1.5. The state space is given in Fig. 7.3. For states i* on the lower
level, there is a null action with transitions Py . 1y = Py+; = | and costs identically
0. State 0 satisfies Py = 1. For states i 2 1 there are two actions. For action a we
have P, ((a) = 1. For action b we have P;j«(b) = pi < 1 and Piy(b) = | — p;. The
probabilities p; will be specified shortly. All costsini 2 0 equal 1.

Notice how this MDC operates. It is desirable for the process to be in the *
states because in those states there is no cost. However, if an attempt is made
to reach those states from some i 2 1, then there is a probability of ending up
in the absorbing state 0, and hence of incurring a cost of 1 per unit time from
then on.

Let the initial state be 1, and let f be a stationary policy. If f always chooses
a, then J¢(1) = 1. Suppose that f chooses b for the first time in state K. Then
every time the process enters state K there is a positive probability 1 —py that it
will end up in state 0. Because this “trial” is repeated over and over, eventually
the process will end up in state 0. Then it follows from Proposition 7.1.1 that
Je() = 1.

The key to this example is that there exist a choice of p; and a policy 8 for
which Jg(1) < 1. Let 8 operate as follows: It first chooses b. If it succeeds in
reaching 1 again, it then chooses a, moves to 2, and chooses b. If it succeeds
in reaching 1 again, it then chooses a twice, moves to 3, chooses b, and so on.
On every successive retum to 1, the process moves to one higher state before
attempting to reach the * states.

Let S, be the propomon of time spent in * states during [0, n - 1]. Let E,
be the event that state 0 is not entered during that time. Note that £, — E,
where E is the event that 0 is never entered by the process. Now P(E) is the
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product p;pap; ..., and it is possible to choose the probabilities so that their
product equals % (For material on infinite products, see Apostol, 1972.)
Then, suppressing the dependence on X = 1, we see that vg /n = 1 — Eg[S,]
= 1 - Eg[S,|E,JP(E,) ~ EglSu|ELIP(EY) S 1 - Eg[S,|E,IP(E,). We have P(E,)
— P(E) = 3. Moreover Ep[S,|E,] — 1. This is so because if the process has
not entered O, then the proportion of time it spinds in the * states approaches

%. This reasoning implies that Jo(1) S | - % = 2. O

7.2 THE (SEN) ASSUMPTIONS

The examples in Section 7.1 show that some assumptions are necessary to guar-
antee the existence of an average cost optimal stationary policy. It is also useful
for these assumptions to imply that J(i) = J < o for i € S. This means that the
minimum average cost is a (finite) constant J, independent of the initial state
of the process. The property of constant minimum average cost holds in the
models of interest to us.

Thus we desire a set of assumptions under which there exist a stationary
policy f and a (finite) constant J such that J(/) = J¢(i) = J for i € §. Proposition
6.2.3 suggests that f might be obtained as a limit point of discount optimal
stationary policies, as the discount factor approaches 1, and it will be shown
that this is possible under suitable assumptions.

Proposition 6.4.1(iii) is a necessary and sufficient condition for the minimum
average cost to be a constant when S is finite. This result suggests that we might
take this as our assumption when S is countable. This is a viable approach.
However, when § is infinite, it turns out that Proposition 6.4.1(iii) is far too
strong an assumption and fails to hold in many models. A subtle modification
of it will accomplish our goals.

(As an important reminder, we need to keep in mind throughout this chapter
that quantities that were automatically finite in Chapter 6 may become infinite
when S is infinite. This possibility must be taken into account in all of our
proofs.)

This reasoning leads to the following set of (SEN) assumptions. Let z be a
distinguished state in S.

(SEN1). The quantity (1 -a)V,(z) is bounded, for « € (0, 1). (This implies
that V,(2) < « and hence we may define the function h,(i) =: V (i) — V,.(2)
without fear of introducing an indeterminate form.)

(SEN2). There exists a nonnegative (finite) function M such that h, (i) <
M(i) forie S and a € (0,1).

(SEN3). There exists a nonnegative (finite) constant L such that —L < h, (i)
forie Sand a e (0,1).
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Note that h,(z) = 0, and hence we may always take M(z) = 0. The first
assumption is related to the requirement that the minimum average cost be
finite. Notice that the second and third assumptions comprise basically the con-
dition in Proposition 6.4.1(iii), though modified to allow the upper bound for
h, to be a function rather than a constant. In Section 7.7 a set of assumptions
allowing the lower bound to also be a function is developed. This approach
requires additional assumptions to carry out the development. The requirement
of a constant lower bound simplifies the presentation and suffices for many
models.

Here is an important lemma.

Lemma 7.2.1. Let e be a stationary policy. Assume that there exist a (finite)
constant J and a (finite) function & that is bounded below in  such that

J+hi) 2 Che + > Pyeh(j), ies. (7.4)
i

Then J.(iysJ forie §.

Proof: By assumption, there exists a (finite) nonnegative constant L such
that k(i) = —L for i € S. The proof is similar to the development in (6.14-16).
However, we present all the details here.

Let Xo = ¢, X}, X3, ... be the sequence of values of the process operating
under the policy ¢ and suppress the initial state in what follows. Then from
{7.4) it follows that

J + h(X,) 2 C(X,, e) + E (X, )IX,], 120. (7.5)

We claim that E [h(X,)] < o, and to show this, we prove by induction on
t that E [h(X,)] £ tJ+ h(i). This is clearly true for ¢ = (0. Now assume that it
is true for £. Then from (7.5) it follows that E [A(X,, )IX;] S J + K(X,). Tak-
ing the expectation of both sides and using a property of expectation (i.e., that
E(EIX|YD = E[X]), we find that E {h(X,, )1 S+ EJRX)} ST +tJ+ h(i) =
(t+1)J +h(i). Here the second inequality follows from the induction hypothesis.
This completes the induction.

Now take the expectation of both sides of (7.5) to obtain

E[CXn 1T+ E[h(X)] - E[MX:.1)], 20 (1.6)

What has just been proved assures us that we have not created the indeterminate
form oo - co. Add the terms in (7.6}, for ¢ = 0 to n— 1, and divide by » to obtain
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Venld) ;. A0 — E (X))

n n
<y HOrL a7
n
Taking the limit supremum of both sides of (7.7) yields the result. 0

Before proceeding with our main result, we present a definition. It is given
in general terms independent of (SEN).

Definition 7.2.2.

(i) Let z be a distinguished state, and assume that V,(z) <o fora € (0, 1).
This implies that the function k(i) = V(i) - V,(2) involves no inde-
terminate form. Let «, -~ 17. Assume that there exist a subsequence
(call it 8, for convenience) and a function h on § such that

lim hg ()= h(i), i€S. (1.8)

Then h is a limit function (of the sequence h,,).

(ii) Let f, be a stationary policy realizing the discount optimality equation,
and let o, — 1. Assume that there exist a subsequence 3, and a
stationary policy f such that lim, . . f3, = f. This means that for a
given i and sufficiently large n (dependent on i), we have fg, (i) = (7).
Then f is a limit point (of f,,). (This is Definition B.1 repeated here
for convenience.)

(iii) Let f be a limit point. The limit function A is associated with f if there
exists a sequence B, such that lim, _, .. hg, = hand lim, . .. fg, =f. This
means that there exists a sequence such that both quantities converge
with respect to this sequence. O

The following existence theorem is the major result of this chapter:
Theorem 7.2.3. Let A be an MDC for which the (SEN) assumptions hold.
(i) There exists a finite constant J =: lim, . ; —(1 — o)V, (i) fori e S.

(i1) There exists a limit function. Any such function & satisfies ~-L<h< M
and
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J+h(i) 2ming CG,a)+ 3 Py@h(j )}, ieS. 1.9
J

Let e be a stationary policy realizing the minimum in (7.9). Then e is
average cost optimal with (constant) average cost J and

lim % EJhX)|Xo=i]=0, ieSs. (7.10)

(iti) Any limit point f is average cost optimal. There exists a limit function
associated with f. Any such function h satisfies

J+h(i)2C(i,f)+z Pi(f)R(), €S, (7.11)
J
and
lim % E(h(X,)|Xo=i]1=0, i€S. (7.12)

(iv) The average cost under any optimal policy is obtained as a limit.

Proof: We first prove (ii). Fix a sequence «, — 1. It follows from
(SEN2-3) and Proposition B.6 that there exists a limit function of the sequence
R,

Now let /2 be any such limit function as in (7.8). It follows from (SEN2-3)
that -L < h £ M. Using (SEN1) we see that (1-8,,)Vg,(z) is a bounded sequence
of real numbers. Any such sequence has a convergent subsequence. Hence there
exist a subsequence (call it 6, for convenience) and a (finite) number J such
that

lim (1-8,)V5,()=J. (7.13)

Note that (1 ~ a)V,(1) = (1 — odh (i) + (1 - a)V(z). Let ¢ = §,, and let n
— oo, The last term approaches J. It follows from (7.8) and the finiteness of
h that the second term approaches 0. Hence

lim (1 -6,)Vs,()=1J, i€ S. (7.14)

The discount optimality equation (4.9) may be written as
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(1~ )Va(@) + ha(i) = mind Ci,a)+a D Py@halj)p,  i€S.

J

(7.15)

This is obtained from (4.9) by subtracting «V,(z) from both sides and by adding
and subtracting V,(z) from the left side.

Now fix a state i, and consider the sequence f;, (i) of discount optimal actions
in i. Because the action sets are finite, it is the case that there exist an action
a(i) and a subsequence v, (dependent on i) such that f  ({) = a(i). For the fixed
state i and a = 1y, (7.15) becomes

(1 - ¥n)Vy,(2) + by (D) = CU,a(D) + yn z Pija(ih, ,(j). (7.16)
j

Taking the limit infimum of both sides of (7.16) as n — o and using (7.8),
(7.13), and Proposition A.2.1 yields

J+h(i) 2 CGali) + Y, PylatiDh(j)
J

2 main{C(i,a)+z P.'j(a)h(j)}. .17
i

Because this argument may be repeated for each /, it follows that (7.9) holds.

Now let e be a stationary policy realizing the minimum in (7.9). Then (7.4)
holds for e. To prove that e is optimal, let & be an arbitrary policy, and fix an
initial state i. Then

J() £ J Llimsup (1 - )V, (i) < limsup (1 - )V o (D S Jp()).  (7.18)

a1 a-—1"

The leftmost inequality follows from Lemma 7.2.1. The next inequality follows
from (7.14) and the definition of the limit supremum. The next inequality fol-
lows, since V, < Vy ., and the rightmost inequality follows from (6.1). This
proves that e is average cost optimal. Moreover, by setting 8 = e, we see that
J(i)=J, and hence J is the minimum average cost.

Recall that the whole argument was carried out with respect to the sequence
ot Given this sequence, we obtained a subsequence 6, such that (7.14) holds
for the minimum average cost J. This means that given any sequence, there
exists a subsequence such that (7.14) holds for the fixed value J. This implies
that the limit exists, and hence (i) holds.
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We prove (iv) and then return to the proof of (7.10). To prove (iv), let ¥
be an arbitrary average cost optimal policy. Note that all that is known is that
J =J,(i). We have

J= linl‘“ (1 - a)V,(i) <lim ilr}f (1 - a)Vy () <limsup (1 - a)Vy o) ST,

a1

(1.19)

The leftmost equality follows from (i). The next inequality follows from the
fact that V, < Vy ,, and the rightmost inequality follows from (6.1) and the
optimality of . Hence all the terms in (7.19) are equal to J, and it follows that
limg . - (1 ~ @)V (i) exists. Then (iv) follows from Proposition 6.1.1.

Let us now prove (7.10). Using the optimality of ¢ and (iv), it follows that
we may take the limit of both sides of (7.7) to obtain (7.10).

It remains to prove (iii). We sketch the proof and leave the details to Problem
7.2. Let f be a limit point. Then there exists a sequence 8, such that lim, .. » fg,
= f. Using (SEN2-3) and Proposition B.6 yields a subsequence ¢, and a limit
function h of h,,. Then k is associated with f (the sequence ¢, works in Defi-
nition 7.2.2(iii)).

Now let k& be associated with f and assume that the sequence 8, works in
Definition 7.2.2(iii). Fix a state { and choose n so large that fg, (i) = f(i). Letting
a = f3, in (7.15) and recalling that fg, is discount optimal yields

(1= BIVp,@) + hg, @) = CGf) +Bu Y, Pi(f g, (- (720
i

Taking the limit infimum of both sides of (7.20) as n — eo, and using (i), (7.8),
and Proposition A.2.1 yields (7.11). The optimality of f follows immediately
from Lemma 7.2.1. Finally (7.12) follows as in the proof of (7.10). O

Notice that Theorem 7.2.3 encompasses two viewpoints. In (i) we show that
an arbitrary limit function may be used to construct an average cost optimal
stationary policy, namely the one realizing the minimum in (7.9). In (iii) we
show that any limit point of a sequence of discount optimal stationary policies
is average cost optimal,

The rest of this chapter is spent elucidating the consequences of this theorem
and showing how the (SEN) assumptions may be verified. Here we address the
following question: Assuming that (SEN) holds for a distinguished state z, can it
fail if z is replaced by another state? Proposition 6.4.1 suggests that the answer
is no, and the following result confirms this.

Proposition 7.2.4. Assume that the (SEN) assumptions hold for a distin-
guished state z. Then (SEN) holds if z is replaced by any other state.
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Proof: Assume that (SEN) holds for z, and let x #* z. We wish to show
that it holds with z replaced by x. Let these assumptions be denoted (SEN),.
By Theorem 7.2.3(i) it follows that lim, .. |- (1 — a)V,{(x) exists and is finite.
This, together with the fact that V,(x) is increasing in o (and hence V,(x) < o0
for all «), implies that (SEN1), holds.

Now V, (i)~ V(x) = hy(i)— ho(x). This implies that - L—-M(x) € V, (i)~ V,(x)
< M(i) + L. Hence (SEN2), holds for the function M, (i) = M(i)+L, and (SEN3),
holds for the constant L, = M(x) + L. ]

7.3 AN EXAMPLE

We know that a stationary policy e for the MDC A induces an MC with costs.
The transition probabilities of the MC are given by P;(e(i)} = P;(e) and the
costs by C(i, €). Sections C.1 and C.2 of Appendix C give background material
on Markov chains with countable state spaces.

No implication conceming the structure of the MC induced by an optimal
stationary policy can be drawn from the (SEN) assumptions. This is easily seen
as follows: Let A be an MDC with any desired transition structure whatsoever
but with identically O costs. Then (SEN) holds, and all policies are optimal.

Here is a more interesting example. It shows that an optimal stationary policy
may induce a null recurrent MC and that the inequalities in (7.9) and (7.11) may
be strict. This example may be omitted by the reader whose primary interest is
in applications.

*Example 7.3.1. The state space S = {0, 1, 2, ...}. In state i 2 1 there is

with C(0,a) = 0 and C(0,b) = 1. Let (p;) and (g;) be probability distributions
on i 2 1 to be specified later. The transition probabilities are given by Py (a) =
pi and Poi(b) = ¢;.

To summarize, when in state { 2 1, the process decreases one state at a time
at a cost of 1 per slot. When in state 0, there are two choices of “fanning out”
to the states i 2 1. One choice costs 00, and the other costs 1.

Let f (respectively, ¢) be the stationary policy that chooses a (respectively,
b) when in state 0. The costs under e are identically 1, and hence V, ,(0) =
1/(1 - a). It is clearly the case that V( (i) < 1/(1 - ) for i 2 0. Hence Vj o(0)
=0+ a X, piVio{i) € a/(1-a) < 1. Hence f is discount optimal for a € (0, 1).

We verify that (SEN) holds with z = 0. Observe that (SEN1) holds in any
MDC with bounded costs. For { 2 1 it is easily seen that V(i) = (1 - &')/(1 - &)
+ a'V4(0). After some algebraic manipulation we have

i

ha(i):(lya

|-«

) [1-(1- V(0] (1.2h)
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The first term on the right of (7.21) is bounded above by i. The second term
lies between 0 and 1. Hence 0 < A, (i) < i, and (SEN2-3) hold. This proves that
(SEN) holds. It follows from (7.21) and Theorem 7.2.3(i) that A{(i) = i(1 - J).

Moreover from Theorem 7.2.3(iii) it follows that f is average cost optimal.
Assume that Xy = 0, and let S, be the proportion of time, during t = O to ¢ =
n — 1, that the process is in state 0 when operating under f. Then it is easy to
see that J = 1 - lim, . .. S,. If we choose (p;) such that Y ip; = oo, then the
MC induced by f is null recurrent and S, — 0. This yields J = 1 and h =0.

We now examine (7.9) and (7.11) for i = 0. The left side is J + #(0) = 1.
The right side of (7.9) is min{0 + 0, 1 + 0} = 0 achieved by the policy f. This
shows that there is strict inequality in both equations. a

(The example will fail if A =2 3, ip; < o=, In this case f induces a positive
recurrent MC and S, — mp = (1+A)"". Then J = 1 — mp = N/(1 +A) and A(i)
= i/(1 +N). Ati = 0 the left side of (7.9) is /(1 +\), and it is easy to see that
this equals the minimum on the right side, and that this minimum is realized
by f. This suggests that if the optimal stationary policy f is positive recurrent
at state i, then (7.9) is an equality there. This idea is proved in the next sec-
tion.)

The reader may have noticed that no further mention has been made of the
distribution (g;). This may be chosen arbitrarily, and we have J, = 1. It implies
that e is also average cost optimal. However, ¢ does not realize the minimum in
(7.9) at i = 0. If the distribution satisfies > ig; < oo, then this gives an example
of an MDC satisfying (SEN) and for which there exist two average cost optimal
stationary policies. The one arising from the discount optimal stationary policies
is null recurrent. The other is positive recurrent yet fails to realize the minimum
in (7.9).

7.4 AVERAGE COST OPTIMALITY INEQUALITY

Assume that the (SEN) assumptions hold. Equation (7.9) is known as the aver-
age cost optimality inequality (ACOI). Theorem 7.2.3(ii) tells us that any sta-
tionary policy realizing the minimum on the right of the ACOI is average cost
optimal with constant average cost J. Example 7.3.1 shows that the inequality
in the ACOI may be strict. If (7.9) is an equality, we refer to it as the average
cost optimality equation (ACOE).

In this section we give conditions under which the ACOE holds. As part of
this development, some important properties of any limit function h are derived.
These properties are related to some of the results in Chapter 6. It turns out
that the ACOE is “almost always” valid and will certainly hold in the models
of interest to us,

We first develop some notation. Let G be a nonempty subset of S. Then
R(i, G) is the set of policies 8 satisfying Po(X, € G for some n 2 1|Xy = i)
= | and the expected time m;c(f) of a first passage from i to G is finite. This
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is the class of policies having the property that starting from i, the set G will
be entered sometime in the future and the expected number of slots before this
first happens is finite.

We let R¥(i, G) be the class of policies # € R(i,G) such that the expected
cost ¢;g(0) of a ﬁrst passage from i to G is finite. If G = {x}, then R, G)
(respectively, R*(i, G)) is denoted (i, x) (respectively, R*(i, x)).

The proofs of the following two lemmas are closely related, and hence we
present these results together. The first result gives a sufficient condition for
(SEN2) to hold. The second result gives an upper bound for & under the assump-
tion that (SEN) holds.

Lemma 7.4.1. Assume that V,(z) < oo, for a dlstmgumhed state z and @ €
(0, 1). Given i # z, assume that there exists a policy 8, € R* (i,z). Then hy (i) <
ci:(0;), and hence (SEN2) holds for z with M(i) = ¢;,(6,).

Proof:  If the process begins in state i # z and follows 8;, it will reach state
z at some time in the future. Let T be a random variable denoting this time.
Let the policy ¢ follow &; until z is reached, and then follow an « discounted
optimal policy f,.

Then

Vali) £ Vy oli)

[Tt

=Ey| Y, o CX,A)IXo = i] + EglaT|Xo = i]Val2)
L t=0

)
sEy CX., ADlXo = i] + Volz)
L 120
= Ciz(ei) + ch(Z)- (7.22)
The result then follows by subtracting V,(z) from both sides. 0

Lemma 7.4.2. Assume that the (SEN) assumptions hold. Assume that for
some fixed state i and nonempty set G, there exists a policy 8 € R(i, G) such
that Zje ¢ M(J)Pe(X7 = J) <o, where T is the first passage time from i to G
and M is the function from (SEN2). Then for any limit function & we have

h(i) < cig(0) — Jmi(8) + Eg[h(X )| X, = i]. (7.23)
Proof: (Note that if § ¢ ‘;’R*(i, (), then the right side of (7.23) is infinite.)

Let us suppress the initial state / in the proof. In a derivation very similar to
that in (7.22), we obtain
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Vali) < cio(8) + Egla’ Va(X 1)) (7.24)
(Problem 7.3 asks you to supply the details.) Then (7.24) may be written

1- Eg[a’]

ha(i) S cig(0) - (1 - a)va(z)( ==

) + Egla? ho (X)) (7.25)

This follows by subtracting V,(z) from both sides and by adding and subtracting
Egla’1V4(z) from the right side.
Now

!

1-Ela’] o (l-a .
R () mereo

t=1 >

:2(1+a+...+a"*)1>6(r=:). (7.26)
=1

The term in parenthesis is increasing in o and convergestofas o — 17. We
may apply Corollary A.2.4 with bounding function w(f) = ¢ to conclude that
the limit of the left side of (7.26) exists and equals m;;(0).

Let us assume that the limit function h is defined in terms of the sequence
8. as in (7.8). Now take the limit of both sides of (7.25) as a =8, — 1.
Using what has just been proved and Theorem 7.2.3(i) yields

h(i) < ci(8) — Jmic(®) + lim  Es[(B,) hg,(X1))

= cic(0) — Imig®) + lim D" " (hg, () XBY Po(T = 1, X7 = j)).

jeG =1

(7.27)

To justify passing the limit through the summation, we will employ Corollary
A.2.4. Note that the index set of the summation is the set of pairs (j, 7). The
function u,(j,t) = hg,(j ¥8,)" which converges to i(j). The bounding function
is w(j) = max{L,M(j)}, where L is from (SEN3). The assumption allows us
to apply Corollary A.2.4 to (7.27), which yields (7.23). O

We now give sufficient conditions for the ACOE to hold.
Theorem 7.4.3. Assume that the (SEN) assumptions hold, and let ¢ be a

stationary policy realizing vhe minimum in the ACOI (7.9). Define the nonneg-
ative discrepancy function ¢ to satisfy
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J+hD)=Clie)+ &)+ Y Pyh(j), i€ (1.28)
J

Then ®(i) = 0, and hence (7.9) is an equality at the particular state / under any
of the following conditions:

(i) There exists a nonempty set G such that e satisfies the assumptions in
Lemma 7.4.2. This also implies that ¢ € m*(i,G) and h(i) = ¢;g(e) —
Jmic(e) + E |W(X71)|Xp = i}, where T is the time of a first passage.

(ii) We have ¢ € M(,z). This also implies that e € M*(i,z) and A(i) =
ciz(e) — Jmj (e).

(ii1) The MC induced by e is positive recurrent at i.
(iv) We have Zj Pi{a)M(j) < = for a € A;.

Proof: To prove equality under (i), let the process operate under ¢, and
suppress the initial state i. As in the proof of Lemma 7.2.1, we obtain

J+ Eh(X )] = E[C(X,, )] + E[®(X)] + Eclh(X, 1), 120, (7.29)

Rearranging terms and adding for r = 0 to k ~ | yields

k ~

k-1 i
E. [Z C(x,,e)] - Jk+E, [2 4><x,)] = k() - EJR(X)).  (1.30)
1.0 :

=0

If T is the first passage time from i to G, then by assumption m;g(e) =
> kP,(T = k) < oo. Let us multiply each term of (7.30) by P.(T = k) and
sum over k. This yields

T-1
cile) - Jmig(e) + E, [z 4’(1’0)} + E [h(X7)] = h(i). (7.3D)

t=l

It follows from (7.31) that ¢;;(¢) < o=, and hence ¢ € Eﬂ*(i, G). We may then
apply Lemma 7.4.2. The other claims follow from (7.23), (7.31), and the non-
negativity of ®. In addition to proving that ®(i) = 0, notice that this argument
proves that & = 0 during a first passage from / to G.

Claim (ii) follows from (i) by choosing G = {z} and recalling that A(z) = 0.
Claim (iii) follows from (i) by noting that if the MC induced by e is positive
recurrent at i, then e € (i, {). From (i) it then follows that J = c;i(e)/m;i{e),
which agrees with Proposition C.2.1(ii1).

To prove equality under (iv), we return to the proof of Theorem 7.2.3 and
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consider (7.15). Let us take the limit of both sides as a = y, — 1. Using
Proposition A.1.3(i1) and Corollary A.2.4 (with bounding function M), we
obtain J + h(f) = min, {C(i,a) + Zj Pij(a@)h(j)}, and hence ®() = 0. 0

Theorem 7.4.3(i) is a remarkable result. A corollary of this result is that if,
starting from an arbitrary initial state i, in a finite expected amount of time the
MC induced by e reaches a finite set G, then the ACOE holds. Note that G
may depend on i.

7.5 SUFFICIENT CONDITIONS FOR THE (SEN) ASSUMPTIONS

We now consider the verification of the (SEN) assumptions. It is often difficult
to verify them directly, and some well-chosen sufficient conditions will prove
extremely useful. In this section we assume that A is an MDC, and we seek
sufficient conditions for (SEN) to hold.

The following definition gives an important type of policy.

Definition 7.5.1. Let d be a (randomized) stationary policy. Then d is a z
standard policy if the MC induced by d is z standard (see Definition C.2.5).
0

We will usually use the letter d to refer to a z standard policy, and the reader
should keep in mind that d may be either a stationary policy or a randomized
stationary policy. The following preliminary result is useful:

Lemma 7.5.2. If d is a z standard policy with positive recurrent class R,
then

Ji=(-w) Y mdWVeold, ae©1). (1.32)
ie R

Proof: The result follows by multiplying the expression in Proposition
C.2.1(iii) by " and summing over n. Interchanging the order of the summations
is justified by the fact that the terms are nonnegative, 3

The next result gives our standard method for verifying (SEN1-2).

Proposition 7.5.3. Assume that there exists a z standard policy 4. Then
(SEN1-2) hold for z.

Proof: From (7.32) it follows that J;, 2 (I ~ o)m,(d)Vao(z) 2 (1 -
o), (d)V (z). Hence (1 - a)V(z) S Jdvr;'(d ) = c..{d), by results in Appendix
C. Hence (SENT1) holds.
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From Lemma 7.4.1 it follows that (SEN2) holds with M(i) = ¢;.(d) for i # z.
0

Corollary 7.5.4. Assume that § = {0, |, 2, ...} and that V,, is increasing in
i for a € (0, 1). If there exists a 0 standard policy, then the (SEN) assumptions
hold. Moreover every limit function is nonnegative and increasing in i.

Proof: Let the distinguished state be 0. It follows from Proposition 7.5.3
that (SEN1-2) hold. Since V,, is increasing, it follows that h, 2 0, and hence
(SEN3) holds with L = 0. The second statement is clear from (7.8). O

Suppose that the (SEN) assumptions have been verified. Then Example 7.3.1
shows that an optimal stationary policy may induce a MC without any positive
recurrent states. The next result gives a sufficient condition for an optimal sta-
tionary policy to induce a MC with at least one positive recurrent state. This
result is stated in a form independent of (SEN).

The term used in (7.33) below is defined in (C.1).

Propaosition 7.5.5. Assume that the minimum average cost is a constant J
and that e is an optimal stationary policy. Assume that there exist a state / and
€ > 0 such that the set G = {j|C(Jj,e) < J + ¢} satisfies

i 3 0= Jim o) 059
je G jeG

Then the MC induced by e has at least one positive recurrent state j € G, and
i leads to j.

(Equation (7.33) says that the limit may be moved across the summation.
This is always possible if G is finite and may be possible in certain situations
if G is infinite.)

Proof: The set G must be nonempty (why?). Let Xy = i, and suppress the
initial state in what follows. Then, operating under e, we obtain

1 n-1 1 -1
;E(’[; C(lee)lz(‘]"'e)Ee[l" ';’ tzzn I(Xre G)]
- (J+e)(l - Qﬁ}')(e)). (7.34)

je G

Here I is the indicator function. To obtain the first line in (7.34), the costs
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associated with visits to G have been set to 0, and the costs associated with
visits outside of G have been replaced by their lower bound J + ¢. The second
line follows from (C.1) and the definition of the expectation of an indicator
function.

We now take the limit supremum as n — oo of both sides of (7.34). Using
the optimality of e, (7.33), and results in Section C.1, we obtain

I2(+ e)(l =Y PTy< oo)*rrj(e)), (7.35)

jeG

where 7;(e) is the steady state probability of being in j and T, is the first passage
time from i to j. This yields a contradiction unless there exists j € G such that
Pe(T;;j < o) > 0 (which means that i leads to j) and m;(¢) > 0 (which means
that j is positive recurrent). 0

Corollary 7.5.4 verifies (SEN3) by employing a structural result on the dis-
count value function. This is an important method of verification. However, it
is also useful to have a method that does not employ structural results. The
following set (BOR) of assumptions implies that (SEN) holds, that the ACOE
is valid, and that optimal stationary policies possess “nice” properties.

Theorem 7.5.6. Assume that the following set (BOR) of assumptions
holds:

(BORI). There exists a z standard policy d with positive recurrent class
Ry.

(BOR2). There exists € > 0 such that D = {i{C(i,a) £ J; + ¢ for some a}
is a finite set.

(BOR3). Given i € D - Ry, there exists a policy 6; € R*(z, ).
Then:

(i) The (SEN) assumptions hold and the ACOE is valid.

(ii) The MC induced by an optimal stationary policy e has at least one pos-
itive recurrent state in the set D(e) = {i|C(i,e) <J+e¢)}. Let R(e) be the
set of positive recurrent states. Then the number of positive recurrent
classes making up R(e) does not exceed |D(e)}, and there are no null
recurrent classes.

(iii) If e is a stationary policy realizing the minimum in the ACOE, then
e € ?R*(i, D(e) N R(e)) for all i. Hence, if R(e) consists of a single
class, then e is x standard for x € R(e).
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*Proof: We first verify (SEN). It follows from (BOR1) and Proposition
7.5.3 that (SEN1-2) hold. Let us now show that (SEN3) holds. Consider the
statement;

(*) For each « € (0, 1) the minimum value of V, exists and is taken on in
the set D.

Assume that (*) has been proved. Then we claim that

L= max {c (0} er

jeD-Rg max et} (7.36)

Ry DD

will work in (SEN3). Proposition C.2.2(iv) shows that the second term on the
right of (7.36) is finite, since z € R, and thus ¢ (d) < co. The first term is finite
by (BOR3). Hence L < oo.

For each i and «, by (™) we may choose and fix j € D such that V,(i) 2
ValJ). Then ho(i) = (Vo) = Vo(j)) + ha(J) 2 ha().

We use the proof method of Lemma 7.4.1. If j € D - Ry, then, following
this proof, it can be shown that V,(2)-V.(j) S ¢ (8,) S L. If je R;OV D~ {z},
then it can be shown that V,(z) - V,(j) € ¢,/(d) < L. Hence in either case we
have h,(j) 2 -L.

So to complete the verification of (SEN), we need to prove (*). Fix o
throughout this segment of the proof. The key to the proof is the following:
For any stationary policy f and i ¢ D, let T be the time of a first passage from
i to D. Then we have

. Jd + €
Vf'a(l)ZEI[( o ) (T = o)
+ {( J;dj; ) (1-a) “'aTV_f.a(Xr)} T <°°)] . (13D

This follows since J; + € is a lower bound on the costs outside of D.

Since the expression on the right of (7.32) is a convex combination, it follows
from (7.32) that there exists i, € R, such that J; 2 (1 - a)Vy o(i,). We claim
that

Ja2 (1 - a)V4alja) for some j, € D. (7.38)

The proof is by contradiction. Assume that (7.38) fails. The use (7.37) with f
=d and [ = i, (note that I(T = ) = () to obtain a contradiction.

Since D is finite, it follows that there exists k, € D such that V,(j) 2 V. (k)
for all j € D. Then from (7.38) it follows that
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T 5 vk, (7.39)

|

Let us now begin the process in state i ¢ D and operate under f,. Applying
(1.37) with f = f, and using (7.39) easily yields V,(i) 2 V,(ky). This proves
).

The proof of the validity of the ACOE is given later in this proof. To prove
(ii), let e be an optimal stationary policy and fix an initial state i. Since D(e) is
a subset of D, it is finite and hence (7.33) holds for D(e) and i. It follows from
Proposition 7.5.5 that the MC induced by e has at least one positive recurrent
state j € D(e) such that i leads to j. This clearly proves (ii).

To prove (iii), assume that e realizes the minimum in (7.9).

We first show that e € R, D(e)) for i ¢ D(e). Recall that &k > —L. Let us
define the nonnegative function r = h+ L. Now add L to both sides of (7.9) and
rearrange the terms to obtain

z Pier()-rd]1 sJ - Cli,e) i€S. (7.40)
J

If i ¢ D(e), then J - C(i,e) < —e. The result now follows from Proposition
C.1.5, and we have nyp(e) < r(i)/e.

We now prove that e € R(i,D(e)) for i € D(e). Using reasoning as in
Appendix C, we obtain

Mipiey(e) = 1 + Z Pi(eImjp.(e)
j g Xe)

<1+ Z P,,(e)('(!))

J ¢ Die)

<1+ Y P,,-(e)(l(g-)—)
J

<14 2FO (7.41)
€

The second line follows from what has just been proved. The third line follows
from the nonnegativity of r. The last line follows from (7.40).

This proves that e € R(i, D(e)) for all i. The validity of the ACOE now
follows from Theorem 7.4.3(1).

Let F = D(e) R(e). Let us now give an informal argument that e € R(i, F)
for all i. For i ¢ D(e) it follows from the above that in finite expected time we



148 AVERAGE COST QOPTIMIZATION THEORY FOR COUNTABLE STATE SPACES

will reach the finite set D(e). Hence it is sufficient to argue that ¢ € R(i, F)
for i € D(e).

First assume that i € F. Then i € R(e), and since m;;(e) < oo, it follows that
ee MG, F)

Now let j € D(e) - R(e). Then j is transient, and there is a probability ¢; > 0
of not returning to j each time it is entered. Then ¢ =: min{gq;| j € D(e)—R(e)} is
a positive lower bound on the probability of never returning to D{(e) - R(e¢) each
time it is entered. Observe that m =: max{m;p(e)| j € D(e)—R(e)} is a (finite)
upper bound on the expected time to return to D{(e) from the set D(e) — R(e).

Now assume that the process begins in i € D(e)- R(e). Each time the process
returns to D(e), it conducts a “trial” which results, with probability at least ¢,
in entering F. Hence m;r(e) < m/q.

ThlS proves that ¢ € R(i, F) for all i. It follows from Theorem 7.4.3(i) that
ce R* (i, F) for all i. The second statement of (iii) is then clear. Problem 7.4
asks you to fill in the details of this proof. O

*Remark 7.5.7. The reader may have notlced that the positivity of € is not
used in some parts of the proof. Problem *1.7 explores this issue and gives a
weaker set (WS) of assumptions under which Theorem 7.5.6(i-ii) hold but for
which (iii) may fail. In this problem you are asked to construct an example
with an optimal policy from the ACOI that has a positive recurrent state but
for which the expected time to reach this state is infinite. ]

Remark 7.5.8. Assume that the (BOR) assumptions hold, and let e be an
optimal stationary policy. Theorem 7.5.6(ii) shows that the MC induced by e has
a nonempty set R(e) of positive recurrent states and no null recurrent classes. It
is shown in Sennott (1993) that the probability of going from a transient state
to R(e) is 1. However, an example is given there to show that the expected
time of such a first passage may be infinite. Of course this cannot happen if e
realizes the ACOE. 0

Here are some sufficient conditions for the (BOR) assumptions to hold.
These conditions are easy to verify and often hold when the costs of A are
unbounded. The proofs are left as Problem 7.8.

Corollary 7.5.9.  Assume that the following set (CAV) of assumptions hold:
(CAV1) = (BORI).

(CAV2). Given U >0, the set Dy = {i|C(i,a) £ U for some a} is finite.
(CAV3). Givenie S— Ry, there exists a policy 8; € m*(z, i).

Then the (BOR) assumptions hold.
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Corollary 7.5.10. Assume that the following set (CAV") of assumptions
hold:

(CAV*1). There exists a standard policy d such that R, = §.
(CAV*2)., Given U >0, the set Dy = {i|C(i,a) £ U for some a} is finite.

Then the (CAV) assumptions hold, and hence (BOR) is valid.

7.6 EXAMPLES

It is time to put the theory to the test. Are these results of use in verifying the
existence of optimal stationary policies in interesting models? In this section
we present three examples that amply illustrate the practicality of the theory.

There is a set of basic assumptions (BA) for each example. Other assump-
tions may be added as necessary.

Example 7.6.1. This is Example 2.1.1 which is also treated in Section 3.4.
Let s = sup{jlp; > 0}. The basic assumptions (BA) are as follows:

(BA1). The holding cost H(j) is increasing in i with H(0) = 0.
(BA2). We have O0<py < 1. (!

In each slot there is a positive probability of no arrivals and a positive prob-
ability of a batch arriving. Hence it follows that 1 € 5 < es. (Note that s = co
means that batches of arbitrarily large size may arrive in a single slot.) As nota-
tion we let H~ = lim; . .. H(i) and K(i) = 2,1'  H(j) for i 2 1 (set K(0) = 0).
Recall that \ is the mean batch size. Nothing is assumed about these quantities
at this time.

Lemma 7.6.2. Assume that (BA1) holds. For « € (0, 1) and a zero terminal
cost, U, , is increasing in i for n 2 0. Hence V,, is increasing in i.

Proof: This is proved in Lemma 3.4.1 for « = 1 and a terminal cost of
H(i). The same proof works here, and Problem 7.9 asks you to confirm this.
The fact that V(i) is increasing in i follows from Proposition 4.3.1. '

Proposition 7.6.3 Assume that the (BA) assumptions hold.

(i) The (SEN) assumptions hold and A is nonnegative and increasing in /.
Letting H"(i) = 3, p;lh(i +j) - h(D)], the ACOI may be written
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J =2 min{R, H*(0)}, i=0,
{ J + ulh(i) ~ h(Gi - 1)1 2 H(G) (7.42)
+min{R, pH (i - 1)+ (1 — wH*G)), izl

(i) IfFN <coand Y K(i +j)p; < e for i 2 0 (note that if H” < oo, then
A < oo implies the second condition), then the ACOE holds.

(iii) Assume that the conditions in (ii) hold and that H” > R. Then the (BOR)
assumptions hold, and any optimal stationary policy is positive recurrent
at 0.

(iv) Assume that the conditions in (iii) hold, and let ¢ be a stationary policy
realizing the ACOE. Then e is 0 standard. Assume that ¢ breaks ties by
rejecting. If ¢ rejects in state i, thcn it rejects in higher states. If H =
oo, then there exists i~ such that e(i*) = r.

Proof: We employ Corollary 7.5.4. First consider any stationary policy f.
Since at most one packet can be served in any slot and py > 0, it follows that
i 21 leads to 0 in the MC induced by f, and that the only path is { -» (i - 1)

- (i-2) - ... =1 =0

Now let d be the policy that always rejects; we claim that d is 0 5tandard
Now Pyy(d) = 1, and hence R; = {0}. We must show that d € R* (i,0) for
i 2 1. Starting in state i, no new batches enter the system. The expected time to
serve a packet is 1/u, and hence m;(d) = i/u. The expected cost of serving the
first packet is (H({) + R)/u, and similarly for the second, and so on. Thus we
see that c¢y(d) = (K(i) + Ri}/p. Then the first claim in (i) follows from Lemma
7.6.2 and Corollary 7.54.

Using (7.9), we can easily see that the ACOI is given by

Iz min{R,zpjh(j)}, i=0,
i

J + h(i) 2 HG) + min{R + ph(i — 1) + (1 — p)h(i),

u 2pjh(i L)+ ) ijh(uj)), i21. (743)
i J

Then (7.42) is obtained by subtracting ph(i — 1) + (1 - w)h(i) from both sides
of (7.43). This proves (i).

To prove (ii), we employ Theorem 7.4.3(iv). Recall that for i 2 1 we have
M(i) = cio(d) = (K(i) + Ri)/u. Then 3 pM(i +j) = 3 pi{K(i+j) + R(i+j)},
which is finite under the assumed conditions. Theorem 7.4.3(iv) then verifies
that the ACOE holds.

Now assume the conditions in (iii). We verify the (BOR) assumptions for
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the policy d that always rejects. We have seen that (BOR1) holds and note that
Js=R.

Since H is increasing and H(0) = 0, there must exist a state x with the fol-
lowing property: For i € [0,x] we have H(i) < R but H(x + 1) > R. Choose
e > 0 such that R + ¢ < H(x + 1). Then the set D in (BOR2) is precisely the
interval [0, x], and hence (BOR2) holds.

To verify (BOR3), it is sufficient to construct a stationary policy f with pos-
itive recurrent class Ry D [0, x] and such that f has finite average cost on R;.
(BOR3) will then follow from Propositions C.1.4(iv) and C.2.2(iv).

First assume that s = oo, and let f be such that f(Q) =g and f()) =rfori 1.
Observe that f induces an irreducible MC on [0, ). We claim that the chain
is positive recurrent. Using what has been proved for d, we see that myy(f)
= 1+ 2, .o Pimjo(d) = 1+ N/p. Similarly coo(f) = 3, 4 Pjcjo(d) is finite by
assumption. Hence J; < oo,

Now assume that 5 < ¢e, If x = 0, then the policy that always rejects will
fulfill the conditions. Next assume that x 2 1. Define f() mafor0 < i < x,
and f(i) = r for { 2 x. It is easy to see that [0, x — 1 + s] is a communicating
class containing [0, x]. Observe that from this class no state outside the class
can be reached. Hence this class forms a finite state MC, and by Section C.3
it is positive recurrent with finite average cost. This completes the verification
of the (BOR) assumptions.

If e is an optimal stationary policy, then it follows from Theorem 7.5.6(i1)
that the MC induced by e has a positive recurrent state i. If i > 0, then it leads
to 0, and hence 0 must lead to i. This implies that i and O are in the same
communicating class, and hence the MC is positive recurrent at 0. This proves
(iii).

Now assume that e realizes the ACOE. We have shown that the MC induced
by e is positive recurrent at 0. It is clear that there cannot be two positive
recurrent classes. Hence it follows from Theorem 7.5.6(iii) that ¢ is O standard.

To prove the next claim it is sufficient to prove that if e(i) = r, then e(i+1) = r.
From (7.42) it is easy to see that this holds if H*G) is increasing in {. Moreover
H* (i) is mcreasmg in i if the following holds: For each fixed j, A(i + j) — h(i)
is increasing in i. Because this is a sum of one-step increments, it is clear that
this holds if the following statement is true.

(*) For i 20, k(i + 1) — h(i) is increasing in i.

It remains to prove ™. Suppose that the process starts in state { + 1. It must
pass through state i in a first passage to 0. Letting G = {i}, it follows from
Theorem 7.4.3(1) that

h(i + 1) = h()) = cis1.i(e) = Imy, ., i(e). (7.44)

The quantity on the right of (7.44) is the J revised cost of a first passage from {
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+ 1 to i. In each slot of the first passage, we can think of the “cost” of C(i,e) -J
being incurred.

It follows from Lemma 7.4.2 (with G = {¢}) that if 8 is any policy with finite
J revised cost from i + 1 to i, then this J revised cost is bounded below by the
right side of (7.44). This leads to the important idea that the optimal stationary
policy e from the ACOE minimizes the J revised cost of a first passage from
i+ 1tod

The argument to prove * may be completed as follows: Fix states k < j.
Probabilistically both situations are exactly the same except that the holding
costs in states above j are uniformly at least as great as the corresponding hold-
ing costs in states above k. Therefore the minimum J revised cost from j + 1
to j must be at Ieast as great as the minimum J revised cost from k + 1 to k.
This proves that (*) holds.

It remains to prove that if H™ = oo, then e must reject batches for a large
enough buffer content. Let W = lim; ., . H* (i). If we can prove that W = oo,
then the result foﬂows from (7.42). Since s 2 1, we may fix i¥ 21 such that
p;* > 0. Then h(i +j ) h(iy 2 h(i + 1) - h(i} 2 H(i + 1) - J. The last inequality
follows by (7.44) and the observation that a revised coet of at least H (l +1)-J
is incurred at every stage of the first passage. Hence H*() 2 pi+[h(i+j Y= h(D)]
2 pi~(H(i + 1) - J). Since H™ = eo, we must have W = c. This completes the
proof of (iv). O

Example 7.6.4. This is Example 2.1.2. Let A"’ = 3" j"p; be the nth moment
of the arrival process, with A" = \. The basic assumptions (BA) are as follows:

(BAI). The holding cost H(i) is increasing in i,

(BA2). There exist a (finite) constant B and nonnegative integer n such that
H(@)<Bi" foriz 0.

(BA3). We have 0 <X <ag and A" < oo, )

Observe that 0 < A < ax implies that 0 < pg < 1. It makes sense to assume
that C(a) is increasing in a, but suprisingly this is not necessary for our results.

Lemma 7.6.5. Assume that (BA1) holds. For « € (0, 1) and a zero terminal
cost, U, , is increasing in i for n 2 0. Hence V, is increasing in i.

Proof: Recall that in Problem 3.2 you were asked to develop the finite
horizon optimality equation for this model. In Problem 3.11(i) you were asked
to prove that the finite horizon value function is increasing in i. This holds for
a terminal cost of 0. ]

Lemma 7.6.6. Assume that (BA2-3) hold. Let d be the stationary policy
that always serves at rate ax and let € =:ax — A > 0. Then:
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(i) Any stationary policy induces an irreducible MC on {0, o0).
(i1} The policy d is standard with Ry = [0, o).
(iii) We have myp(d) < ife fori2 1, and myp(d) S 1 + Ne.

(iv) There exists a (finite) constant D such that c,(d) < Di**! fori 2 1, and
coo(d) € DAY,

Proof: Under any stationary policy there is a positive probability of no
batches arriving as well as a positive probability of a batch arriving and a service
not being completed. Hence all states communicate with 0, and (i) holds,

If we can prove (iii-iv), then (ii) will follow. To prove (iii), we apply Corol-
lary C.1.6 with z = 0 and y(i) = i. Then the first inequality in (C.10) holds, since
A < o, The left side of the second inequality becomes

ax 3 plYi-1+) -y D1+ -ap) > plyi+i) -yl =\~ak. (745)
J i

Since A ~ ax = —e, it follows that my(d) < i/e. Moreover we have mg(d) =
1+ Zjﬂ,pjmju(d) <1 +)\/E.

To prove (iv), we apply Corollary C.2.4 with r(i) = Ki"*!, where K is a
positive number to be specified later. The first inequality in (C.16) holds for
i 20, since A"t 1) < o0, Note that

r(i+k)—r(i):K2("+l)i“k"*'"“. (7.46)

u
w:

After some algebraic manipulation we find that the left side of the second
inequality in (C.16) may be written as

o) =K 2 ( nzl) i“{ak Z pj(j“ [)n+l«~u+(1 N ak))\(ru»l-u)}.
u-0 j

(7.47)

We see that A”* ) is the largest moment involved, and hence Q(i) is finite;
note that it is a polynomial in / of degree n. By letting u = n, we find that its
leading coefficient is —Ke(n + 1).

Consider the requirement Q(i) < —~C(i,d) in (C.14). This is true if Qi) £
—(H(i) + C(ag)). It is equivalent to Qi) + H(i) + C(ax) £ 0. So it is clearly
sufficient to prove that U() =: @) + B" + Clax) s 0.

Now U is a polynomial in / of degree n with leading coefficient — Ke(n+1)+B.
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If K is chosen to satisfy K > B[e(n+ 1)} !, then the leading coefficient of U is
negative.

A polynomial with negative leadmg coefﬁcncnt is negative for sufficiently
large i, say i > i*. Then we may let H* =1[0,i"*], and the hypotheses of Corollary
C.2.4 hold.

Then from Corollary C.2.4 and (iii) it follows for i = 1 that cip(d) < Ki**!
+ Fife SDi"*', where D = K + F/e. Finally coo(d) = 3, ., picjold) < DA D,

a

Here is the main result.
Proposition 7.6.7. Assume that the (BA) assumptions hold. Then:

(i) The (SEN) assumptions hold, and the ACOB is valid. Moreover h is
nonneganve and increasing in {. Letting H* (i) = Z pilh(i +j) - h(z+
- 1)] for i 2 1, the ACOE may be written as J = Z pih(j) for i =
and

J+h@)=H@)+ Y pihli+j) +min{C@) - aH' (), i21.
J
(7.48)

(it) If H(i) is unbounded, then (CAV *) holds, and any optxmdl stationary
policy e is standard wnh R. = [0, ). If C(a) = Ca + C* fora positive
constant C and for C* 2 —~H(1), then ¢ = d.

(iii) Assume that H(i) is unbounded, and let e be a stationary policy realizing
(7.48). Assume that e breaks ties by always choosing to serve at the
lowest rate satisfying (7.48). Then e(i) is increasing in / and eventually
chooses rate ag.

Proof:  The proof of (i) is very similar to the proof of Proposition 7.6.3(i-i)
and is left as Problem 7.10.

To prove (ii), observe that the (CAV™) assumptions clearly hold for d. From
Theorem 7.5.6(ii) and Lemma 7.6.6(1), it follows that the MC induced by ¢ is
positive recurrent on [0, ). Since J,, = J < oo, it 18 the case that ¢ is standard.

Now assume that C(a) = Ca + C* as in (ii). We wish to prove that e = d.
We employ Proposition C.1.7. The drift y.(e) is easily calculated to be yo = A
and yi(e) = A —e(i)foriz 1.

Now by Proposition C.1.7 it follows that the mean drift > m;(e)yi(e) = 0
This implies that 3", mi(e)e(i) = A. Then
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Je= ), mleXH()+ Cleli))

i=t

e

= Z FeXH@E + C*) + O\ (7.49)

i=1

The problem of minimizing the average cost then becomes equivalent to min-
xmlzmg the average “holding cost” for a holdmg cost of 0 in state 0 and H(i)
+C*20ini21. Butitis clear that this is minimized by always serving at
maximum rate; hence ¢ = d. This proves (it).

We fow prove some facts about H*(i). Since h is increasing in /, it follows
that #* (/) 2 0. Using the same argument as in the proof of Proposition 7.6.3,
it may be shown that (i + j) — A(i + j — 1) is the minimum J revised cost of
a first passage from i + jtoi+j - 1 and that this quarmty is increasing in i
for each fixed j. This implies that H* () is increasing in i. Moreover we have
H™ (i) 2 polh(d) - hi - D] = polcii-1(e) - JImj;_(€)] 2 po(H(i)- J). Since H is
unbounded, it follows that H* is alse unbounded.

From (7.48) it follows that e(k) satisfies

Cletk)) — Cla) S H*(k)(e(k) - a), all a, (7.50)

and that the inequality in (7.50) is strict for a < e(k). Now assume that e(i) >
e(i +1). We wish to obtain a contradiction. Applying (7.50) and the convention
to k = i yields

x . Cle() - Cleli + 1))
H™ (i) > P EPTIS TR (7.51)

Applying (7.50) to k = i + 1 yields that H*(i + 1) is less than or equal to the
quantity on the right of (7.51). This contradicts the fact that H" is increasing
and thus proves that e(/) is increasing in i.

Now assume that e does not eventually serve dt rate ayx. Because there are
only finitely many rates there must exist a rate a* < ax and a sequence i, —»
oo such that e(i,) = a*. Then (7.51) yields

*
H*G)s E(f'—“—-)—i—c*i“—l (7.52)
ay — a

But this contradicts the fact that H” is unbounded. It proves (iii). a

The result for linear service coits is a somewhat counterintuitive result. Per-
haps it can be said that when C° > - H(1), then the balance requirement in



156 AVERAGE COST OPTIMIZATION THEORY FOR COUNTABLE STATE SPACES

Proposition C.1.7 dominates and forces maximum service. Note that if K = 2,
it is not necessarily true that the optimal policy equals 4. ”I;he reason is that
even though C(a) is linear in a in this case, we may have C° < -H(1).

Example 7.6.8. This is Example 2.1.4. To simplify the presentation, we
assume that K = 2 and that there is no cost for changing the routing deci-
sion. Hence S = {(i),i2)}i; and i; nonnegative integers}. Rather than attempt-
ing to prove the most general result possible, we give assumptions under which
(CAV") holds. The basic assumptions (BA) are as follows:

(BAl). The holding cost H,(i;) is increasing and unbounded for & = 1, 2.

(BA2). There exist a (finite) positive constant B and nonnegative integer n
such that H,(i;) S Bij fork = 1, 2.

(BA3). We have 0 <py, 0 <\ <py+p2, and A1 < oo, 0

Note that O < A implies that py < 1. A fixed splitting is a randomized station-
ary policy d(w) defined by the probability distribution (w, 1 — w). The inter-
pretation is that an arriving batch is sent to the first server with probability w
and to the second server with probability 1 — w. This is implemented by a ran-
domization that is performed before the batch size is observed. Recall that the
arrival slot is taken up with routing and packets are available for service in the
following slot.

We have discussed the fact that any randomized stationary policy induces a
MC on S. In this case the costs are C(i,d(w)) = H(i}) + H»(i2). For i; and i
both positive, we have, for example, Py, .;.i, - H(d(W)) = wp;(1 ~ py)p2. Other
transition probabilities are obtained similarly.

Lemma 7.6.9. Assume that (BA2-3) hold, and let w = g /(u; + u2). Then
d(w) is standard with Ry, = S.

Proof: One can easily see that any fixed splitting with 0 < w < | induces
an irreducible MC on S. Such a fixed splitting actually induces two independent
MCs, one governing the first buffer and the second governing the second buffer.
Each buffer behaves as in the previous example, with a fixed service rate.

Now let w = pu; /(s + p2). We apply the result in Lemma 7.6.6. The first
buffer has mean arrival rate wA and service rate g;. Since wh < p, it follows
from Lemma 7.6.6 that the induced MC is positive recurrent. Tt also follows
that the average cost J (1) for the first buffer is finite. Similar remarks are
valid for the second buffer.

Then the MC induced by d(w) is positive recurrent and m(d(w)) =
x;, (d(w))mi,(d(w)), since the two buffers operate independently. Moreover we
see that
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Jam = ., Ty (AW O {H (i) + Halin)}
i

= D T @WDH G + Y T (dOW)H )
i iz

= Jawy (D) + Jaeny(2), (7.53)

and hence the average cost under d(w) is the sum of the average costs associated
with each buffer. 7

Proposition 7.6.10. Assume that the (BA) assumptions hold. Then the
(CAV”) assumptions hold and any optimal stationary policy is positive recurrent
at (0, 0).

Proof: Clearly Lemma 7.6.9 and (BA1) imply that (CAV*) holds. Let ¢ be
an optimal stationary policy. Then the MC induced by ¢ has a positive recurrent
state. Assume that it is i # (0,0). It is easy to see that i leads to (0, 0) under
any stationary policy. Hence (0, 0) and i must communicate, and thus the MC
is positive recurrent at (), 0). O

Problem 7.11 asks you to prove some additional properties associated with
this example.

7.7 WEAKENING THE (SEN) ASSUMPTIONS

The (SEN) assumptions and the stronger (BOR) and (CAV) assumptions suffice
for many models we wish to optimize under the average cost criterion. In certain
models none of these assumption sets can be verified, and we need weaker
assumptions. In addition there is merit in “picking apart” the proof of Theorem
7.2.3 to determine exactly what makes it work, We will not attempt to find the
absolutely weakest conditions under which the conclusions of Theorem 7.2.3
hold. Rather, we give a useful set (H) of assumptions under which they hold.
It will be clear from the proof of Proposition 7.7.2 how to further weaken (H)
if necessary.

The set (H) of assumptions is weaker than (SEN). The idea is to weaken
(SEN3) by allowing the constant L to be a function. In this case additional
assumptions are required. The (H) assumptions are as follows:

(H1) = (SENI).

(H2) = (SEN2).
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(H3). There exists a nonnegative (finite) function L such that —L{i) < k()
forie Sand x € (0, 1).

(H4). We have 3, Pi(a)L(j)<eoforie Sandae A,

(H5). Let h be any limit function and e any stationary policy. Then for all
initial states, we have:

(i) —eo< E JR(X,)] fornz=2,
(ii) lim inf, . . E [A(X,)}/n 2 0.

The next result shows the relationship among (SEN). (H), and a slightly
stronger version of (H), which we denote by H* ).

Proposition 7.7.1. Let (H*) be the set (H) of assumptions with (HS)
replaced by:

(H'5). Given any stationary policy ¢ and any initial state, we have the fol-
lowing:

(i) EJL(X,})] <o fornz2
(i) lim, ., « E [L(X,)}/n = 0.

Then (SEN) = (H") = (H).

Proof: Assume that the (SEN) assumpnons hold, and set L() = L from
(SEN3). Then clearly (H3-4) and (H 5) hold for the constant L. Hence (H )
holds.

To prove that (H*) = (H), it is sufficient to show that (H*S) =» (HS). To
show (HS5), let & be a limit function and let ¢ be a stationary policy. It follows
from (H3) that -E[L(X,)] € E.[h(X,)]. This together with (H"5) easily implies
(HS). 0O

Here is the existence result under (H).

Propesition 7.7.2. Let A be an MDC for which the (H) assumptions hold.
Then the conclusions of Theorem 7.2.3 are valid where L is the function from
{H3).

Proof: We will follow the approach in the proofs of Lemma 7.2.1 and The-
orem 7.2.3 and indicate the necessary changes.

An examination of the proof of Theorem 7.2.3 shows that the steps continue
to be valid under (H) up to and including (7.16). We may write (7.16) as
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(L= YV, (D + by )+ Y Pif@liDLL))
i
= C(, a(d)) + v 2 Pila(i)){h,, () + L(j)}, (7.54)
J

where (H4) implies that the term added to each side is finite. We then take
the limit infimum of both sides as before and use Proposition A.1.7 to justify
moving the limit infimum across the summation. This yields (7.17) and thus
the ACOI (7.9).

Let ¢ be a stationary policy realizing the minimum in (7.9), and observe that
(7.4) holds for e. Now examine the proof of Lemma 7.2.1. To avoid introducing
an indeterminate form in (7.6), it is necessary to have —oo < E [A(X,,)] < o for
all n. The right inequality follows as in the proof of Lemma 7.2.1. The left
inequality, for n > 2, is (H5)1). For n = 1 it follows from (H3-4).

The proof then proceeds as before, where (7.7) becomes

Ue.tr(i) <J4+ h(‘)”Ef[h(Xn)]
n n )

(7.55)

We then take the limit supremum of both sides and use (HS5)(ii) to obtain

J.()) $J - liminf Ef—[-f%-&ﬂ— <J.

n-» oo

(7.56)

This proves that J.(i) < J.

Going back to the proof of Theorem 7.2.3, we see that (7.18) is valid. This
proves that e is optimal with constant average cost J. The arguments for (i) and
(1v) are as before.

To prove (7.10), use (iv) and take the limit infimum of both sides of (7.55)
to obtain J £ J — limsup, E,[h(X,)}/n. This together with (H5)(ii) yields 0 <
liminf, E [h(X,))/n < limsup, E.[h(X,)l/n £ 0, which proves (7.10).

The proof of (iii) is similar, and we omit it. 0

Here is a useful set of sufficient conditions for the (H") assumptions to hold.

Proposition 7.7.3. Assume that there exists a distinguished state z such
that the following conditions hold:

(i) There exists a (finite) function B such that m;,(e) < B(i) for all stationary
policies e and i € S.
(i1) For all i € § and any stationary policy e, we have b;,(¢) < oo, where
this is the B cost of a first passage.
(iii) There exists a stationary policy d such that ¢;,(d) <o forall i e §.
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Then the (H") assumptions hold.

Proof: It follows from (i) and (iii) that d is z standard. It then follows from
Proposition 7.5.3 that (H1-2) hold. Notice also that every stationary policy is
z standard with respect to the B cost.

Assume that the process starts in i # z and operates under the discount
optimal stationary policy f,. It must reach z in a finite expected amount of time;
let T; be the time to reach z. In a similar manner to (7.24), and suppressing the
initial state, we obtain

7o~ 1

Vali) = Efa [ z o C(Xl)] + Efa[arqva(z)

r=4

2 Er [a!11V4(2). (1.57)

This implies that

1
1

- ali
ho($) 2 ~Ef, [ T ] (1 — a)Va(2). (7.58)

By (H1) there exists a (finite) number U such that (1 - a)V,(z) € U. We
know that (1 - a’#)/(1 — a) < T}, and hence we see that h,(i) = ~m; (f U 2
-UB(i). Thus we may let L(i) = UB(i) for i # z. This verifies (H3).

It is sufficient to verify (H4) and (H*5) for the function B and an arbitrary
stationary policy e. Since ¢ is standard with respect to the B cost, it follows
from Proposition C.2.6 that the average B cost is finite and is obtained as a
limit. Let the average B cost be denoted by K. The fact that K, < oo implies
that (H4) and (H'5)i) hold.

Now let w, be the expected n horizon B cost under the policy e. Then we
have

Was1 () wiuli) ( n )+ E[BXn|Xo = il ( " ) (7.59)

n+l  n n+l, n n+ 1
The limit of the term on the left exists and equals K, < oo, as does the first
term on the right. Hence the limit of the second terrn must exist and equal 0,
and this proves (H*S)(ii). O

Here is an example for which the (H*) assumptions hold but for which the
(SEN) assumptions may fail.

Example 7.7.4. This is a priority queueing system. The setup is shown in
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Fig. 1.4, but with two buffers. There is a single server and the probability of
a successful service in any slot is g, where 0 < u < 1. Services slot to slot are
independent. Buffer 1, containing priority customers, has priority over buffer
2.

The state of the system is (i, x), where i is the number of packets in buffer
1 and x the number in buffer 2. The probability of a batch of size j arriving to
buffer 1 is p; and (independently) the probability of a batch of size y arriving
to buffer 2 is g,. Let A (respectively, w'™) be the nth moment of the arrival
process to buffer 1 (respectively, buffer 2).

The server always serves the priority queue if there are packets in its buffer.
When its buffer is empty, then the server is free to serve packets in buffer 2.
Observe that the priority buffer is not affected in any way by the second buffer
and does not even “see” it. Control may be exercised on the second buffer. The
action a results in a batch arriving to buffer 2 being admitted, whereas action
r results in the batch being rejected and lost.

There is a nonnegative holding cost H(x) on the content of buffer 2 and a
nonnegative rejection cost of R(i) for choosing action r. Observe that the cost
of rejecting a batch arriving to buffer 2 may depend on the contents of buffer 1.
We will be assuming that R(i) is decreasing in i. As the priority buffer becomes
fuller, it costs less to reject batches to the second buffer. This has the effect
that when the first buffer does clear, the second buffer will not be overloaded.
Formally we have C[({, x),a] = H(x) and C[(i,x),r] = H(x) + R(i).

The basic assumptions (BA) for this model are as follows:

(BAl). There exist a (finite) constant U and integer n 2 1 such that H(x} <
Ux",

(BA2). The rejection cost R(J) is decreasing in i.
(BA3). We have A + w < p.
(BA4). The moments A“*" and w***" are finite. 0

Proposition 7.7.5. Assume that the (BA) assumptions hold. Then the (H")
assumptions hold. For at least one value of the rejection cost, the (SEN) assump-
tions fail to hold.

Proof: 'We verify that the conditions in Proposition 7.7.3 are satisfied. We
will show that any stationary policy e is z = (0, 0) standard. Let € =: p — (A +
w) > 0. We employ Corollary C.1.6 with y(i,x} = i + x. It is easy to see that
(C.10) holds and yields my; x.(e) < (i + x)/e for (i,x) ¥ z. Moreover we have
m_.(e) < uw/e. Hence (i) holds with B(z) = u/e and B(i,x) = (i + x)/e for (i, x)
# 7.

Now turn to the expected cost of a first passage to z. Since R(/) is decreas-
ing, it follows that R(i) < R(0), and hence the rejection cost is bounded. It is
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sufficient 1o show that the expected holding cost g .),(¢) of a first passage is
finite, This may be done in a similar way to the proof of Lemma 7.6.6 with
ri,x) = K(i + x)"*'. We leave the details to Problem *7.12. This proves that
(iii) holds for any stationary policy.

It remains to show that the expected B cost of a first passage is finite. This
follows from the definition of B and from what we have claimed (and left as
a problem) for the first passage holding costs. The reason is that in (BAl) we
have assumed that n = 1, and hence by (BA4) the second moments are finite.
Then the proof for the finiteness of the first passage holding costs also yields
the finiteness of the first passage B costs. This verifies that the conditions in
Proposition 7.7.3 hold, and hence that (H” *) holds.

Let us now argue that for some value of the rejection cost, (SEN3) fails to
hold The key is to observe that the result in Lemma 7.4.2 remains valid under
(H*) if the function L is bounded on the set G. This is easy to check, and
we leave it to the reader. Now let d be the policy that always rejects arriving
batches to buffer 2. Then it follows from Lemma 7.4.2 (with G = {z}) that
h(i,0) € ¢, 01:(d) — Jm o1 (d).

Let m be the expected time to go from i to i — 1 in buffer [ (clearly these
times all have the same distribution). Then m; ).(d) = im. Moreover c; g).(d)
= m(R() + R(i — 1) + ... + R(1)).

Let us choose R(i) = 1/i for i 2 1, with R(0) 2 | arbitrary. Then

h(i,0) < m([z -;- ~In i] +ini- Ji). (7.60)

=1

As i — oo, the expression in square brackets on the right of (7.60) approaches
a constant vy, known as Euler’s constant. See Apostol (1972) for details. Thus
Hm; , . A()) S mly+tm; .  (In i~ Ji)] = —eo. This implies that (SEN3) cannot
hold. [m|

Remark 7.7.6. Several weaker “sequence versions” of the (H) assumptions
can be given. For example, assume that f,, — f for some sequence of optimal
discount policies with o, — 17. We can modify (H) to guarantee only that the
particular limit point f is average cost optimal. Problem *7.13 asks you to give
such a set (H); of assumptions and to determine how the statement of Theorem
7.2.3 should be modified. 0

BIBLIOGRAPHIC NOTES

The subject treated in this chapter has a large and diverse literature, making it an
especially difficult topic for a person not immersed in the details. One purpose
of Chapter 7 is to organize results and fit them into an intelligible framework.
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We now attempt, to the best of our ability, to give credit to the originators of
the ideas in this chapter.

Reward versions of Examples 7.1.3 and 7.1.4 appear in Ross (1983) and
Puterman (1994). Example 7.1.5 is due to Ross (1971) and also appears in Ross
(1983). Fisher and Ross (1968) contains a more complex example of an MDC
with no average cost optimal stationary policy but for which every stationary
policy gives rise to an irreducible standard MC.

The results in Section 7.2 are largely from Sennott (1989a). Lemma 7.2.1
appears there. The version of the assumptions given in Sennott (1989%a) dif-
fers slightly from the (SEN) assumptions. This current version, which appears
in Sennott (1993), is clearer than the original version. For some additional
coments, see Cavazos-Cadena (1991c¢).

Theorem 7.2.3 is a modification of the main result in Sennott (1989a). Part
(iv) is new and is based on Proposition 6.1.1 (iii) = (ii). This result is classical
(see Bibliographic Notes for Appendix A), but we were unaware of it when
Sennott (1989a) was written,

A somewhat similar set (SCH) of assumptions is presented in Schal (1993)
for general (uncountable) state spaces. Problem 7.6 shows that (SEN) and
{SCH) are equivalent.

The impetus for the (SEN) assumptions came from a realization that the
assumptions in Ross (1983) could be weakened. The results in Ross (1983) were
based on Ross (1968). Earlier pivotal work is Taylor (1965) and Derman (1966).

The example in Section 7.3 is a minor modification of the one in Cavazos-
Cadena (1991b).

The idea for Lemma 7.4.1 comes from Theorem 2.4 of Ross (1983) and
is used in Sennott (1986a), which is an early version of Sennott (1989a). The
impetus for the rest of the material in Section 7.4 comes from Cavazos-Cadena
(1991a) where many of these results are proved under somewhat stronger
assumptions. We modified the proofs to hold under the (SEN) assumptions in
Sennott (1993). The proofs presented here have been simplified from the earlier
versions. Additional references are Derman and Veinott (1967) and Makowski
and Shwartz (1994).

Lemma 7.5.2 appears in Cavazos-Cadena and Sennott (1992). The ideas in
Proposition 7.5.3 and Corollary 7.5.4 appear in Sennott (1989a). Proposition
7.5.5 is based on a result in Cavazos-Cadena (1989).

The assumptions in Theorem 7.5.6 are a modification of an important line of
development due to Borkar (1984, 1988, 1989). The Borkar (1991) monograph
summarizes his convex analytic approach. The (BOR) assumptions given in
Theorem 7.5.6 are weaker than the original assumptions in these papers.

The proof that (BOR) = (SEN) appears in Cavazos-Cadena and Sennott
(1992). The version of (BOR) given in Cavazos-Cadena and Sennott (1992) is
stronger than this version, which appears in Sennott (1993). The idea for the
proof of (ii) comes from Cavazos-Cadena (1989). Some parts of the proof of
(iii) are in Sennott (1993) and some are new.

Theorem 7.5.6 shows that strong conclusions hold under (BOR), and for this
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reason it is an important set of assumptions. Remark 7.5.7 makes reference to
another set (WS) of assumptions that appears in Stidham and Weber (1989).
We have presented a slightly modified version of this set in Problem 7.7. Tt
lies strictly between (BOR) and (SEN). Part (iii) of Problem 7.7 shows that the
conclusions that can be drawn from (WS) are not quite as strong as those that
can be drawn from (BOR).

Remark 7.5.8 mentions an example in Sennott (1993) that presents a limita-
tion of the conclusions that can be drawn from (BOR).

The (CAV*) assumptions appear in Cavazos-Cadena (1989), and the (CAV)
assumptions are a slight modification of those. An earlier paper by Wijn-
gaard (1978) approaches the Cavazos-Cadena concept but with additional strong
assumptions.

Example 7.6.1 is treated in Sennott (1989a) and again in Sennott (1993).
The argument for the form of 4 and the monotonicity of the optimal policy
appears (in a slightly less concise way) in Sennott (1993), and these ideas are
a minor generalization of results in Stidham and Weber (1989). The seminal
Stidham and Weber paper gives fresh ideas about proving structural properties
for optimal average cost stationary policies. The arguments are for continuous
time but are easily adapted to discrete time.

Example 7.6.4 is treated in Sennott (1989a) and again in Sennott (1993). The
crucial argument in Lemma 7.6.6 appears in Sennott (1989a). The argument
concerning the structural properties of an optimal stationary policy appears in
Sennott (1993) and is based on results in Stidham and Weber (1989).

Example 7.6.8 is discussed in Sennott (1997b).

The (HY) assumptions appear in Sennott (1995) in a slightly different form.
The (H*) assumptions are most closely related to Hu (1992) and a whole devel-
opment due to Hordijk and other researchers. Hordijk (1976, 1977) initiates this
line of development. The assumptions are related to those in Proposition 7.7.3
but are not identical to our assumptions. In Hordijk (1976) a Lyapunov con-
dition is assumed, and this work is extended in Hordijk (1977). Other work
is Federgruen and Tijms (1978), Federgruen, Hordijk, and Tijms (1979), and
Federgruen, Schweitzer, and Tijms (1983). The conditions in these papers are
closely related (but apparently not identical) to the assumptions in Proposition
7.7.3. Other development is presented in Spieksma (1990).

A large survey of many approaches to the existence question is presented in
Arapostathis et al. (1993). Work on extending the (SEN) assumptions has been
performed by Hernandez-Lerma and other researchers. Hernandez-Lerma and
Lasserre (1990) extend the existence result to the case of Borel state spaces.
An extension is also given in Ritt and Sennott (1992). Some of the above refer-
enced papers also deal with more general state spaces than covered in this book.
Hernandez-Lerma (1991) involves an extension of the Schal assumptions to the
case of unbounded action sets. Other related work is Hermandez-Lerma (1993)
and Montes-de-Oca and Hernandez-Lerma (1994). This line of development
has culminated in the book by Hernandez-Lerma and Lasserre (1996).

For an example related to the average cost criterion, see Flynn (1974).
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PROBLEMS
7.1. For the policy 8 in Example 7.14, prove that Jo(1) = 0.
7.2. Complete the proof of Theorem 7.2.3(iii).
7.3. Fill in the details in the derivation of (7.24) in the proof of Lemma 7.4.2.

*7.4. Fill in the omitted details of the proof of Theorem 7.5.6.

1.5.

7.6.

This problem shows that some tempting modifications of the (SEN)

assumptions are actually equivalent to (SEN).

(a) Consider the statement: (*) There exists ap € (0, 1) such that (1 -
a)V,(z) is bounded for ¢ € (ay, 1). Show that (SEN1) & (*). Hence
nothing is gained by replacing (SEN1) with *y.

(b) Consider the statement: (**) There exist ay € (0, 1), a finite non-
negative function M, and a finite nonnegative constant L such that
~L € h (i) s M(i) forie S and o € (e, 1). Show that (SEN2-3)
& (**). Hence nothing is gained by replacing (SEN2-3) with **.

Define w, = infjc s V,{(i). Consider the following set (SCH) of assump-
tions:

(SCH1). The quantity (1 — a)w, is bounded for « € (0, 1).

(SCH2). There exists a (finite) function W such that V, (i) — w, < W(i)
forie Sand € (0, 1).

Prove that (SEN) holds if and only if (SCH) holds.

. Consider the following set (WS) of assumptions:

(WS1) = (BOR1).
(WS2). The set D* = {{|C(i,a) S J, for some a} is finite.
(WS3). Given i e D* - Ry, there exists a policy 8; € R*(z, ).

with minor modifications to the proof of Theorem 7.5.6(i). Check the
details.

(b) Let e be an optimal stationary policy and D(e) = {i|{C(i,e) < J }. Prove
that ¢ has at least one positive recurrent state in D{e).

(¢) Construct an example for which (WS) holds but such that e realizing
the minimum in (7.9) satisfies e ¢ R(i, D(e)) for some i. This exam-
ple shows that while (WS) is only slightly weaker than (BOR), it
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7.8.

79.

7.10.

7.11.

*7.12.
*7.13.

7.14.

AVERAGE COST OPTIMIZATION THEORY FOR COUNTABLE STATE SPACES

cannot guarantee that an optimal stationary policy realizing the ACOI
induces an MC with a “nice” structure,

Prove Corollaries 7.5.9 and 7.5.10.
Prove Lemma 7.6.2,

Prove Proposition 7.6.7(i). Hint: This follows much as the proof of Propo-
sition 7.6.3Gi-ii).

This problem concerns Example 7.6.8. Assume that (BA) holds.
(a) Give the finite horizon discounted optimality equations.

{b) Prove that v, .(i,, i;) is increasing in one coordinate when the other
coordinate is held fixed. Hint: Prove this by induction; it is only nec-
essary to argue it for the first coordinate.

(¢) Use the result in (b) to prove that the (SEN) assumptions hold even
if the holding costs are bounded.

(d) Now assume that there exists a cost for changing routing decisions.
Show that the (CAV*) assumptions still hold. Hint: What is the new
state space, and how does it behave under d(w)?

Fill in the omitted details in the proof of Proposition 7.7.5.
Carry out what is requested in Remark 7.7.6.

There is a single server, and the probability of successfully serving a
packet is u, where 0 < p < 1. This server serves two buffers (see Fig.
1.4). The probability of a batch of size j arriving to the first buffer is p;,
and the probability of a batch of size y arriving to the second buffer is
gy. The two arrival processes are independent, and A (respectively, ")
is the nth moment of the arrival process to the first buffer (respectively,
second buffer).

In each slot the decisions are a = serve (or be in front of, if it is empty)
buffer 1, and b = serve (or be in front of, if it is empty) buffer 2. Let
(i, x) denote the buffer status, where i is the number of packets in the
first buffer and x the number in the second buffer. There are nonnegative
holding costs H(i) and K(x) and a cost for changing buffers.

The (BA) are:

(BAI). The holding cost H(i) is increasing and unbounded in i and sim-
ilarly for K(x).

(BA2). There exist a (finite) constant I/ and nonnegative integers n and
m such that HO < Ui" and K(x) S Ux™ for i, x 2 0.
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7.15.

(BA3), Wehave O<py<1,0<gy<l,and A +w <p.

(BA4). The moments A”* " and w"* " are finite.
(a) Set this model up as an MDC.
(b) Prove that the (CAV*) assumptions hold.

This problem summarizes the relationships among all the assumption sets
that have been introduced in this chapter. Observe that

(CAV*) =5 (CAV) = (BOR) = (WS) = (S%N) = (H*) = (H)

(SCH)
(7.61)

The first implication is in Corollary 7.5.10, and the second is in Corol-
lary 7.5.9. The third and fourth implications are in Problem *7.7. The
equivalence is in Problem 7.6, and the last two implications follow from
Proposition 7.7.1.
Equation (7.61) provides a road map of possible assumption sets to use
in verifying the existence of an average cost optimal stationary policy.
The claim is that each of the implications on the top row of (7.61) is
nonreversible (but we do not concern ourselves with the last implication).
The example in Problem *7.7(c) shows that (WS) does not imply (BOR).
Example 7.7.4 shows that (H*) does not imply (SEN).
(a) Construct an example for which (CAV) holds but for which (CAV*)
fails.
(b) Construct an example for which (BOR) holds but for which (CAV)
fails.
(c) Provide an example for which (SEN) holds but for which (WS) fails.
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CHAPTER 8

Computation of Average Cost
Optimal Policies for Infinite
State Spaces

In Chapter 7 the existence theory was developed for the case of a countable state
space. By means of this theory we are able to prove that average cost optimal
stationary policies exist in a wide variety of models. However, the existence
theory does not yield a method for the computation of an optimal policy.

In this chapter we develop the approximating sequence method for the com-
putation of an average cost optimal stationary policy when the state space is
denumerably infinite. Throughout this chapter we have an MDC A with a denu-
merable state space and an approximating sequence (Ax). We will require that
(1) the minimum average cost in Ay be constant, (2) the sequence of constant
minimum average costs in (Ay) converge to the (constant) minimum average
cost in A, and (3) any limit point of a certain sequence of optimal stationary
policies for (Ay) be optimal for A.

It might seem natural to begin with one of the assumption sets from Chap-
ter 7 for the existence of an optimal stationary policy and then add additional
assumptions in order to carry out the computational program. However, this is
not the approach we take. Recall that in Chapter 3 we introduced Assumption
FH and in Chapter 4 we introduced Assumption DC, both related to properties
of the approximating sequence. A similar approach is followed in this chapter.
A set (AC) of assumptions is introduced specifically to guarantee that the com-
putational program can be carried out. The results in this chapter are largely
independent of the material in Chapter 7. Selected results from Chapter 7 will
occasionally be called upon. If the reader has omitted Chapter 7, then these
results may be scanned as they are needed.

In Section 8.1 the (AC) assumptions are introduced, and the major result
of the chapter is proved. In Section 8.2 we discuss the verification of these
assumptions.

In Section 8.3 we show how to verify the (AC) assumptions for several mod-
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els, including the single-server queue with reject option, the single-server queue
with controllable service rates, and the routing to parallel queues model. In Sec-
tion *8.4 the routing model with a cost for changing the decision is treated. In
Section 8.5 we give computational results for the single-server queue with con-
trollable service rates, and in Section 8.6 computational results for the routing
mode] are presented.

Section 8.7 presents a generalization of the (AC) assumptions. This material
is useful in Chapter 9.

8.1 THE (AC) ASSUMPTIONS

Let A be an MDC with a denumerable state space S. The objective is to compute
an average cost optimal stationary policy. This is done by computing optimal
stationary policies in an approximating sequence and showing that any limit
point of these policies is average cost optimal for A.

We now give a set (AC) of assumptions that allows this to be accomplished.
Let us assume that we have an AS (Ay)y:w, for A. The (AC) assumptions are
as follows:

(ACI). There exist a (finite) constant JV and (finite) function ¥ on Sy
such that

"+ rV(i) = ming Cl.a)+ Z Pia; N () b,

ie Sy

ie SN,NZNQ. (8.])
(AC2). We have limsupy _ ..r¥(i) <o forie §.

(AC3). There exists a nonnegative (finite) constant Q such that -Q <
liminfy , . r¥(i) fori e §.

(AC4). We have limsupy , . JV =: J* <coand J* < J(i) fori € S.

Here is the major result of the chapter. It utilizes Lemma 7.2.1.

Theorem 8.1.1. Assume that the (AC) assumptions hold. Then:

(i) The quantity J * = limy . »J¥ is the minimum average cost in A,

(ii) Any limit point S* of a sequence €V of stationary policies realizing the

minimum in (8.1) is average cost optimal for A.

Proof: It follows from (AC1) and Proposition 6.5.1(ii) that JV is the con-
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stant minimum average cost in Ay and that any stationary policy realizing the
minimum in (8.1) is average cost optimal for Ay.

Let eV realize the minimum in (8.1). Fix a sequence N,. By Proposntlon
B.5 there exist a subsequence N, of N, and a stationary policy e* such that
lim, _. . ¢™* = ¢*. This implies that e™«(j) = ¢* (i) for sufficiently large u (depen-
dent on /).

By (AC4) there exist a subsequence N, of N, and a number J, such that
lmy,_. »J™ = Jy < oo, Let w(i) = liminf,_. . r¥¢(i). It follows from (AC2-3)
that w is a finite function bounded below by - Q.

For a fixed state i € § and sufficiently large v, (8.1) may be written

IV 4 NGy = Cl, e + Z Pj(e"; Nyyr¥e ). (8.2)

je SNU

Take the limit infimum of both sides of (8.2), and employ Proposition A.2.5 to
obtain

Jo+w(i) 2 CGi,e") + 3 Piy(e" i j). 8.3)
J

Since this argument may be carried out for each i, it is the case that (8.3) holds
forie §S.

It then follows from Lcmma 7.2.1 that J..({) £ Jy for all i. Using (AC4), we
see that J,..() < Jy £ J* < J() < J.(.), and hence these terms are ail equal.
This proves that e’ is average cost optimal with constant average cost Jo = J *

Since the argument may be carried out for any initial sequence, it follows
that the limit in (i) must hold. a

Suppose that an approximating sequence has been constructed for a model
and that the (AC) assumptions have bcen verified for a particular sequence r".
Let us assume that we can compute r", and hence J* and the resulting average
cost optimal policy realizing the minimum in (8.1). For N sufficiently large, it
follows from Theorem 8.1.1 that JV = J, where J is the minimum average cost
in A, and that e” is close to optimal for A.

In practice we will carry out this operation until JV is varying by less than
some tolerance and e is unchanging. Then we may be confident that an average
cost optimal policy for A has been determined and that a very close approx-
imation to the minimum average cost has been obtained. For some models a
complete picture of the optimal policy may not be attainable, and we must be
satisfied that it has been computed in the region of the state space S of most
interest. This limitation is illustrated in Section 8.6.
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8.2 VERIFICATION OF THE ASSUMPTIONS

We will employ the Value Iteration Algorithm 6.6.4 to calculate an average
cost optimal stationary policy for Ay. Proposition 6.6.3 justifies the VIA and
deals with a relative value function r(i) = vY (i) -~ v¥(x"), where the base
point x¥ is an arbitrary element of Sy. We will verify the (AC) assumptions
for a fixed base point x. After the discussion of the verification methods has
been completed, it will be argued that the base point may be chosen arbitrarily
(and may vary with N}, and the computation will still yield the same average
cost optimal stationary policy given in Theorem 8.1.1. (Section "8.4 treats an
example for which the transformation in Proposition 6.6.6 is applied to the AS.)

Before beginning this development, the reader is advised to skim the material
in Sections C.4 and C.5 of Appendix C. As you do this, feel free to omit the
accompanying background results and focus solely on grasping the important
notion of conformity. We now discuss how to relate the definitions in Section
C4 to Aand (Ay).

Notice that any stationary policy d for A induces a stationary policy d|N for
Ay, where we have Pi(d|N) = Pj(d(i;;N), i, j € Sy. A similar result holds for
a randomized stationary policy. This means that any (randomized) stationary
policy induces a Markov chain and accompanying approximating sequence for
that MC as defined in Definition C.4.1. Now let d be a z standard policy for A
as defined in Definition 7.5.1. Then (Ay) is conforming ar d if the MC and AS
corresponding to d satisfy Definition C.4.8. If 4 is a (randomized) stationary
policy inducing an MC with a positive recurrent class Ry having finite average
cost, then the AS is conforming on R if it satisfies Definition C.4.10. When first
encountered these notions seem involved, but they are quite natural. Informally,
conformity at d means that the AS is “well-behaved” with respect to the MC
induced by d. Thus steady state probabilities and the average cost under d|N
converge to the steady state probabilities and average cost under 4.

Here we give a template of four steps to validate the VIA and verify the
(AC) assumptions.

Proposition 8.2.1. Let (Ay)yan, be an AS for A, and let x be a dist-
inguished state (we may assume that x € Sy for all N). Carrying out the
following four step template justifies the use of the value iteration algorithm
in Ay and verifies that the (AC) assumptions hold for the function rV(.) =
fim, - @Y () - ¥ (%),

Step 1. Show that every stationary policy for Ay induces a unichain MC
with aperiodic positive recurrent class containing x.

Step 2. Show that there exists an x standard policy d for A such that the AS
is conforming at d.

Step 3. Do one of the following:
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(i) Show that v (i) < v,(i) for all n, N, and i € Sy.
(i1) Show that V¥(i) < V(i) for all a € (0,1), N, and i € Sy.
(iii) Show that the minimum average cost in A is constant, and that there
exists an average cost optimal stationary policy f inducing an MC with
a positive recurrent class Ry such that the AS is conforming on Ry.

Step 4. Do one of the following:

(i) Show that v¥(i) 2 v¥(x) for all n, N, and i € Sy.

(ii) Show that VN(i) 2 V¥(x) forall a € (0,1), N, and i € Sy.

(iii) Show that there exists a nonempty finite set G such that v" takes on
a minimum in G for all n and N. Moreover there exists a stationary
policy g inducing an MC with a positive recurrent class R, D GU {x}
having finite average cost and such that the AS is conforming on R,.

(iv) Show that there exists a nonempty finite set G such that V’;’ takes
on a minimin in G, for all N and o € (0, 1). Moreover there exists
a stationary policy g inducing an MC with a positive recurrent class

R, © G U {x} having finite average cost and such that the AS is con-
forming on R,.

Proof: Under Step 1 it follows from Proposition 6.4.1 that the minimum
average cost in Ay is constant. Clearly Assumption OPA holds. Hence VIA
6.6.4 may be carried out in Ay. It follows from Proposition 6.6.3 that N =
lim, . (U ()~ vﬁ {x)) exists. This provides a solution to (8.1) and verifies that
(AC1) holds. We show that (AC2-3) hold for the function r” and that (AC4)
is vahid.

Step 2 enables us to verify (AC2). Note that r¥(x) = 0, and hence we may
assume that i # x. Note that v < v¥ < uﬁm, where m 2 n and @ is any m
step policy for Ay. Define 8 to follow d|N until state x is reached, and then to
follow the optimal finite horizon policy for n steps. Then v¥(i) < cN(d|N) +
v¥(x), and hence rV(i) € c¥(d|N). From the conformity at d it follows that
limsupy _, .. rV(i) € ci(d) < oo,

Step 3 enables us to verify (AC4). We first show that J(.) is finite. Since d
from Step 2 is x standard, it follows that J(7) < J; <o forie §.

Now assume that Step 3(i) holds. Using Theorem 6.4.2(v), this implies that

I = tim 2@

n—> oo n

lim sup nf)

n-» oo n

A

N

lim sup ——————Ua‘;(l)

n-e oo

= Jg(i) (8.4)
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for any policy 8 for A. Then clearly J¥ < J(i) for all i € S, and hence J* <
J() < oo,

If Step 3(ii) holds, then the argument is analogous to that in (8.4) but uses
Proposition 6.2.3 and then Proposition 6.1.1. We omit the proof.

Now assume that Step 3(iii) holds. In this case we have J(i) = J,(i) = J, for
some constant J < oo, This follows since f 1s optimal and the minimum average
cost is constant. Fix i € Ry. Then J¥ < J D). Takmg the limit supremum of
both sides and using the conformity on R, yields J* < J. This completes the
verification of (AC4).

Step 4 enables us to verify (AC3). If Step 4(i) holds, then rV(i) =
limy, . (U (i) — V¥ (x)) 2 0. This verifies (AC3) with 0 = 0.

Assume that &Y from Theorem 6.4.2 is defined using distinguished state x.
It then follows from Proposition 6.5.1(iii) and Step 1 that r¥ = #V. So if Step
4(ii) holds, then we again have the validity of (AC3) with Q = 0.

Now assume that Step 4(iii) holds. From Step 1 it follows that g|N induces a
unichain MC with a positive recurrent class W(N') containing x. We claim that
for sufficiently large ¥, it is the case that W(N) > G. For j € G it is the case
that x and j communicate in the MC induced by g. By the definition of an AS,
it is the case that they communicate in the MC induced by g|N for sufficiently
large N, say N 2 N;. Hence j € W(N) for N 2 N;. Then for sufficiently large N,
say N 2 N¥, we have G < W(N). Note that the conformity was not necessary
to obtain lhm result.

Let us assume that N 2 N* and observe that c, (glN )<eforje G.
Moreover it follows from the conformity on R, and Proposition C.4.6 that

z;(glN) - Cx}(g) Let O = P maX;e G{ij(g)}

For fixed i # x, n, and N, choose j € G such that v¥(i) 2 v¥(j). Using

reasoning similar to that in the verification of (AC2), we have

rY@) = @Y - v + YD 2 I () 2 e (gIN). (8.5)

This implies that liminfy .. . r¥(i) 2 -Q, and hence (AC3) holds.

The first portion of the proof under Step 4(iv) is as under Step 4(iii). To
finish the proof, observe that r¥ = A, and let Q be as in Step 4(iii). Assume
that the initial state is x, and fix j € G. We may follow g|N until state j is
reached and then follow an « discounted optimal policy in Ay. If T denotes
the time to reach j, then this yields

VE(x) < cl(gIN) + ELTIV(j)
< cHEIN) +VEG). (8.6)

For fixed i # x, a, and N, choose j € G such that V¥(i) 2 V¥(}). Then it
follows from (8.6) that

)= (VY@ = VEG) + By (D 2 KYG) 2 —e eIV (8.7)
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The proof is then completed as in Step 4(iit). ]
The following special case of Proposition 8.2.1 arises frequently:

Corollary 8.2.2. Let A have state space § = {0,1,2,...}, let (Ay) have
state space Sy = {0,1....,N}, and send the excess probability to N. Assume
that the following hold:

(i) Every stationary policy for Ay induces a unichain MC with aperiodic
positive recurrent class containing 0.

(ii) For n, N 2 1 the value function v’ (i) is increasing in 0 <i < N.
(i) For n 2 1 the value function v, (i) is increasing in /.

(iv) There exists a 0 standard policy d for A such that my(d) and c;y(d) are
increasing in i 2 1.

Then the conclusions of Proposition 8.2.1 hold for the function rV(i) =
lim, . ..(uY (@) - oY)

Proof: We show that the four-step procedure in Proposition 8.2.1 may be
carried out for x = 0. Clearly Step 1 holds. To verify Step 2, note that (C.37-38)
become the requirements that the mean first passage time and cost from i 2 1 to
0 under d are increasing in i. Then Step 2 follows from Proposition C.5.3 and
(iv). Note that (3.19), for a = 1, becomes the requirement that v,(N) < vn(r)
for r > N. This is equivalent to (1i1). Step 3@) then follows from Proposition
3.3.4. Step 4(i) follows from (ii). ]

Next we present a way of validating the four step procedure for an ATAS that
sends excess probability to a finite set. It is based on the (BOR) assumptions
from Section 7.5. If Chapter 7 has been omitted, then the proof of the next
result should be skipped.

Proposition 8.2.3. Assume that the following hold:

(i) There exists a z standard policy d for A.

(i1) There exists ¢ > 0 such that D = {i|C(i,a) < J; + ¢ for some a} is a
finite set.

(iti) There exists a stationary policy g for A that induces an MC with a pos-
itive recurrent class R, D DU {z} with finite average cost.

(iv) (It will be shown that there then exists an average cost optimal station-
ary policy for A and that any optimal stationary policy induces an MC
with at least one positive recurrent class.) If ¢ is an optimal stationary
policy for 4, we assume that the MC induced by e has a single positive
recurrent class, which contains z.



8.2 VERIFICATION OF THE ASSUMPTIONS 175

(v) The AS (Ay) is an ATAS that sends excess probability to DU {z}.

(vi) Every stationary policy for Ay induces a unichain MC with aperiodic
positive recurrent class containing z.

Then the VIA and the (AC) assumptions hold for the function rV(i) =
lim, . .(UY () - VY (2)).

*Proof: We will show that the four-step template in Proposition 8.2.1 can
be carried out with x = z. It follows from (vi) that Step 1 holds.

By Proposition C.5.2 and (v) it follows that the ATAS is conforming at d,
and hence Step 2 holds.

Let us now show Step 3(iii). Note that (i-iii) imply that the (BOR) assump-
tions in Theorem 7.5.6 hold. The condition in (iii), which we denote (BOR3"),
is slightly stronger than (BOR3). If (BOR3") holds, then (BOR3) holds with
8i=g

It follows from Theorem 7.5.6 that (7.9) is an equality (the ACOE for A)
and that any stationary policy e realizing (7.9) is average cost optimal for A. It
follows from Theorem 7.5.6 and (iv) that e is z standard. It then follows from
Proposition C.5.2 that the ATAS is conforming at e, and hence Step 3(iii) holds,

Finally we show that Step 4(iv) holds. We first show that the (BOR) assump-
tions, with (BOR3"), hold for Ay for sufficiently Jarge N. It follows from (vi)
that d|N is a z standard policy for Ay. This verifies (BORI)

Since the ATAS is conforrmng at d, it follows that J7 dIN” —= J ;. Hence, for
N sufﬁcrently large, we have J,,,N < Jui+¢/2 Then Dy =: {i € Sy|C(i,a) <

dl n +€/2 for some a} < D. The set Dy satisfies (BOR2).

To verify (BOR3™) for Ay, it is sufficient to show that D < R‘l n for N
sufficiently large. The proof is similar to that of Step 4(iii) in Proposition 8.2.1,
and we omit it.

We have verified that (BOR) holds for Ay for sufﬁcncmly large N. It then
follows from the proof of Theorem 7.5.6 (statement ( ) applied to Ay) that V”
takes on a minimum in Dy < D. This together with (iii) and Proposition C.5. 2
applied to g shows Step 4(iv). 0

This completes our discussion of the verification of the (AC) assumptions. In
certain examples it is not possible to employ either Proposition 8.2.1 or Propo-
sition 8.2.3, and in these cases a modified approach must be used. Example
8.4.1 illustrates this situation.

Remark 8.2.4. Let us now discuss the base point for the computation, as we
promised earlier. The results in Section 8.2 have verified the (AC) assumptions
for a specific base point x. It has been shown that 7V (i) = lim,, _, ,,(v”(z) v" (x))
exists and that r" satisfies (AC2-3). Now suppose that we wish to use another
base point. More generally, suppose that we choose x¥ € Sy so that the base point
may be an arbitrary element of Sy and may vary with N. What happens then?
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It follows from Proposition 6.6.3 that w¥ (i) = lim, .. .(u¥(@)-vY (xV)) exists.
Since v¥(H-v¥ (x¥) = WY ()-vl () + @Y () -v¥ (™)), it follows that the limit
of the last term must exist and equal a constant . Hence we have w”(i) =
r¥() +u”, and so the functions w" and rV differ by a constant (which may
depend on N).

Hence the class of stationary policies realizing the minimum in (8.1) equals
the class realizing the minimum in (8.1) with r" replaced by w”. It is proved in
Theorem 8.1.1 that any limit point of such a sequence of stationary policies is
average cost optimal for A. Hence this continues to be true even if the optimal
policy e” is computed using w¥. O

The important conclusion is that once the (AC) assumptions and the hypothe-
ses of Proposition 6.6.3 have been verified, then the optimal stationary policies
in the approximating sequence may be computed using any desired base point,
and the base point may even vary with N.

8.3 EXAMPLES

In this section we show how to verify the (AC) assumptions in several models.

Example 8.3.1. 'This is Example 7.6.1. This is a single-buffer/single-server
model with the option of rejecting arriving batches. Under action a the arriving
batch is admitted, whereas under action r it is rejected. We operate under the
basic assumptions of Example 7.6.1.

Let Sv = {0.1,...,N ). There is excess probability possible only under the
admit action, and any such probability is mapped to N. This means that if the
admission of a batch would cause a buffer overflow, then the probability of
such an event is given to the full butfer state N.

We employ Corollary 8.2.2. Since pp and u are positive, it is always possible
for the system to transition downward in one slot. This means that any stationary
policy for Ay is O standard. Since Py(r) = 1 and Pyl(a) = pp > 0, it is the
case that every stationary policy has a single aperiodic positive recurrent class
containing 0. This verifies (i).

Lemma 7.6.2 shows that (iii) holds. This is intuitively clear since, if the
process begins in i 2 1 and operates optimally for n steps, it cannot do better
than if it begins in i — 1 and operates optimally for n steps. The same argument
convinces us that this is also true for Ay, and hence that (ii) holds.

It remains to verify (iv). Let 4 be the policy that always rejects. It is shown
in the proof of Proposition 7.6.3 that 4 is 0 standard and that m;y(d) and c;(d)
are increasing in / 2 1.

Hence the conclusions of Corollary 8.2.2 are valid for this model. [

Example 8.3.2. This is Example 7.6.4. This is a single-buffer/single-server
model with the actions being the allowable service rates. Armriving batches are
always admitted. We operate under the basic assumptions from Example 7.6.4.
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Let Sy = {0,1,...,N }. If a batch arrives that would cause a buffer overflow,
then the probability of that event is given to the full buffer state N. We again
employ Corollary 8.2.2.

The actions are the (geometric) service rates, and under action a the packet
at the head of the line is served at rate a. Since py and a are positive, it is
always possible for the system to transition downward in one slot. This means
that any stationary policy for Ay is 0 standard. Since Py = po > 0, it is the
case that every stationary policy has a single aperiodic positive recurrent class
containing 0. This verifies (i).

Lemma 7.6.5 shows that (iii) holds. This is intuitively clear since, if the
process begins in i 2 1 and operates optimally for n steps, it cannot do better
than if it begins in i - | and operates optimally for n steps. The same argument
convinces us that this is also true for Ay and hence that (ii) holds.

It remains to verify (iv). Let d be the policy that serves at maximum rate ax.
It is shown in Lemma 7.6.6 that d is standard with R; = [0, c0). At most one
packet may be served in a slot. This implies that mo(d) = m;;_ ((d)+m; _ | o(d),
and hence my(d) is increasing in i 2 1. A similar result is true for the first
passage costs. Hence (iv) holds.

Hence the conclusions of Corollary 8.2.2 are valid for this model. a

Example 8.3.3. This is Example 7.6.8. This concerns the routing of batches
of packets to two parallel queucs. We assume that the basic assumptions in
Example 7.6.8 hold with the exception that one (or both) holding costs may
be bounded. In this example there is no cost for changing the routing decision.
Example 8.4.1 treats this model when there is a cost for changing the routing
deciston.

The ATAS may be described as follows: Each buffer is limited to N cus-
tomers. If a decision is made to route to buffer 1 (say) and the arrival of a batch
of a certain size would cause a buffer overflow in buffer 1, then the probability
of that event is assigned to the full buffer state at buffer 1.

We apply the four-step procedure in Proposition 8.2.1 with x = (0, 0). Since
po > 0 and the service rate at each buffer is positive, there is a positive prob-
ability of each buffer decreasing by | in a given slot (or remaining empty if
currently empty). This means that any stationary policy for Ay is x standard.
Since Py (1) = Pyu(2) = pg > 0, it is the case that any stationary policy has a
single aperiodic positive recurrent class containing x, and hence Step 1 holds.

The fixed splitting d from Lemma 7.6.9 is x standard (in fact induces an
irreducible MC on §). Let us verify that (C.37-38) hold for the MC induced
by d. It will then follow from Proposition C.5.3 that the ATAS is conforming
at d, and this will complete Step 2.

Assume that d chooses | in state i = ({1, i2) (if it chooses 2 the argument is
similar). Recall from Example 2.5.6 that we introduce a variable s, where s = i)
if i; = 0 or there is no service completion at buffer 2, and s = i3 - 1 if there is
a service completion at buffer 2. Then (C.37) becomes mn, s (d) < m, )\ (d)
for r > N. This holds if the expected first passage time is increasing in the first
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coordinate, with the second coordinate held fixed. This is intuitively clear. The
same argument works for the expected first passage costs in (C.38).

We show that Step 3(i) holds by applying Proposition 3.3.4 with o = 1. It
is easily seen that (3.19) holds if v, is increasing in one coordinate, with the
other held fixed. This was proved in Problem 7.11. A similar proof shows that
vY is increasing in one coordinate, with the other held fixed. This implies that
vY 2 v¥(x), and hence Step 4(i) holds.

Hence the conclusions of Proposition 8.2.1 are valid for this model. g

Example 8.3.4. In this model batches of packets arrive to a buffer, with
pj = P (a batch of size j arrives in a slot) > 0 for j 2 0.

The state of the system is the number i > 0 of packets in the buffer. There is
a null action in state 0. When in state { 2 | the action set is {1,2,...,i}, where
action k means that &£ packets are served perfectly in one slot. (Serving more
than one packet at a time is known as baich service.)

There is an increasing holding cost H{i) with H(0) = 0 and lim; ., . H(i) = o.
There is a nonnegative service cost B(k) that is increasing in k. We have C(0)
= 0 and C(i,k) = H(i)+ B(k) for 1 <k <. The transition probabilities are given
by Poj = pj and Pj;_;,j(k) = p; for j 20 and 1 £ k <. Finally we assume that
321 PiIHG) + B()) < o=

Consider an ATAS with Sy = {0,1,...,N} that sends excess probability to
0. We employ Proposition 8.2.3 (with z = (), and note that (v) holds.

Now consider an arbitrary stationary policy e for A. Since py > 0 and at
least one packet must be served in each slot, it follows that { leads to 0 under
e. Since p; > 0, it follows that 0 leads to i. Hence ¢ induces an irreducible MC
on S,

The same reasoning shows that any stationary policy for Ay induces an irre-
ducible MC on Sy. Since Py = pp > 0, it follows that the chain is aperiodic.
This verifies (vi).

Let d be defined by d(i) = i for i 2 1 so that in each slot all the waiting
packets are perfectly served. This policy induces an irreducible MC on § whose
transition matrix has identical rows. By Remark C.2.7(ii) it will follow that d
is 0 standard if the induced MC is positive recurrent with finite average cost.
Because the rows are identical, we may view the expected time to retun to 0
as the expectation of a geometric random variable with probability of success
Po. Hence myo(d) = 1/py and w5 = py. Then it is easy to see from Proposition
C.1.2(i) that x;(d ) = p;. From Proposition C.2.1(i) we have J; = ZjZI pilH(j)+
B(J)] < eo. This verifies that (i) holds.

Since H is unbounded, it is clear that (ii) holds, and in fact D = [0,i¥] for
some i*. Since R, = S, it follows that we may take g = d in (iii).

It remains to verify (iv). We have shown above that any stationary policy for
A induces an irreducible MC on S. Since an optimal stationary policy induces
a MC with at least one positive recurrent class, it follows that (iv) holds.

Hence the conclusions of Proposition 8.2.3 are valid for this model. 0
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Notice that this proof makes crucial use of two facts: (1) There is a positive
probability of a batch of any size arriving in any slot, and (2) at least one
packet must be served in any slot. Problem 8.2 explores this example when (1)
is weakened.

*84 ANOTHER EXAMPLE

The example in this section is the routing problem of Example 8.3.3 except
that a cost is allowed for changing the routing decision. Proposition 8.2.1 is
not directly applicable, but its basic approach remains valid in modified form.
Another complicating factor is that the VIA may not hold for the approximating
sequence but will hold for the transformed version of the AS. The reasoning is
somewhat more involved and may be omitted on first reading.

Example 8.4.1. This is the routing problem of Example 8.3.3 except that
a cost is allowed for changing the routing decmon The states are [(i1,i2), k"],
where 1 = (#;, i7) is the current buffer level and k¥ is the previous routing deci-
sion.

The ATAS is defined in Example 2.5.6. Recall that the content of each buffer
is limited to N customers and that the informational tag £ is carried along.

Let x = [(0, 0), 1} and y = [(0, 0), 2], and consider Ay. Since py and the
service rates are positive, it is clear that for any initial state and under any
stationary policy e, one of x or y may be reached. Hence e induces a MC with
at most two positive recurrent classes. There are four possibilities for decisions
made in {x,y}. If e(x) = e(y) = 1, then y leads to x and P, (¢) > 0. Hence ¢
induces a MC with a single aperiodic positive recurrent class. Similar reasoning
holds if e(x) = e(y) = 2. If e(x) = 1 and e(y) = 2, then P,,(¢) > 0 and P,,(e) > 0,
and hence e induces a MC with one or two aperiodic positive recurrent classes.
However, if e(x) = 2 and e(y) = 1, then there is a single positive recurrent class
containing {x,y}, and there is the possibility that this class is periodic.

For this reason we must effect the aperiodicity transformation on Ay dis-
cussed in Section 6.6. Let us assume that this transformation has been carried
out yielding Ay..

Recall Problem 7.11(iv). Its solution should show that the fixed splitting 4 from
Lemma 7.6.9 induces an irreducible positive recurrent MC with finite average cost
on the state space S. Note that d|N may be used to verify Proposition 6.4.1(v),
and hence the minimum average cost in Ay is constant. (This was proved for a
stationary policy but is also valid for a randomized stationary policy.)

Then it follows from Proposition 6.6.6 that the minimum average cost in Ay.
is given by 7J" and that the VIA may be carried out in Ay, yle]dmg a eohmon
to the ACOE for Ay. It is the case that V() = lim, .. .. @¥*() - v¥*()) is
a solution to (6.37). This verifies (ACI1).

To verify that (AC4) holds, we first show that (3.19) holds. Assume that the pro-
cess is in state [i, 1] and that action 1 is chosen. Then (3.19) becomes the require-
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ment that v, ([(V, 5), 1]) < v,([(r, 5), 1]}, where r > N and s is the auxillary variable
introduced in Example 8.3.3. This is clearly valid. Now assume that the process
is in state [, 1] and that action 2 is chosen. Then (3.19) becomes the requirement
that v,([(s,N),2]) < v,({(s,r),2]), where r > N and s is the auxillary variable.
This is clearly valid. Similar reasoning holds if the process is in state {i, 2].

Hence it follows from Proposition 3.3.4 that v) < v,. The verification of
(AC4) then follows exactly as in (8.4).

It remains to verify that (AC2-3) hold for r¥ *. We first show that (Ay) is
conforming at 4 by verifying that (C.37-38) hold and then applying Proposition
C.5.3. If d chooses 1, then (C.37) becomes myy, o). 11(d) < my,, . 11(d) for
r > N. This holds if the expected first passage times to x are increasing in the
first buffer content, with the second buffer content held fixed. This is intuitively
clear. If d chooses 2, then (C.37) becomes m(, v, 21:(d) < myy, ). 23(d) for r >
N. This is true by the same reasoning. Notice that to effect the first passage,
we make decisions randomly according to the fixed splitting 4 until we reach
an empty system at the same time that the previous decision was 1. Similar
results hold for the expected first passage costs. This verifies (C.37-38), and
hence (Ay) is conforming at d

We cannot claim that (Ay ) is “conforming at d” because the restriction of
dto AN does not induce an AS for the Markov chain induced by d, as defined
in Definition C.4.1. Nevertheless, let us see what can be deduced from the fact
that (Ay) is conforming at d.

Recall that d|N induces a positive recurrent MC on Ay (and on AN*) Hence
we need not worry about multiple classes or transient states. Smce the steady
state probabilities associated with d|N are identical for Ay and A", it is clear
that the convcrgencc of the steady-state probabilitics behaves properly. More-
over de = TJ,,W ~»1J4.

We need to examine the convergence of the mean first passage times and
costs. Problem 8.3 asks you to prove that

. — m¥(dIN),  j#i,
mz*(le) =47
my(dIN),  j=i,
N . R
N ¥ C"'(le), J ¥ i,
v N) = 4 .
Cij dIN) {n‘?}(d[N), j=i (8.8)

Let us see how (8.8) may be used to complete the proof. The verification of
(AC2) follows as in the proof of Proposition 8.2.1. To verify (AC3), note that
it is intuitively clear that

oL 1) 2 0V
o2 20y,  allin21. (8.9)
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This implies that r *(Ii, 1) 2 0. Moreover we have

PN, 2D) = @Y 2D - oY T+ ) ) - v )
2 v (y) - v ()
2 - cMMdIN)
= —cN(d|N). (8.10)

Since the last term converges to —c,,(d), it follows that (AC3) holds with O =
ny(d )- [

8.5 SERVICE RATE CONTROL QUEUE

In this section we give computational results for a special case of Example
8.3.2. Recall that this model is a single-server queue with service rate control.
We compute an average cost optimal stationary policy under the assumption
that the packet arrival process is Bernoulli. That is, there is a probability p of
a single packet arriving in any slot and a probability 1 — p of no arrival, where
0 < p < 1. The holding cost is given by H(i) = Hi, where H is a positive
constant. This is ProgramThree.

Under the assumption that p < ak, the basic assumptions are valid, and it
follows from Proposition 7.6.7 that any optimal stationary policy e is standard
with R, = [0, ). Moreover, if e realizes the ACOE (7.48) and breaks ties by
choosing to serve at the lowest optimal rate, then e(i) is increasing in [ and
eventually chooses ax.

So it is likely (unless there are ties) that the optimal policy computed using
(AC) will be increasing in i and eventually choose ax. Our computational
results bear this out. The optimal policy may be given as a sequence of K - |
intervals, with the first interval corresponding to service at rate a;, the second
to service at rate a,, and so on. The interval at which it is optimal to serve at
maximum rate is then obvious and may be omitted.

The expressions for the VIA 6.6.4 are given by

wa(0) = (1 — plu,(0) + pu,(1)
wo(i) = Hi + min{C(a) + a(l - p)u,(i — 1)

+[(1 = a)(1 - p) + aplu, (i) + (1 - a)pu,(i + 1)}, 1<i<N -1,
wa(N)=HN+ nzin{C(a) +a(l - pu,(N - 1)

+{(1 —a)l -py+ap+ (1 - a)plu.(N)}
g 4 1 (i) = wi(i) — w,(0), 0<igSN. (8.11)

The second and third equations in (8.11) may be evaluated in the same loop by
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introducing an auxillary variable that equals i + | for 1 i< N -1 and equals
N fori=N.

We would like to have a benchmark policy to compare with the optimal
policy. Assume that rate a satisfies p < a. Then the policy d(a) that always
serves at rate a has finite average cost and can be implemented with no buffer
observation. This is called open loop control. Our benchmark policy d serves
at the rate a that minimizes Jy,). That is, under d we serve at the constant rate
that yields J; = min,. , {Juw }.

In the case of non-Bemouili arrivals, the stability condition is A < a, and we
can calculate J,; by employing the same program that calculates the optimal
policy but reducing the actions to the single one a. Or a separate program to
do this efficiently can be given. However, in the case of Bernoulli arrivals, it
is possible to give a closed form expression for J ).

Proposition 8.5.1. Assume that a satisfies p < a, and let d(a) be the policy
that always serves at rate a. Then

Hp(1 - p) N pCla)

(8.12)
a-p a

Jdiay =

Proof: Let r = (1-a)p/la(1 - p)]. The steady state probabilities of the MC
induced by d(a) are given by my = 1 ~ (p/a) and =; = mer'/(1 — a) for i 2 1.
This can be shown by verifying that Proposition C.1.2(i) holds for these values.
Then the expression in (8.12) follows after some algebra. Problem 8.4 asks you
to fill in the details. O

Remark 8.5.2. 1t is intuitively clear (and may be proved by induction on
(8.11)) that if H and C(a) are multiplied by a positive constant, then the optimal
average cost is multiplied by that constant, and the optimal policy is unchanged.
For this reason we assume that H = | in all our scenarios. We may then examine
the effect of a cost of service small relative to 1, as well as the effect of a large
cost of service. Whether a service rate option is less than p or greater than p will
be seen to be a crucial factor. In all scenarios we used the weaker convergence
criterion (Version 1) of the VIA. I

Remark 8.5.3. Consider the situation in which there are just two service
rates. ln*this case the service rate cost is linear in the rates, and we have C(a) =
Ca+ C7, where it is easily seen that

a — a
c* . Caa - Claar (8.13)

ay — 4y
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We know from Proposition 7.6.7(ii} that if C * > ~1, then the benchmark policy
d(a;) is optimal. This can be intuitively explained by observing that in this case
the cost of higher service is not a great deal more than for slower service, and so
it always pays to serve at the higher rate. However, if C* < -1, then higher-rate
service costs a great deal more than lower-rate service, and it may be optimal to
serve for a while at the lower rate. We will use this result to check the program.

0

Scenarios 8.5.4. Here K = 2. The results are summarized in Table 8.1. A
dash indicates that the entries in that box are identical with the corresponding
box in the previous column. The row labeled J; gives the value of a yielding
the benchmark policy and the average cost under that policy. The row labeled
J contains the approximation generated by the program. Proposition 7.6.7(iii)
implies that the optimal policy eventually serves at maximum rate, and hence
the policy may be indicated by a single interval that gives the buffer content
for which it is optimal to serve at the slower rate. Note that & means that it
is optimal to serve at maximum rate. Because the program printout is given in
four columns, we choose N divisible by 4. For most of the scenarios we selected
N = 96 and € = 0.00005, and then N = 120 and ¢ = 0.000005. It was always
the case that the optimal policy was immediately indicated and unchanging for
large N. In fact, in these examples, the optimal policy is typically determined
for much smaller values of N. However, determining an approximation to J
accurate to three decimal places neccwtatee the larger N and smaller «.

In Scenario 1 it is the case that C* > —1, and hence we know that it is optimal
to serve at maximum rate This is confinmed by the program. In the rest of the
scenarios we have C* < —1, and it turns out to be optimal to initially serve at
the slower rate.

In Scenario 2 the system is stable under both rates. It is optimal to serve at
the slower rate when the buffer content is no more than 4. In Scenario 3 the
system is unstable under the slower (free) rate, and it is only optimal to serve
at this rate when there is a single packet in the buffer. Scenario 4 examines
this system when the faster rate costs twice as much as under Scenario 3. The
content under which it is optimal to serve at the slower rate only increases from
1 to 2. Under Scenario 5 the system is stable under both rates and the higher
rate costs 20 times the lower rate. In this case it is optimal to serve at the slower
rate for a buffer content of no more than 5. Scenario 6 examines this system
when the costs of both rates from Scenario 5 are multiplied by a factor of 5. In
this case it is optimal to serve at the slower rate for buffer content of no more
than 18. Scenarios 7 and 8 have large packet arrival rates.

In conclusion we see that if the queue is unstable under a given rate, then
this rate will be used sparingly, even if it is free. a

Scenarios 8.5.5. Here K = 3. The results are summarized in Table 8.2,
The optimal policy may be given as two intervals, with the first indicating the
buffer content level at which the controtler should serve at slowest rate, and the
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second the level at which the controller should serve at the middle rate. Thus
(D means that it is optimal to serve at maximum rate.

In Scenario | we have C(a) = 2a + 0.5, and hence according to the theory
it is optimal to serve at maximum rate. This is confirmed by the program. In
Scenario 2 the costs are moderate, and the queue is unstable under the slow-
est service rate. The optimal policy never uses the slowest rate and switches
from the middle to the fastest rate for buffer content of 4 or more. Scenario 3
examines the effect of making the slowest rate free, of drastically reducing the
cost of the middle rate, and doubling the cost of the fastest rate. The optimal
policy still does not employ the slowest rate; the content at which it is optimal
to switch to the fastest rate moves up modestly from 4 to 8. In this case the
minimum average cost and the average cost under the benchmark policy are
identical to three decimal places.

Scenario 4 has two inexpensive rates yielding unstable queues and a highly
costly fastest rate. Scenario 5 examines the effect of reducing the cost of the
middle rate and increasing the cost of the fastest rate. The optimal policy is
modestly changed.

The queue under Scenario 6 is stable under all the rates. The fastest rate is
very costly compared to the others. We know that at some point it is optimal to
switch to this rate, but this point was not located for N = 1000. In the normal
range of operation it is optimal to serve at the second fastest rate for content
of 6 or more.

The queue under Scenario 7 is unstable under the free slowest rate, and it
is optimal to serve at this rate when the buffer content is 1 and to switch from
the middle to the fastest rate when it reaches 9. See Fig. 8.1.

The queue under Scenario 8 is stable under all three rates. In this interesting
example it is never optimal to use the middle rate. O

8.6 ROUTING TO PARALLEL QUEUES

In this section we give computational results for a special case of Example
8.3.3. Recall that this concerns the routing of batches of packets to one of two
parallel servers. We compute an optimal policy under the assumption that the
packet arrival process is Bernoulli (p), as in Section 8.5. The holding cost for
i = (i1,0) is Hyiy + Hyiz, where H, and H, are positive constants. This is
ProgramFour.

Under the assumption that p < u; + u> the basic assumptions are valid, and
it follows from Proposition 7.6.10 that the (CAV™) assumptions hold and any
optimal stationary policy is positive recurrent at x = (0, 0). Then from Theorem
7.5.6 we see that the optimal stationary policy realizing the ACOE is x standard.

Under the stability condition we have p =: p/(u; + p3) < 1. A system
with small p is called lightly loaded, one with moderate p is called moderately
loaded, and one with p close to 1 is called heavily lpaded.

Let us develop the equation for the VIA 6.6.4. A couple of notational devices
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Rate: 0.7 0.85 095
Cost: 0 10 25

0 —
1 0.7 H@)=i
2
3
4
5 0.85
6
7
8
9 0.95
10
08

Minimum average cost 11.577
Figure 8.1 Scenario 7 from Table 8.2.

will facilitate this. Let g) equal i1 + 1 if0<i{; <N -1andequal Nif i; = N.
The variable g, is defined similarly. Let s; equal i; - 1 if 0 <i; <N and equal
0 if iy = 0. The variable s, is defined similarly.
We now develop some pieces that will be combined to form the expression
in Step 2 of the VIA. These pieces are constructed to hold for all states i.
Let

() = (1 = ) X1 — pua(iy, i2) + i (1 — p2dun(sy, i2)
+ (1 — ppou,(iy, $2) + pipaun(s), 52). (8.14)

This is what is expected to happen if there is no arrival. It is independent of
the routing decision.
Let

0@ = (1~ L = p2)dunlgy, i2) + (L — podin(sy + 1,82)
+ (1 — p)pabn(qr, 52) + pypain(s; + 1, 52). (8.15)

This is what is expected to happen if routing decision 1 is chosen and there
is an arrival. The expression z is defined analogously and represents what is
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expected to happen if routing decision 2 is chosen and there is an arrival. The
reader should check that (8.14-15) indeed hold for every state.
The VIA equations become

wa(i) = Hiy + Haiy + (1 = pYya(i) + pmin{z) (@), 22},
U+ (D) = wu(i) — wi(x). (8.16)

We now construct a benchmark open-loop policy to compare with the opti-
mal policy. It is a naive benchmark in that we can actually do better with open-
loop control (see the Bibliographic Notes). We employ it because it has the
virtue of being easily understood and its average cost is readily computed.

Recall that in Lemma 7.6.9 we showed that there exists a fixed splitting
inducing a standard MC on S. The optimal fixed splitting is the fixed splitting
with minimum average cost and this is our benchmark.

Proposition 8.6.1. Let € = w1 + uz2 - p > 0. The average cost under the
optimal fixed splitting d* is specified by the following cases:

Case 1: If Hy = Hy (=H) and g, = p», then Jy* = Hp(2 - p)/e.
Now let 81 = v/ (1 — py) and B2 = v/p2(l — pz). Define
Hy(py = ) = (- x))

X

F(x)=

. Hylpz +x — €)1 ~ (p2 + x — €)]
€—Xx

. O<x<e. 8.17)

Case 2: If H; = H, and g, ¥ u», then J 4 = FleB1/(B: + 82)].

Case 3: If H, # H,, then find x*, with 0 < x™ < ¢, satisfying
2 2
1+(§-'-)}..H2[1+( Bz,,,)]. (8.18)
Xk €~ X

Proof: Let d(q) be the fixed splitting that sends a packet to buffer 1 with
probability g and to buffer 2 with probability I - ¢. This splitting has finite
average cost if pg < u; and p(1 - q) < uy. Observe that each buffer acts as an
mdependent single-server queue with fixed service rate. The average cost under
d™ is the sum of the average cost for each buffer. From Proposition 8.5.1 it
follows that

H,

then J4u = F(x™).
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Hipg(l ~ Hop(1 - )l - p(1 -
Ja = gl —pg) | Hop(d - It - p(1 - 9] (8.19)

B —Pq p2 - p(l - q)

We sketch the rest of the proof, with the details left as Problem 8.7. If we
express (8.19) in terms of u;, u2, €, and the unknown x = u; - pq, then we
obtain (8.17). The left side is called F(x). The stability requirements become
O<x<e.

To minimize F(x), we solve F'(x) = 0. After some tedious algebra this
reduces to (8.18). Thus the value x~ yielding the minimum is the solution of
(8.18) and J . = F(x").

It is easy to see that in Cases 1 and 2 we obtain the stated results. To imple-
ment the solution under Case 3, we can solve (8.18) using bisection or another
method for finding roots. O

It is easy to see that if both H; and H, are multiplied by a positive constant
U, then J is multiplied by U and the optimal policy is unchanged. For this
reason we may assume that H, = [ in all our runs. We employ Version 1 of the
VIA.

Checking Scenarios 8.6.2, In the first scenario we set H; = 1, Hy = 0,
p = 0.6, u = 0.8, and py; = 0.7. Since it costs nothing to be in the second
buffer, the optimal policy should always choose 2, and the minimum average
cost should be 0. This is confirmed by the program. In the second scenario H,,
H,, and p are as above, and u; = 0.5, and , = 0.4. Since it costs nothing to
be in the second buffer, the optimal policy should always choose 2, and the
minimum average cost should be 0. This is confirmed by the program. Notice
that in this case the second queue is unstable.

In the third scenario we let Hy = 2, Hy =1, p=0.7, py = 0.01, and u> = 0.9.
Since the holding cost in the second buffer is smaller than that in the first buffer
and since the service rate in the first buffer is very small, we would expect the
optimal policy to almost always choose 2 and J = 1.05 from (8.12). This is
confirmed by the program, b

Scenarios 8.6.3. In these scenarios weset Hy = Hy = landpy = g2 (=
). Here J represents the minimum average number of packets in the system. It
can also be taken as a measure of the minimum average total system delay. Recall
that an arriving packet is not “counted” in the system until the slot following its
arrival (in this model the arrival slot is devoted to routing, and hence the packet
is not available for service). It is intuitively clear that the optimal policy routes an
arriving packet to the shortest queue, and this is confirmed by the program. Hence
our interest does not lie in computing the optimal policy but rather in comparing J
with J 4. The comparison shows the reduction in the average number in the sys-
tem gained by observing the system and implementing the optimal policy com-
pared with exercising open loop control using the best fixed splitting.
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Table 8.3 Results for Scenarios 8.6.3

Scenario 1 2 3 4 5
P 03 0.6 0.6 0.8 0.8
© 0.7 — 04 0.9 0.5
p 0.21 0.43 0.75 0.44 0.8
Jar 0.4636 1.05 42 0.96 4.8
J 0.4336 0.8969 24517 0.8951 2.5486
Savings 0.03 0.1531 1.7483 0.0649 2.2514

The results are in Table 8.3. Under Scenario 1 we have a lightly loaded sys-
tem in which the optimal policy effects a reduction in the average number in the
system of 0.03/0.4636 = 6%. Under Scenario 2 we have a moderately loaded
systern, and the reduction in the average number in the system is 15%. Under
Scenario 3 we have a fairly heavily loaded system in which the average num-
ber of packets is reduced by 42%. Scenario 4 represents a moderately loaded
system, and the average number of packets is reduced by 7%. Scenario 5 is a
fairly heavily loaded system with a reduction of 47%.

For these examples we chose N = 39 with a tolerance of 5 x 10" and
confirmed with N = 47 and a tolerance of 5 x 1070, The value of J is actually
determined quite accurately for much smaller values of N.

Consider a fixed state i. If one of the coordinates of i is close to the boundary
N, then the calculated optimal decision may be incorrect. The reason for this is
the weak convergence criterion in Version 1 of VIA 6.6.4. There are two ways
to mitigate this. The first way is to use Version 2, which will increase the run
time. The second way is to increase N. As N is increased, a given state will
receed from the boundary region, and the calculated optimal policy in that state
will pull in. The second way requires more memory and also a modest increase
in the run time. An additional factor in this particular case is that some of the
values in the minimization in (8.16) may be equal, causing an ambiguity. [

Scenarios 8.6.4. Table 8.4 presents results for the more general case in
which the holding costs and/or the service rates are unequal. The first three
scenarios have holding costs equal to 1 (and hence we are finding the minimum
average number in the system) but unequal service rates. Scenario 1 is a lightly
loaded system. The reduction in the average number in the system is 7%,

Let us explicate the optimal policy given for Scenario 1. See Fig. 8.2. Clearly
the controller will favor buffer 1; however, when this buffer reaches a certain
level, then the controller will switch to buffer 2. The entries indicate the switch-
ing points for fixed levels of buffer 1. For example, if /y = 6 or 7, then the
controller will route an arriving packet to buffer 2 if 0 < i; < 4. The other
entries are intepreted similarly. This defines a switching curve, and it could be
given graphically. For the discrete situation in which the optimal policy will be
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Table 8.4 Results for Scenarios 8.6.4

Scenario 1 2 3 4

P 03 0.5 08 0.9

B 0.7 0.6 0.7 0.8

w2 0.5 04 04 0.8

p 0.25 0.5 073 0.63

H; 1.0 1.0 1.0 1.0

H, 1.0 1.0 1.0 20

Jax 0.520 1.420 2.897 2.001

J 0482 1.090 1.792 1.508

Savings 0.038 0.330 1.105 0.493

Optimal (L@ n (LO2. b 2, D642 (2<isid D
policy 34.2)65.3) (34, 2) (5.3)(6-7,4) (14<i <£30,2)

(6-7,4) 8,5 (53,0674 (895 (10,6
(9-10, 6) (8, 5) (9-10, 6) (11-12,7)
(11, 7 (12, 8) (11, 7) (12-13, 8) (13-14, 8)

(13-14, 9 (14-15, 9 (15, 9)
(15, 10) (16, 10) (16-17, 10)
(16-17, 11) (17-18, 11) (18-19, 11)
(18, 12) (19, 13) (19, 12) (20, 13) (20, 12)
20, 14)

implemented through table lookup, it is more efficient to give the policy as we
have done in Table 8.4.

We might conjecture that the optimal policy operates by routing an arriv-
ing packet to the buffer that minimizes its expected system time. This is the
individually optimal policy, since it is what the packet would choose to do if it
had the freedom to route itself. However, the optimal policy does not operate
quite this way. Assume that a packet arrives to find the system in state (1, 0).
If it is routed to buffer 1, then its expected system time (less the arrival slot) is
(0.7)(1/0.7) + (0.3)2/0.7) = 1.86. This is found by conditioning on what hap-
pens to the packet in buffer 1 during the arrival slot. If it is routed to buffer 2,
then its expected system time is 1/0.5 = 2. Hence the packet would send itself to
1, whereas the optimal policy sends it to 2. This shows that the optimal policy
(which may be regarded as socially optimal) is not the same as the individually
optimal policy. However, for many of the entires on the switching curve, the
socially optimal and individually optimal decisions do coincide. (For the case
of equal service rates, the socially optimal and individually optimal policies
coincide.)

For these scenarios we chose N = 47 except for the last one, for which N
= 59. Because of the weak convergence criterion we can only be confident
of the optimal policy away from the boundaries and, as a rough rule of thumb,
for states with coordinates not more than N/2. This can be mitigated as pre-
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Rate Rate
0.5

H,=1

j=}
> s
[————‘ = o x 3
L A1
&
L]
-

Router

0.3
Minimum average number

of customers 0.482
Figure 8.2 Scenario | from Table 8.4.

viously discussed, either through changing the convergence criterion or by
increasing N.

However, notice that there is another way to look at this. For Scenario | the
minimum average number in the system is less than 0.5, so it will be extremely
rare for either buffer content to be above 20. If the optimal policy is given as
in Table 8.4, then on those rare occasions in which the content of buffer |
exceeds 20 we could simply implement the best fixed splitting. The resulting
policy should be quite close to optimal.

Scenario 2 is a moderately loaded system. The reduction in the average num-
ber in the system is 23%. Scenario 3 is a somewhat heavily loaded system, and
the reduction in the average number in the system is 38%. In Scenario 4 the
service rates are equal but it costs twice as much to hold packets in the sec-
ond buffer. See Fig. 8.3. The optimal policy strongly favors the first buffer. For
example, if i; = 20, then an arriving packet will be routed to the second buffer
if and only if its content is less than or equal to 2. The reduction in the average
holding cost is 25%. 0

Remark 8.6.5. When the average number in the system is being minimized,
these scenarios allow us to give some very rough guidelines on the percentage
reduction that can be expected from employing the optimal policy. When the
system is lightly loaded, reductions around 5-10% may be effected. When the
system is moderately loaded, reductions around 15-25% may be effected, and
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Rate Rate
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Router
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number of customers 1.508

Figure 8.3 Scenario 4 from Table 8.4.

when the system is somewhat heavily loaded, reductions around 30-50% may
be effected. O

8.7 WEAKENING THE (AC) ASSUMPTIONS

For some models it is not possible to verify the (AC) assumptions. In these
situations it is useful to have a weaker set of assumptions under which the
conclusions of Theorem 8.1.1 remain valid. We will not attempt to find the
absolutely weakest conditions under which the conclusions of Theorem 8.1.1
hold. Rather, we give a useful set (WAC) of assumptions under which they
hold. It will be clear from the proof of Proposition 8.7.1 how to further weaken
(WAC) if necessary.

The idea is to weaken (AC3) by allowing O to be a function. This necessi-
tates some additional assumptions. We have (WACI1), (WAC2), and (WAC4)
identical to their (AC) counterparts. The new assumption (WAC3) will be given
in two parts.

(WAC3;). There exists a nonnegative (finite) function Q on § such that
~Q() S liminfy . o r¥(@) =: u(i) fori e S.

(WAC3,). Let e be a stationary policy for A and X = i an initial state.
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Then:

(l) limN - ZJE Sn ij(e;N)Q(.]) = ZJ Plj(e)Q(J) < oo,
@ii) ~eo < E [u(X,)] forn 21,
(iti) liminf, - . E Ju(X,))/n 2 0.

Suppose that (AC) holds. If we let Q() = Q from (AC3), then it is easy to
see that (WAC3) holds. In this case, both summations in (WAC3,)(i) equal Q.
Hence (AC) = (WAC), and the latter is a weaker set of assumptions. Here is
the existence result under (WAC).

Proposition 8.7.1. Assume that the (WAC) assumptions hold. Then the
conclusions of Theorem 8.1.1 are valid.

Proof: We proceed as in the proof of Theorem 8.1.1 noting that w 2 u, up
to (8.2), which may be written

JNv+va(i)+ 2 P,‘j(e*;Nv)Q(j)

je Sy,

= Clhey+ ) Pyle s N{F () + QD). (8.20)

j€ Sny

Note that the term added to both sides is finite, since it is a summation over a
finite set. We then take the limit infimum of both sides and employ Proposition
A.1.8 and (WAC3;)(i) to obtain (8.3).

We now apply the proof technique from Lemma 7.2.1. This requires that
—~o0 < Eo.fw(X,)} < oo for all #n. The right inequality follows as in the proof of
Lemma 7.2.1, while the left inequality follows from (WAC3;)(ii) and the fact
that w 2 u.

We may then proceed as in the proof of Lemma 7.2.1 where (7.7) becomes

Uex (1) <Jo+ w(i) -~ Eo[w(X,)] )
n n

(8.21)

Taking the limit supremum of both sides and using (WAC3; )(iii) yields J, (i) <
Jg. The proof is then completed as before. O

BIBLIOGRAPHIC NOTES

The approximating sequence method was originally developed for computing
average cost optimal policies, and the (AC) assumptions were introduced in
Sennott (1997a) with further results given in Sennott (1997b). The original ver-
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sion of (AC) was based on the relative value function hﬁ’ from Theorem 6.4.2.
We would like to thank Dr. Eitan Altman for the suggestion that we give (AC)
in terms of a general solution to the ACOE in Ay, which is the version given
here.

Thomas and Stengos (1985) give a method for the computation of optimal
average cost policies in denumerable state space MDCs. Their method assumes
that the costs are bounded and in addition assumes a condition guaranteeing
the existence of a bounded solution to the ACOE. It is clear from the results
in Chapter 7 that this is a very limiting assumption that fails to hold in many
models of interest. While this assumption renders a direct comparison of the
methods quite difficult, it appears that one of the value iteration schemes is the
same as our ATAS that sends the excess probability to a distinguished state.
The paper also gives some approximate policy iteration algorithms.

Van Dijk (1991) discusses an MDP 1 and a related MDP 2. Under certain
assumptions it is possible to give a bound on the difference between the mini-
mum average costs in 1 and 2. An example of Van Dijk is related to an ATAS
that maps excess probability in a state i to a state that is a function of i. The
method is applied to a particular network model, and some computations are
presented. The quantity that is computed is the bound, and the minimum aver-
age cost and optimal policy are not indicated. The ideas in this paper may give
an avenue to develop bounds on the convergence of the minimum average cost
in Ay to the minimum average cost in A. We have not treated this topic, and
it remains a fruitful direction for further exploration.

The material in Sections 8.2-4 appears in a somewhat different form in Sen-
nott (1997a, b). The ideas behind the notion of conformity are detailed in the
Bibliographic Notes to Appendix C. The example in Section 8.5 appears in
Sennott (1997a), and the routing example from Section 8.6 appears in Sennott
(1997b). The assumptions given in Section 8.7 further generalize the assump-
tions in Sennott (1997a), The ideas paraliel the development in Section 7.7,

There has been a large amount of work on the model of routing customers
to parallel queues. Most of this work attempts to characterize optimal policies,
develop bounds, or find good suboptimal policies. To the best of our knowl-
edge there has been no attempt to calculate optimal policies or values. We will
highlight a few results.

Much of this work considers the model in continuous time and assumes that
the servers are exponential and the customer arrival process is Poisson. If there
are finitely many servers serving at the same rate, then Winston (1977) proves
that the policy of sending an arriving customer to the shortest queue maximizes
roughly the discounted number of service completions in any finite interval
[0, T]. Weber (1978) extends this result to a general arrival process and servers
with nondecreasing hazard rates.

Hajek (1984) is a seminal paper treating a related model with two stations
and proving that the optimal policy is described by a switching function.

For the case of Poisson arrivals and unequal rate exponential servers, Krish-
nan (1987) introduces a heuristic based on the optimal fixed splitting. This
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method performs a calculation based on the current state and the optimal split-
ting and chooses an action based on that calculation that will give better per-
formance than the optimal fixed splitting.

Stidham and Weber (1993) is a survey stating results on the routing problem
and related models with many additional references.

There is a line of development that considers open-loop routing that per-
forms better than the optimal fixed splitting. Assume that there are K parallel
buffers. The idea is to construct a deterministic sequence of integers k, with
1 £ k £ K, such that if a customer arrives and the value of the sequence is
k, then that customer is routed to server k. The sequence can be constructed
so that the average number in the system is less than under a standard random
implementation of the optimal fixed splitting. Hajek (1985) initiated this line of
research and showed how to construct the sequence for K = 2. Rosberg (1985)
develops a certain sequence for K 2 2. See also Arian and Yevy (1992). Milito
and Fernandez-Gaucherand (1995) examine the problem for a fixed number of
arrivals. Shanthikumar and Xu (1997) examine a related problem.

PROBLEMS

8.1. Consider the model in Problem 7.14, but with no cost for changing the
decision. Let the ATAS be defined as in Example 8.3.3. Verify that the
hypotheses of Proposition 8.2.1 are satisfied.

8.2. Consider Example 8.3.4 modified so that some p; may be 0. In particular,
assume that 0 < pg and sup{j|p; > 0} - eo. Verify that the hypotheses of
Proposition 8.2.3 still hold.

*8.3. Verify (8.8). Hint: For i # j, what is juy(d|N)*?
8.4. Fill in the details in the proof of Proposition 8.5.1.

8.5. Run ProgramThree for the following scenarios, and discuss the results.
Be sure to set N and NUMACT (=K) appropriately for each run.
(a) p=0.6,a; =065, a; = 0.9, C(a) = 1.95, and C(a;) = 2.7.

(b} p=0.8, a, = 0.8, a; = 0.85, Clay) = 0, and C(ay) = 20.

() p=105,a; =048, a; = 052, a; = 0.8, C(a;) = 0, C(az) = 0.5, and
Clas) = 10.

@ p=074a=07a,=08a=09, a; =099, Cla;)=0, Clay) = 1,

8.6. Make up some scenarios of your own for ProgramThree, and discuss the
results,
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8.7.

8.8.

8.9.

8.10.

Fill in the details in the proof of Proposition 8.6.1.

Consider the routing model under the conditions in Scenarios 8.6.3,
Recall that in this case J is the minimum average number of packets
in the system, a quantity that is related to the total average system delay.
Let D be the delay suffered by a randomly arriving packet (including the
arrival slot) under the optimal policy e (which routes an arriving packet to
the shorter buffer and, if the buffers are equal, then routes it to buffer 1,
say). We develop an expression for E[D]. Let Jy be the average number
of packets in the shorter buffer, and let U be the probability that at least
one buffer is empty (both under the policy ¢ in steady state). Prove that
EDI=U+(1+2Jo)/u S 1+ (L +J)/u. Hint: Show that the probability
that an arriving packet finds the system in state i in steady state is equal
to wi(e).

Run ProgramFour for the following scenarios, and discuss the results:
@ p=04,p;=p=04, H=Hy= 1.

(b) p= 0.7, K= 0.7, B2 = 0.3, H] = H2 = 1.

€ p=09, 11 =06,p,=05H =H,=1.

(d) p=06, gy =07, =07, Hy =1, H: = L5.

Consider a system (see Fig. 1.5) with two independent geometric servers,
with server 1 serving at rate u; and server 2 at rate u;, where 0 < gy <
p: < L. Batches of packets arrive to an infinite capacity buffer with p; = P
(a batch of size j arrives in any slot), where 0 < py and A > 0 is the mean
batch size. The arrival of batches is independent of the service times.
An arriving batch is “counted” in the buffer at the beginning of the slot
following its arrival.

At that time, if the buffer is nonempty and server 2 is free, then the
packet at the head of the line is instantaneously routed to server 2 and
begins service. If server 2 is busy but server 1 is free, then the controller
has two choices: @ = route the packet to server 1, and b = allow server
I to remain idle. Last consider the situation in which there are at least
two packets in the system and both servers are free. Then the packet
behind the one routed to server 2 may be instantaneously routed to server
I (action a) or held in the buffer (action b). This takes place simultane-
ously with the routing of the head packet. It is helpful to make a sketch
showing the possibilities.

It is desired to compute a policy that minimizes the total average num-
ber of packets in the system. This problem will guide you through setting
up an MDC to model this system and verifying that the (AC) assumptions
hold for a suitable approximating sequence.

(a) Let s be an ordered pair of 0’s and 1’s indicating whether or not a
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server is busy, with 1 indicating “busy.” An appropriate state space
S consists of all pairs (7, s). What does i represent?

{b) Which of the states have a single action (and what is it), and which
have action set {a,b}?

(c) What is the cost in state (i, $)?

(d) Develop the transition probabilities.
This completes the modeling of this system as an MDC A. Define
an ATAS (Ay) by letting Sy = {(i,s)|i < N} and sending the excess
probability to N. Let us verify that the hypotheses of Proposition 8.2.1
hold.

(e) Show that any stationary policy e for Ay is (0, 0) standard and has
an aperiodic positive recurrent class.

{f) Argue informally that Steps 3(i) and 4(i) hold.

(g) Assume that N < p; +pu2, and let d be the policy that always chooses
a. Prove that d induces an irreducible positive recurrent MC on S.
Hint: Use Corollary C.1.6 with test function y(i, 8) = i + #in service.

*(h) Assume the results in (g) and in addition that the second moment
A® of the arrival process is finite. Prove that d is standard. Hine:
Use Corollary C.2.4 with test function r(i,s) = K(i + # in service)?
for some positive constant X,
(i) Argue that (C37-38) hold for (0, 0) and the MC induced by d.

This problem was treated, in the continuous time framework, by Lin and
Kumar (1984} who proved that the optimal policy is of threshold type;
that is, server 1 will idle until the buffer content reaches a certain level.
A procedure for calculating the threshold is also given. Also see Shenker
and Weinrib (1989). An advantage of our approach is that it generalizes
to more than two servers. The optimal policy can then be found com-
putationally. However, the dimension of the state space and the number
of possible transitions both increase rapidly with the number of servers.
Various observations on the obvious behavior of an optimal policy can
be made to somewhat reduce the number of actions one needs to con-
sider. Notice that in the problem formulation above we require a packet
to be sent to server 2 if it is free. This must be true of the optimal policy,
since we wish to minimize the total average number in the system and
there is no penalty for employing the faster server. Building this in as a
requirement (rather than proving it) simplifies the analysis.
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CHAPTER 9

Optimization Under Actions at
Selected Epochs

In this chapter we consider systems in which actions are available only at
selected slots, known as epochs, rather than at every slot. This appears to be
a dramatically new situation that the previous theory would be inadequate to
handle. However, it will be seen shortly that these systems may be modeled as
MDCs and hence that the previously developed theory applies. For this reason
little new theory is needed, and this chapter concentrates on showing how the
method works in examples.

Section 9.1 discusses a modeling dichotomy, namely whether a random quan-
tity such as a service time is adequately determined by a single sample or must
be repeatedly sampled as the service evolves. Section 9.2 deals with the theory
behind repeated samples.

Section 9.3 presents models involving service control of a single-server
queue, and Section 9.4 presents models involving arrival control of a single-
server queue. Sections 9.5 and 9.6 verify that the computation of an average
cost optimal policy may be carried out for two of the service control examples.
Sections 9.7 and 9.8 present computational results for two of the models.

9.1 SINGLE- AND MULTIPLE-SAMPLE MODELS

Let us assume that we wish to repair a machine, and let Y denote the repair
time. Here Y is a discrete random variable on the positive integers {1, 2, ...}.
It may have a bounded or an unbounded distribution.

As an example, consider the situation in which there are three possible failure
modes. These modes are repaired by replacing certain boards, and as soon as the
appropriate mode is determined, then it is a matter of replacing the boards for that
mode, which takes a fixed amount of time. Assume that mode 1 repair takes 5 units
of time, mode 2 repair takes 6 units, and mode 3 takes 9 units. Assume further that
the probability of a mode 1 failure is 0.25, the probability of a mode 2 failure is

199
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0.35, and the probability of a mode 3 failure is 0.40. Then the repair time Y has
distribution P(Y = 5) = 0.25, P(Y = 6) = 0.35, and P(Y = 9) = 0.40.

In this case it is reasonable to assume that a single sample from the distribution
of ¥ is sufficient to remove all ambiguity. If a sample from the distribution yields ¥
= 5, then we can reasonably assume that it will take exactly 5 units of time to repair
the machine. This is known as a single-sample (§8) model. The idea behind an SS
model is that one observation of the underlying distribution suffices to remove all
ambiguity and from then on the situation behaves deterministically.

Now consider another machine. Assume that it has several failure modes.
The situation is further complicated by the fact that as repairs are being made,
it may be discovered that further work is necessary. An initial determination of
a failure mode may not be sufficient to predict how long it will take to actually
repair the machine. Let us assume that careful records kept over a period of
time indicate that the total repair time Y is well-modeled by a truncated Poisson
distribution with mean A = 3 hours. This means that

-3 . -3 v
PY - y) = L /(lv'e 3

0.0524(3)"
- W”_}_y’_‘l_’ y2 1. ©.1)

The factor in the denominator comes from the fact that the truncated Poisson
distribution is not allowed to assume the value 0.

The service takes at least one slot (one hour equals one slot). Assume that we
have been repairing the machine for one hour. There are two possibilities: Either
the repair is finished, or it is not finished. The probability that it is finished is
P(Y = 1) = 0.1572. The probability that it is unfinished is P(Y > 1) = 0.8428.
We may view this as our first sample. Namely we sampled to see whether or
not we were finished in one hour.

Now assume that we are not finished. Let ¥, be the remaining (residual)
repair time, and observe that it is at least one hour. Because uncertainty remains
concerning how long the residual repair will take, it is reasonable to let ¥, be
governed by the conditional distribution

PY,=y)=P(Y=y+1|Y>1)
~ PY=y+1)
PR Y>D
_ (0.0524/0.8428)3>!
B (y+ 1)
0.0622(3)*+!

R RS 2
Gril y2 1l 9.2)
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The residual repair time is a random variable ¥; governed by the distribution
in (9.2). Remember that this represents the remaining repair time.

We now repeat this procedure. Continue to repair the machine for another
hour. At the end of this time, either the repair is finished (having taken a total of
two hours) or it is not finished. The probability that it is finished is P(Y| = 1)

0.2358.) The probability that it is not finished is P(Y; > 1) = 0.7201.

Assuming that we are still not finished, let us repeat the argument. Let ¥,
be the residual repair time, and observe that it is at least one hour. We let Y,
be governed by the conditional distribution

P(Y=y)=P(Y=y+2|Y>2)
_PY=y+2)
- P(Y>2)
_ (0.0524/0.607)3 2
h (y+2)!
_ 0.0863(3)**?
(2!

y21. 9.3)

This process can be continued indefinitely. A model of this type is known
as a multiple-sample (MS) model.

It is important to realize that the SS and MS model types are independent of
whether the underlying distribution is bounded or unbounded. We now illustrate
this claim.

To illustrate an MS model with a bounded distribution, assume that Y is uni-
formly distributed over {1, 2, 3, 4}. Then under the MS model it is easy to see
that Y, is uniformly distributed on {1, 2, 3}, that ¥, is uniformly distributed on

after three slots, then it must terminate in the fourth slot.

To illustrate an SS mode] with an unbounded distribution, consider the trun-
cated Poisson distribution in (9.1). We may take a single sample from this dis-
tribution. It is likely to be around the mean, and in fact P(1 £ Y <5) = 0.9118.
Let us say that the sample yields Y = 4. Then it may be appropriate in certain
circumstances to assume that the repair time is deterministically four hours.

If you are given the task of modeling a system, should you use an SS model
or an MS model? This depends entirely on the physical situation and which one
would be perceived as more appropriate under the particular circumstances. It is
the case that an MS model will be somewhat more complicated mathematically.
However, this minor complication may be deemed worth the extra effort to
achieve good results from the model. It is also entirely possible that a system
may be most appropriately modeled with some distributions being SS and others
being MS.
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9.2 PROPERTIES OF AN MS DISTRIBUTION

Assume that the distribution of a random quantity is treated using the MS
model. In this case a certain restriction on the distribution will prove useful
if it is desired to verify the (AC) assumptions. This and related matters are
discussed in this section.

Let Y be a random variable representing the quantity being modeled, and let
its distribution be given by u, = P(Y = y)fory = 1, 2, 3, ... . Then F(y) =
P(Y < y) is its cumulative distribution, and the complement of the cumulative
is F*())=P¥ >y = l ~ F(y). Note that these quantities are defined for y =
0 with F(0) = 0 and F*(0) = 1.

1t is helpful to have a specific situation in mind to motivate the material. We
will assume that Y represents the length of service of a customer. However,
keep in mind that these concepts are general and apply to other situations. In
the service case F*( y) is the probability that the service lasts more than y slots,
i.e., the probability that it lasts at least y + 1 slots.

Here is an expression for the moments of Y involving F*.

Proposition 9.2.1.  We have E[Y] = 37 , F*(») and

k-1

E[Y*]:l-c»E(l;) Zy’r*(y) . k=2 (9.4)
v=1l

Proof: Note that
ElY)= i Yity
yel
- i YF*(y-1)-F*(y)
vl
= 2 F*(y), 9.5)

where we recall that F *(0) = 1. Writing out a few terms of the surnmation in
the second line gives the third line.
To prove (9.4), observe that
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ElY* =) yhu,
y=1

=Y YHE - D-FON
y=1
=F* O+ Y [ty+ D = YIF"()

y=1

= 1+i (i ( 'f) y‘)F*(y). 9.6)

zx0

Then (9.4) follows by interchanging the order of summation (valid since all
terms are nonnegative). O

Remark 9.2.2. 1t is clear from (9.4) that E[Y*] < oo if and only if
3yt IF(y) <oe, O

Now let us assume that the service has lasted for s slots and that it is not com-
pleted. Then Y, is a random variable denoting the residual (remaining) service
time. Generalizing the argument given in Section 9.1, we see that its distribution
is given by

PY,=y)=P¥=5+y|Y >5)

_P(Y=s5+y)
T OP(Y>s)

_ Usey

T FYs)’

yz L 9.7)

Notice that the distribution given in (9.7) for s = 0 coincides with the distribution
of Y. Hence we set Yy = ¥, and assume that (9.7) applies for s 2 0.

From (9.7) it follows that the complement of the cumulative distribution for
Y, is given by
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Fiy) =P, >y)
ZM ¥+l Uy iy
F (s)

_ F*(s+y)

9.8
6) 8.3)

Using (9.8) and Proposition 9.2.1 (applied to the distribution for Y;), it is
immediate that

0 F* R
E[Y.] = _2_.,___._‘-.{)_,,
F*(s)

k-1

Z( ) E‘F(Hv), . k22, (99
-\

y=1

E[Yf1=1+-

Notice that for s = 0 the expressions in (9.9) reduce to the results in Proposition
9.2.1.

The original development of these concepts had to do with reliability theory,
and in this case Y represents the lifetime of a component. For this reason E[Y,]
is known as the mean residual lifetime.

Proposition 9.2.3. Fix a positive integer k. Then E[Y*] < o implies that
E[Yf] <o forall s20.

Proof: This is Problem 9.1. 0

Here is an important property that may be possessed by the mean residual
lifetimes.

Definition 9.2.4. Assume that there exists a (finite) constant U such that
E[Y,] € U for s 2 0. Then the distribution of ¥ has bounded mean residual
lifetimes (BMRL). We denote this by BMRL-U. |

In a service time distribution that is not BMRL, if the service does not ter-
minate as time goes on, the expected additional service required grows without
bound. It is clear that any service with this property is undesirable, and hence
the BMRL assumption is fairly natural. Nevertheless, it does entail the follow-
ing strong consequence.

Proposition 9.2.5. If the distribution of Y is BMRL, then Y has finite
moments of all orders.
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Proof: Let U be the bound in Definition 9.2.4. Taking the reciprocal of the
first equation in (9.9) and manipulating yields

F*(s) 1
= e £ ] (9.10)
Z)’:S F*(y) U
Letting w(s) = Z;"‘ F *( ¥), it is easily seen that this becomes
w(s + 1) 1
<t — ]
e S 1 T (9.11)

Observe that w(0) = E[Y]. Applying (9.11) inductively, we see that w(l) <
E[YI(1 - 1/U), w(2) € w(1)(1 - 1/U) < E[Y](1 - 1/U)?, and in general w(s)
< E[Y](1 - 1/UY. Since w(s) = F *(s), this yields

F*(y)sE[Y](l— —E,-) y20. (9.12)

Then for k 2 2 we have

N k¥ N k-1 ____l_y o
Sy F(y)sa‘m;y (1 U)<, ©.13)

v=1
and hence it follows from Remark 9.2.2 that all moments of Y are finite. [

Problem 9.3 asks you to show that any finite (bounded) distribution is
BMRL. The next result shows that common infinite distributions are BMRL.

Proposition 9.2.6. The following distributions are BMRL.:

(i) Geometric
(ii) Negative binomial
(iii) Truncated Poisson

Proof: Assume that Y has a geo(u) distribution, where 0 < 4 < 1. Then
Y represents the number of repeated independent Bernoulli trials until the first
success 1s achieved, where P(success) = u. Then F *( y) = P(failure in first y
trials) = (1-p)”, and it is easily seen from (9.9) that E[Y,] = E[Y] = 1/u. In this
case the mean residual lifetimes are constant, which is what we would expect
from the memoryless property of the geometric.

Assume that Y has a neg bin(u, r) distribution, where 0 < u < | and r 2 2.
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Then Y represents the number of repeated independent Bernoulli trials until

exactly r successes are achieved. If ¥ > s, then s trials have been observed

without achieving r successes. It is clear that the expected additional time to

achieve r successes is bounded by the unconditional mean E[Y] = r/u.
Assume that Y has a trun Pois(\) distribution, where A > 0. Then

Y AY
P(Y=y)-= (‘—e—x) S ozl (9.14)

Using (9.7) and the definition of E[Y,] gives

S0 N (s + )

E[Y,)= =
[ ] z)ql }\5+y/(s+y)!

. 2\ . N2 . EAY .
‘ (s+2) (s+2)5+3) (+2Xs+3)(s+4)
) + A + N + N +

(s+2) (s+2(+3) (+2Xs+3)s+4)
2 3

S1+A+ ETIMETIM
=, (9.15)

The second line follows by factoring out and canceling the common term
A+ /(s + 1). Focus on the second line. Its denominator is bounded below by
1; hence its reciprocal is bounded above by 1. Its numerator is bounded by the
sequence in the third line, which is the power series for *. 3

Remark 9.2.7. Another proof of Proposition 9.2.6 is usually given. This is
based on a stronger concept than BMRL, namely that of increasing failure rates
(IFR). It is the case that IFR = BMRL and distributions with IFR possess many
nice properties. For more on this concept, see the references in the Bibliographic
Notes. We have not chosen to develop this topic further here. a

The distributions in Proposition 9.2.6 are the commonest infinite distribu-
tions on {1,2,...}. However, there is a wealth of others whose properties for
modeling have been little explored. Johnson and Kotz (1969) and Johnson et
al. (1997) contain a great deal of material on discrete distributions.
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9.3 SERVICE CONTROL OF THE SINGLE-SERVER QUEUE

In this section we show various ways to model the service time control of a
discrete time single-server queue. Some additional models are given in the prob-
lems.

Example 9.3.1. Batch Armivals with 8S Service Control. In each slot there
is a probability p; of a batch of j customers arriving for j 2 0, and the arrivals
are mdependent slot to slot. An amrival is counted in the buffer and available
for service at the beginning of the slot following its arrival.

There is a finite set A of actions with a € A corresponding to a particular
service time distribution, If Y, denotes the service time under action a, then
we let uy(a) = P(Y, = y), y 2 L. Also F, denotes the cumulative distribution
function of the service time, and P the complement of the cumulative. It is
assumed that a new service distribution may be chosen only at the beginning
of a service so that the whole service must be completed under the chosen
distribution.

The epochs of decision are the slots in which a new service is to begin. Under
the SS model, when action a is chosen, then the service time at that particular
decision epoch is determined by a single sample taken from the distribution
F,. Given the sample value, the service proceeds “lock step” until it is com-
pleted.

Let us see how to model this system as an MDC. The state space $ consists
of the following states: State O means that the buffer is empty; there are no
decisions in this state. State ¢ 2 1 means that there are { in the buffer, and a
new service is to be initiated; the action set is A. The service-in-progress states
are necessary to represent progress during a service of length at least 2. In this
case (i,s), for s 2 1, means that there are currently ¢ in the buffer and that
a service is ongoing and has s slots remaining until completion. Note that in
the service-in-progress states there are no actions (null action). (In state (i, 1)
we know that the service will be completed in the current slot, and hence we
might be tempted to want to choose the next service distribution at this time.
However, this is not allowed, since it is desirable to base the decision in part
on how many new customers enter during the final slot of service.)

We assume that there is a cost C(a) for choosing action a (incurred at the
beginning of the service) and a cost rate d(s) for having an ongoing service with
s slots remaining until completion. In addition a holding cost H(i) is incurred
when there are i customers in the buffer (including the one currently in service),
where H(0) = 0. For example, if the system is in state (8, 2), then we know
that there are currently 8 customers in the buffer and that 2 slots remain in a
service (this does not tell us how many were in the buffer when the service
began). Since there is no action in state (7, s), we can commit a slight abuse of
notation and denote the cost as C(i, s). The cost structure is given by C(0) = 0
and
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Cl,a)= Hi) + C(a),
C(i,s) = H@GQ) + d(s), i21. (9.16)

Note that under a, a service of length 1 incurs a total c_oslt of C(a), whereas a
service of length y 2 2 incurs a total cost of C(a) + 3., d(s).
The transition probabilities are given by

POj :pj’

Pi i 14a) = pjuila),
Piisjy- v(@) = pjuya), y22,

Py syivjos-1) = Pjs 522,
' ! 9.17
{Pu.m-n,‘:pj. 9.17)

This completes the specification of this model as an MDC. We may then
optimize it. Either the infinite horizon discounted or the average cost criterion
is perhaps more suitable than the finite horizon criterion. 0

Example 9.3.2. Batch Amivals with MS Service Control. The arrival pro-
cess and service time distributions are as in Example 9.3.1. However, when
action a is chosen, then service is begun under F, as explained in Section 9.1.
As service continues, its additional time is determined from the residual life-
time distributions. So at the beginning of the service, it is not known how long
the service will take.

To model this as an MDC, let S be as in the previous example except that
the service-in-progress states are (i,a,s5) for a € A and s 2 1. The state (i,a,s)
means that there are currently 7 in the buffer, that a service is ongoing under F,,
and that the service has lasted for s slots and is not completed. If the distribution
governed by a is finite with maximum value B,, then we have s £ B, — 1.

Let us assume that the cost C(a) is incurred when action a is chosen and
that a cost rate of d(a) is incurred for each unit of time (after the first slot) that
service is ongoing. A holding cost H (i) is incumred when there are i customers
in the buffer (including the one currently in service), where H(0) = 0. The cost
structure is given by C(0) = 0 and

C(i,a) = H(i) + C(a),
C(i, a,s) = H(i) + d(a), izl (9.18)

The transition probabilities are given by
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Py; = p;,

{ Pii_1+f@)= Pj“l(g),
Piisj.a (@) = piF (1),

Fls+1)
Fi(s)

P _ us . 1(a)
Ga,s)i-t+j = Pj ——F*(s) -
a

The last line is the probability that the service is completed in the next slot,
given that it has been ongoing for s slots and has not been completed, and this
follows from (9.7). The second to the last line is the probability that the service
will not be completed in s + 1 slots, given that it has not been completed in s
slots, and this follows from (9.8).
We have modeled this as an MDC and may now proceed to optimize it.
O

P(i,a,s)(i+j,a,s+l) :Pj(
(9.19)

Example 9.3.3. Batch Arrivals with MS Service Control and Intervention,
In this variant of the last model we specify a positive integer U as a cutoff value.
If the process reaches state (/,a, U}, then the customer currently in service is
ejected from the system, and a penalty cost is incurred. This mechanism imposes
a firm limit on the amount of service provided to any customer. Problem 9.5
asks you to model this as an MDC. 0

Example 9.3.4. Priority Batch Arrivals with Uncontrolled MS Service.
There are priority and nonpriority classes of customers. There is a probability
p; (respectively, ;) of a batch of j priority (respectively, nonpriority) customers
arriving in any slot. The arrival processes are independent slot to slot and class
to class.

A choice of service time distribution might be included in the decision
options, but to keep the model simple, let us assume that the service time of
any customer is governed by a single distribution with cumulative distribution F
and complement F*. When a service is completed and the system is nonempty,
then the server has a decision to make. The actions are a = serve a priority cus-
tomer, b = serve a nonpriority customer, and ¢ = idle. The server is not allowed
to idle when both classes of customers are present.

The state space § consists of the following states: State (0, 0) means that the
buffer is empty; there are no decisions in this state. State (i, x), with at least one
coordinate positive, means that there are i priority and x nonpriority customers
present and a new service may begin. If i, x 2 1, then the action set is {a, b},
since a new service must be initiated. If i = 0, then the action set is {b,c} (see
Fig. 9.1), while if x = 0, then the action set is {a, c}. State (i, x, a, 5) is a service-
in-progress state such that a priority customer is being served and the service
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Departing customer
X

_» Action ¢ = idle
P -~

— ——

™ Action b = serve
nonpriority
customer

xX x X X

Priority customers Nonpriority customers

Figure 9.1  Example 9.3.4 with just emptied priority buffer.

has been ongoing for s slots and is not completed. State (i, x, b, s) has a similar
interpretation with a nonpriority customer being served. There are no actions
in these states.

Assume that there is no cost for service. There are nonnegative holding costs
H(i) (respectively, W(x)) for holding i priority (respectively, x nonpriority) cus-
tomers in the system. We assume that H(0) = W(0) = 0 and that H{i) > W(i)
foriz1.

A few of the transition probabilities are

P(O..r)(t.x+y)(c) = Piqys xz1,

Piausjxsvan(@ = pigyF (1), i1,

Uy
P(i,x,b,.v)(i+j'x— T+vy = ij\‘ ( F*-;;) ) ' x2 1. (920)

It is clear how to obtain the remaining probabilities. This completes the speci-
fication of the model as an MDC. 0

Example 9.3.5. Markov Modulated Batch Amivals with MS Service Con-
trol. This is a generalization of Example 9.3.2 with a more complicated arrival
process.

Consider an irreducible Markov chain on the finite state space {1, 2, ...,
K} with transition probabilities Qy;+. When the MC is in state &, then the batch
arrival process is governed by the distribution (p;(k));>¢. A state of the MC is
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known as a phase. As the chain moves from phase to phase the batch arrival
process changes.

The service time model is as in Example 9.3.2. Notice that in this model
the service times are being controlled and the arrival process is uncontrolled.
In modeling this system, let us consider various options. Under option 1 the
phase is known at the beginning of each slot, and Problem 9.6 asks you to
model the system under this assumption.

Option 2 assumes that the system has been operating for a long time (and
hence that the MC has reached steady state) and that no information on the
phases is utilized. In this case it is reasonable to assume that P(system is in
phase k) = m;, where m; is the steady state probability associated with phase k.
Convince yourself that under option 2 the MDC model is exactly as in Example
9.3.2 with P(a batch of size j arrives) = 3, p;(k)n;.

Option 3 assumes that the phase is unknown and attempts to make a statisti-
cal inference concerning the current phase, given the historical data on customer
arrivals. This approach will not be treated here. 0

9.4 ARRIVAL CONTROL OF THE SINGLE-SERVER QUEUE

In this section we discuss several models dealing with the control of arrivals
(often known as flow control) to a single-server queue. To avoid obscuring the
ideas, we will assume that the service time is uncontrolled. Obviously one could
control both simultaneously but at the expense of increased model complexity.

In the models in Section 9.3, it was assumed that the customers were essen-
tially identical and that the service time characteristics were attached to the
server. Controlling the service involved adjusting the characteristics of the
server rather than any inherent properties of the arriving customers.

Now we switch to the point of view that the custorner brings work into the
system and that the controller has the option of adjusting the work load in
various ways. Notice that one perspective or the other may apply in a given
application.

Example 9.4.1. SS Arrival Distribution Control with Fixed Service Rate. In
this example we think of the customers as packets and assume that the service
rate is fixed at one packet per slot. An action a from the finite set A corresponds
to a particular phase a of arrivals and the length of the phase is govemed by
a distribution with cumulative distribution function F,, complement F 4. and
probability function w(a). As long as this phase is operative, then P(a batch of
size j arrives in a slot) = p;(a). Under the SS variant of this model, a single sam-
ple is taken from the phase distribution, and this determines how long the phase
lasts. Notice that the control is exercised on the arrival statistics rather than on
individual arrivals. A new action may be selected when a phase terminates.

To model this as an MDC, the state space S consists of the following states.
State i > 0 means that there are currently i packets in the buffer and a phase
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has just ended; the action set is A. The phase-in-progress state (i, a, 5} means
that there are i 2 0 in the buffer and that phase a (of length at least 2) has s 2 |
slots remaining until completion.

There is a nonnegative holding cost H(i) on the buffer content, where H(0) =
0. In addition we assume that a nonnegative reward R(a) is earned when phase
a is chosen, and a nonnegative reward rate of r(a,s) is earmned when there are
s slots remaining of phase a. We assume that there exists a (finite) constant
B that is an upper bound for the rewards and reward rates. This assumption
enables the rewards to be incorporated into the cost structure as negative costs.
To accomplish this, the net cost is incremented by B to make it nonnegative.
If the system is optimized under the average cost criterion, then J — B will be
the minimum average cost and hence B — J the maximum average reward.

Under these assumptions the costs are given by

C(i,a)= H(@) ~ R(a) + B,
Cli,a,sy= H(i} - r(a,s) + B. (9.21)

Compare this cost structure with that in Example 9.3.1. In the latter the server
is choosing a service distribution and hence must pay for it with presumably “on
average faster” service costing more. We assumed that the cost rate depended only
on the remaining service time and not on the particular service action choice. This
makes sense because once the service length is determined, then the service pro-
ceeds lock step until it is completed. In Example 9.4.1 we are thinking of compet-
ing customer classes, and there may be a reward associated with allowing a certain
class of packets into the system. It makes sense to allow the reward rate to depend
on both the class identity and the remaining length of the phase, since the arrival
statistics from that class are operative in each slot of the phase.

To develop the transition probabilities, it is helpful to introduce i* =: (i—1)*.
This quantity equals i - 1 for i 2 I and O for i = 0. Recall that the service rate
is 1 packet per slot. Then the transition probabilities are given by

P; v, jta) = pi(a)u(a),
Pii* +j,a.v- (@) = pi(@)u,(a), y22,

Pii,a s)i* +j.as - 1) = pi{a), s22, (9.22)
P a vyt +j = pila). 0

Example 9.4.2. MS Arrival Distribution Control with Fixed Service Rate.
This is as in Example 9.4.1 except that the length of each phase is determined
under the MS model. Problem 9.8 asks you to model this as an MDC. O

Example 9.4.3. Semi-Markov Modulated Batch Arrivals with Fixed Ser-
vice and Reject Option. Assume first that we have an irreducible Markov chain
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as in Example 9.3.5. This chain will be the mechanism underlying the phase
process, which works as follows: If the MC is in state k, we assume that a
sample is taken from the transition probability distribution Q to determine the

next state, say it is k¥, Then associated with the pair (%, k* ) 1s a cumulative
distribution function F(k, k™) and probability function w(k, k* ) that determines
how long the current phase will last. Let s employ the SS model for the phase
length. As long as the dxstnbutlon F(k, k%) is operative, then P(a batch of size j
arrives in a slot) = p;(k, k* ). This is known as a semi-Markov modulated batch
arrival process. The above description embodies full generality. As a special
case it might happen that the phase length distribution depends only on the state
k rather than on the pair (k, k™).

Here is one possible method of control. Assume that when a new phase is to
begin, the controller may choose action @ = accept all incoming batches under
that phase or b = reject all incoming batches under that phase. This decision
is made with knowledge of the current MC state k but before the next state or
the sampled length of the resulting phase are revealed.

There is a nonnegative holding cost H on packets in the buffer. In addition
there is a fixed penalty cost G for choosing b and a cost rate g(s) incurred when
there are s slots remaining in a rejection phase. Let us assume a fixed service
rate of one packet per slot.

To model this as an MDC, we observe that the state space S consists of the
following states: State (i, k) means there are i packets in the buffer, a new phase
is to begin, and that phase is determined by state & in the MC. The action set is
{a,b}. State (i, k, I3 5) means that there are i packets in the buffer and that
5 2 1 slots remdm of an ongoing phase associated with (k k). Here l is an

the phase and / = | meaning that b was chosen. Notice that if J = 1, then we
know that no new packets will enter the system during the whole phase. If the
phase identity depends only on &, then the next MC state k* may be omitted
from the state description.
The costs are given by
Cli, k,a) = H(),
CG.k,b)=H@+G,
CG, k, k™, I,5) = H@) + Ig(s). 9.23)

Recall that the service rafte is one packet per slot, and let i* be an auxillary
variable as in Example 9.4.1. The transition probabilities are given by

{ P it +j, k(@) = Quiepilk, k¥ Yy (e, k™,
*
Pioit +j okt 0.y 0@ = Quepile K (k,kY), vy 22,

{ Pi i k) (B) = Quie i (k, k™) .
P syir ket 1,y - 1)(D) = Qrar iy (R k), y22,
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*
Pk, ikt 0, 50% + .k k* 0,5 - 1y = Pk, k), 522,
*
Pk k0,100 +jk%y = Pk, k),

{ P ki 1 sxit kit s - = 1 5§22, 9.24)
P ki1 otk = 1
This completes the specification of this model as an MDC. o

9.5 AVERAGE COST OPTIMIZATION OF EXAMPLE 9.3.1

Once a system has been modeled as an MDC, then it may be optimized. We
focus on optimization under the average cost criterion. To employ the approx-
imating sequence method requires verification of the (AC) assumptions (or the
weaker (WAC) assumptions discussed in Section 8.7). In this section we show
how to verify the (WAC) assumptions for Example 9.3.1.

Let A be the mean and A\'” the second moment of the batch size. Let 7, be
the mean service time under action a and 7¢¥' the second moment of the service
time. We operate under the following basic assumptions:

(BAI). We have A? < oo,

(BA2). For some a* it is the case that A <1 and -rff.) < oo,
(BA3). We have 7, <o for all a.

(BA4). There exist a and y 2 2 such that u,(a) > 0.

(BA5). The holding cost is given by H(i) = Hi for some positive constant
H. The cost rate d(s) = 0.

Note that (BAS) is assumed for convenience. The result could be proved
under more general conditions, but at the expense of increased complexity.
Since 7.~ 2 1, it follows from (BA2) that X < 1, and hence py > 0. There
is no loss of generality in assuming that py < 1, since otherwise no customers
will ever amrive. The condition in (BA4) rules out another triviality. If it fails
to hold, then the service time under every action is exactly one slot, and this
situation is of no interest.

Remark 9.5.1. In this section and the next we will be calculating a number
of expected times and costs. Suppose that i is a state in an MDC, and we need to
calculate the expected first passage time (or cost) from i to a distinguished state.
What is usually important is whether this quantity is a constant, a linear function
of i, a quadratic function of i, and so on, rather than the specific parameters
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involved. In what follows, all the “U” functions are assumed to be finite. We
say a function is Uy if it is a constant. It is U, (i) (respectively, U;(i)) if it is a
linear (respectively, quadratic) function of i.

This notation gives us a lot of flexibility. A function of / and s is U, (i, s) if it
is a linear function of i and s. Such a function can have i, s, and constant terms.
It is Ua(i,s) if it is a quadratic function of i and s. Such a function can have
i, 52, and is terms as well as linear terms. The function is U,(/)U,(s) if it is a
product of a linear function of i/ and a linear function of 5. Other combinations
can be created in an obvious way. 0

Lemma 9.5.2. Assume that the (BA) assumptions hold, and let X(s) be the
number of customers arriving in s slots. Then

E[X()] = As = Uy(s),
EUX(N?] = NPs + N2s(s — 1) = Ua(s). (9.25)

Proof:  Let X; be the number of customers arriving in slot k. Then X(s)
= 341 Xk. Using the linearity of the expectation and the fact that E[X;] = A
yields the first line of (9.25).

We have var[X;] = E[(X;)*] - (E[X.])? = A\® — A2, Moreover the variance
of X(s) is linear because the summands are independent. Using these facts and
some algebra yields the second line of (9.25). 0

We now show that there exists a standard policy.

Lemma 9.5.3. Assume that the (BA) assumptions hold, and let d be the
stationary policy that always chooses a”*. Then d is 0 standard.

Proof: Since py > 0, there is a path from any nonzero state to 0 in the MC
induced by d (indeed, in the MC induced by any stationary policy). Hence this
MC has a single communicating class R containing 0.

We consider three cases concerning the service time distribution under a™: In
Case | either this distribution is unbounded, or it is bounded and its maximum
value B is the largest possible service time under any action. In Case 2 the
maximum value of this distribution is B, and a service under at least one other
action may be longer than B. Moreover either (B2 2)or (B= 1 and py+py < 1).
In Case 3 we have B=1and po+p, = I.

Under Case | the policy d induces an irreducible Markov chain on § (why?),
and hence R = §,

In Case 2 a queue can always build up, and hence the states D = {0, 1,
2, ...} © R. Note that states (i,s) for } £s < B~ 1 are also in R, whereas states
(i,s) for s 2 B are transient.

We first argue informally that under either Case 1 or Case 2, the class R is
positive recurrent with finite average cost. Assume that a service has just com-
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menced under a*. The expected number of customers arriving during that ser-
vice is Y, uy(a*)()\y) = A7, < 1. Since one customer is served and the expected
number of arrivals is less than 1, on average when the service is finished the
buffer will contain fewer customers than when the service began. Eventually,
in finite expected time, the MC will reach 0.

Let m be the expected time to go from state 1 to state 0. Starting in state
i, the chain must transition to / — 1, then i — 2, and so on, to reach 0. Each of
these first passages is a statistical replica of the one from 1 to 0. Hence m;o(d)
= im. Then myy(d) = 1+ 3, p;(jm) = 1 + m\ < oo, This shows that R is positive
recurrent.

We now upper bound the expected cost of a service initiated in i. Let P;(y)
be the probability that exactly j customers arrive in y slots. Then

Eglcost of service in i] < C(a*) +H 2 uy(a*) z Pi(yXi+j)y
¥ J
=Cla®y+H Z yuy(a*)(i +Ay)

= C(a@®) + Hlir,» + MY
= Uy, (9.26)

The first line of (9.26) follows by assuming that the customers arriving during
the service are charged a holding cost throughout the length of the service. Line
two follows from the first line of (9.25). Note that the terms in the third line
are finite by (BA2). It is then possible to argue (we omit the details) that c;o(d)
= Ua(i). Thus cpp(d) = X, piUa(j) < o by (BAI).

This completes the informal proof that R is positive recurrent with finite
average cost. Problem 9.9 outlines a rigorous proof of the positive recurrence.

This shows that d is O standard in Case 1. To complete the proof under Case
2, we need to deal with the transient service-in-progress states. Let us develop
expressions for the expected time and cost to reach D rather than the larger set
R. If the process starts in transient state (i, s), then in s steps it will reach D.
Hence my; gx(d) = U,(s). Moreover, using reasoning similar to that in (9.26),
we have

Cior@) SH 3 Ps)i+))s
J

= Hlis + \s?]
= U (U (s) + Uals). (9.27)
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This completes the proof in Case 2.

It remains to consider Case 3. In this case a queue cannot build up, and it is
easy to see that R = {0, 1}. All other states of § are transient. We refer to Case
3 as the Special Case.

Since R is finite, it is a positive recurrent class with finite average cost. It may
easily be seen that m(d) = i/pg = U1(i) and cio(d) = [Cla™)i + Hi(i + 1)/21/po
= y(i).

Using reasoning similar to that above, we have

miso(d) S5+ . Pismij old)
J

=5+ ) PO +)
i
----- U\, s). (9.28)

Moreover
Cioo(d) £ D PiHG +j)s + o))
Jj

= H(is+As?) + 3 P)Uali + )
J

= Ua(i, 9). (9.29)

Note that (9.29) utilizes the second line of (9.25). Thus d is 0 standard in the
Special Case. The proof is completed. O

We now consider the verification of the assumptions for average cost com-
putation. If all the service time distributions are bounded, then it is possible to
verify the (AC) assumptions given in Section 8.1. However, if at least one distri-
bution is unbounded, then we must employ the (WAC) assumptions from Sec-
tion 8.7. (These only differ from (AC) in that (WAC3) is weaker than (AC3).)
The (WAC) approach is more general and works for bounded or unbounded
distributions. For this reason we show how to verify the (WAC) assumptions.

First choose and fix a sequence M(N) of positive integers such that M(N)
—» o0oas N — oo, Thenlet Sy = {{j0 Si<SN}U {(i,9H]1 €i <N, 1 £
5§ £ M(N) - 1}. This means that the buffer is not allowed to contain more than
N customers and no service can last more than M(N) slots, If a batch amrives
that would cause a buffer overflow, then the probability of that event is given
to the corresponding full buffer state. So, if the system is in state (i,s) € Sy,



218 OPTIMIZATION UNDER ACTIONS AT SELECTED EPOCHS

then the probability of a batch of more than N — i customers is given to state
(N, s— 1). The probability of a sampled service time greater than M(NV) is given
to a service time of M(N). So, for example, if the system isin state i, ] Si <N,
then the probability that the service time is greater than M(N) and that a single
customer arrives is given to state (i+1, M(¥V )—1). Other possibilities are handled
in the obvious way. This defines (Ay).

The next proof utilizes Section 7.7 and may be omitted if desired.

Proposition 9.5.4. Assume that the (BA) assumptions hold for Example
9.3.1, and let the AS be as above. Then the VIA is valid for (Ay) and the
(WAC) assumptions hold for the function r¥(.) = lim , .. . @W¥() - v¥(0)).

*Proof: We follow the four-step template in Proposition 8.2.1 (with x = 0)
with the exception of Step 4 which verifies (AC3). Instead, we will directly
verify (WAC3) from Section 8.7.

Since pg > 0, it is easy to see that under any stationary policy there is a path
from any nonzero state in Ay to state 0. Moreover we have Py = po > (. Hence
the induced MC is unichain with aperiodic positive recurrent class containing
0, and Step 1 holds.

Let d be the 0 standard policy in Lemma 9.5.3. If we can show that (C.37-38)
hold, then Step 2 will follow from Proposition C.5.3. Consideration of a few
cases will make this clear. If the process is in state /, where 1 < i < N, then
it may transition to state (r,y — 1), where r > N and y > M(N). The proba-
bility associated with this is given to (N, M(N) - ). It is clearly the case that
mn, N - 1(d ) S me v - 1o(d ), since during the shorter service time fewer cus-
tomers are expected to enter the system. Similar arguments may be given for
other cases and for the first passage costs. Hence (C.37-38) hold.

We verify that Step 3(iii) holds. Let us first show that the (H) assumptions
from Section 7.7 hold for A (with distinguished state 0). This will give us the
existence of an average cost optimal stationary policy. [t follows from Lemma
9.5.1 and Proposition 7.5.3 that (H1-2) hold. It remains to verify (H3-5).

Let us first explain where we are going and then show how to get there. It
follows from (H1) that (1 - a)V,(0) is bounded in «. Let Z be an upper bound
for this quantity,

We will first show that

L())=cp(d) and L(i,s)=coi(d)+sZ, 21, (9.30)

works in (H3). For the function in (9.30) it is easy to see that (H4) holds. Check
it out! Property (BA3) is needed.
Now define
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9.3D)

w ::1{12)5 {cm(d) +3sZ - il_)\_s(;_l)}

Note that cgi(d) + Z £ W < oo, where the finiteness follows since the subtracted
quantity is a quadratic in 5. Let h be any limit funciion (Definition 7.2.2(i).) We
will show that

hz2-W. (9.32)

Since h is bounded below by a constant, the validity of (H5) will follow.
So to complete the verification of (H), we show that (9.30) and (9.32) hold.
It is helpful to define the function z,, for & € (0, 1), by z,(1) = 0 and

2=~ D’ P+~ 2.+ (Da, 522, (9.33)

and note that

s(s— 1)

im z,(s) = . 9.34
alin’ll‘” (S) 2 ( 3 )
To proceed, observe that
Vali} 2 Va(h),
V. (i, 8) 2 Vu(L,s), i21. (9.35)

If the process is in state i 2 1, then the situation is probabilistically identical to
the situation in state 1 except that the holding cost is greater. Hence the first
line of (9.35) is clear. The reasoning for the second line is similar.

Using (9.35), we see that it is only necessary to verify (9.30) and (9.32) for
states with a buffer content of 1. Using reasoning similar to that in (8.6) but
applied to A yields h,(1) 2 —cgy(d), and this verifies the first part of (9.30).
It also shows that (1) 2 —cgi(d) 2 — W and hence verifies (9.32) for decision
epochs.,

We now obtain an expression for A, (1,5). Let P;(s) be the probability that
exactly j customers arrive in the remaining s slots of the service. Iterating the
discount optimality equation (4.9), it may be seen that
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Vall, 5) = Eldiscounted holding cost for s slots} + Z Pi(5)Vo())
i

SHN(a+al+-+a Da(e?+..+a D+...+a’ '}

+a’ Y PIVal())
i

2 Hhzo(8) + o' [(pa) Vo (0) + (1 — (po)* V(D] s21. (9.36)

To obtain the second line, the holding cost due to the customer in service has
been discarded; the first term on the right is the expected holding cost of the
customers arriving during the service. The third line follows from (9.33) and
(9.35). 1t is useful for the reader to check the validity of (9.36) for s = 1, 2.

Subtracting V,(0) from both sides of (9.36) and performing some algebraic
manipulation yields

had1,5) 2 HAZo(s) + (1 = (po) Y1) - (—'r}‘-"a—) [(1 - &)V a(O)]

2 HAz(s) - coi(d) — $Z. (9.37)
Since z,(s) 2 0, it follows that h,(1,5) 2 ~cyi(d) — sZ, and this verifies the

second statement of (9.30).
It follows from (9.37) and (9.34) that

e ~H2‘5(;“ D

coi(d) ~ sZ. (9.38)

it then follows from (9.31) that (9.32) holds. This completes the verification of
the (H) assumptions.

From Proposition 7.7.2 there exists an average cost optimal stationary policy
f for A and the minimum average cost is a finite constant. In the MC induced
by f there is a single communicating class Ry that contains 0. Since py < | and
every service lasts at least one slot, we must have 1 € Ry. (These statements
are true for any stationary policy.) Let us consider various cases concerning the
service time distribution under f(1).

Under Case 1, this distribution is unbounded, and then Ry = S. Since f is
average cost optimal and the holding cost is unbounded as the number of cus-
tomers increases, it is intuitively clear that the chain is positive recurrent. Hence
f is 0 standard.

Under Case 2, the service time has maximum value B, where either (B = 2)
or (B=1and ps + p; < 1). In Case 2 a queue may build up, and we have
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i € Ry for i 2 0. The argument that Ry is positive recurrent is as in Case
1. There may be transient service-in-progress states if there are service time
distributions yielding longer services than under f. Using reasoning similar to
that in Lemma 9.5.3, it is easy 1o see that the expected time and cost to reach a
decision epoch from one of the transient states are finite. Thus f is 0 standard.

Under Case 3, the Special Case, the service time is one slot and py +p; = 1.
Then Ry = {0,1}. We do not need to argue that f is O standard in this case.

Using the fact that f is O standard under Cases 1 and 2, it may be shown
just as was argued above for d, that (C.37-38) hold for the MC induced by f.
The validity of this argument does not require the policy to always choose the
same service time distribution. Instead, it relies crucially on two facts: first that
exactly one customer is serviced at a time, and second that in a given decision
state i, the action f(i) is constant (which is true for any stationary policy). It
then follows from Proposition C.5.3 that (Ay) is conforming at f.

Now assume we are in the Special Case. Then it may be seen directly that
o = pPo. ®y = Py, and J = pi(C(f(1)) + H). These same results hold for Ay for
N 21, and hence (Ay) is conforming on R;. Hence in all three cases we have
conformity and Step 3(iii) holds.

It remains to verify (WAC3) from Section 8.7. We have already shown that
r¥ satisfies (8.1). It follows from Proposition 6.5.1(iii) that

i) = tim_ RYG, KO = VO - V). (9.39)

Using (9.39) and following the method in the verification of (H3-5) above veri-
fies (WAC3,) with the function Q being a constant. The rest of (WAC3) follows
immediately. The details are ommitted. 0

9.6 AVERAGE COST OPTIMIZATION OF EXAMPLE 9.3.2

In this section we show how to verify the (AC) assumptions for Example 9.3.2.
Recall that Y,, denotes the service time under action a. We let Y, ,; be the resid-
ual service time under «, given that the service has been ongoing for s slots and
is not completed. Recall that 7, is the mean service time and 7¢” the second
moment of the service time distribution under a. Let 1, ; = E[Y, ,] be the mean
residual service time and 72 the second moment of the residual service time
distribution.
We operate under the following basic assumptions:

(BAl). We have \¥ < oo,
(BA2). For some a® it is the case that A7, < 1.

(BA3). There exists a (finite) constant U such that 7, ; < U for all a and s.
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(BA4). There exist a and y 2 2 such that u,(a) > 0.

(BA5). The holding cost is given by H(i) = Hi for some positive constant
H. The cost rate d(a) = 0.

We may argue as in Section 9.5 that 0 < py < 1. Note that (BA3) says that
the service time distributions are all BMRL. The purpose of (BA4) is to rule
out the trivial case in which every service takes exactly one slot. The conditions
in (BAS) are assumed for convenience. The result can be proved under more
general conditions.

We first show that there exists a standard policy.

Lemma 9.6.1. Assume that the (BA) assumptions hold, and let d be the
stationary policy that always chooses a®. Then d is 0 standard.

Proof: Note that for a # a®, states of the form (i, a,s) are transient under
the MC induced by d. To see if there are additional transient states, we need
to consider two cases. In Case |, one of three situations holds: the distribution
under a* is unbounded, or it is bounded with maximum value B 2 2, or B =
1 and po + p1 < 1. In any of these situations a queue can build up and the
remaining states of § form a single communicating class R.

In Case 1 an informal argument that R is positive recurrent with finite average
cost may be given in a similar manner to the proof of Lemma 9.5.3. We omit
the reasoning. A formal proof of the positive recurrence is outlined in Problem
9.10.

To complete the proof in Case 1, let D = {0, 1, 2, ...}, and assume that the
process is in transient state (/,a,s). Note that reaching D> and reaching R are
equivalent. We now show that the expected time and cost to reach D are finite.
Note that for fixed s, we may consider 7, , and rff’s to be finite constants. The
mean residual service times are finite by (BA3), and the second moments are
finite by Propositions 9.2.3 and 9.2.5.

Remember the “U” notation from Remark 9.5.1. Do not confuse it with the
bound U in (BA3). Observe that my; , p(d) = 74 s < oo by (BA3). Conditioning
on the length of the residual service time yields

Chasnd) SH 3 P(Yas=k) Y Pk +j)k
k Y
= Hlit, s + M2
= U\ (i). (9.40)

The first line follows by assuming that the holding cost is incurred on all the
customer arrivals for the whole length of the residual service time. The second
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line follows from the first line of (9.25) and the finiteness is argued above. This
proves that 4 is 0 standard in Case 1.

In Case 2, the Special Case, we have B = 1 and py + p; = 1. In this case a
queue cannot built up. Then R = {0, [}, and the remaining states are transient,
It is clear that m(d) and c;(d) are as given in the proof of Lemma 9.5.3.
By using reasoning similar to that above and in Lemma 9.5.3, we can show
that mg; 4 o0(d) = U(i) and ¢ 4, o(d) = U2(i). This completes the proof in the
Special Case. 1

To define (Ay) for this example, choose and fix a sequence M(N) of pos-
itive integers such that M(N) — o as N — oo Let Sy = {il0<Si <N} U
{G,a,s)11 <i<N,alla, 1 <5 < M(N)- 1}. This means that the buffer is
not allowed to contain more than N customers. If the system is in state (i, a, s),
where 1 <5 < M(N) - 2, then just as in A, a sample is taken from the appro-
priate residual service time distribution to see whether the service finishes in
the next slot or not. If the system is in state (i,a, M(N)— 1), then it is declared
finished in the next slot.

So, if the system is in state (i,q,s5), { < N and s < M(N) — 2, then the
probability of a batch of more than N - i customers, and a continuing service
is given to state (N,a,s,+1). If the system is in state (i,a, M(N)- 1), i £ N,
then the probability of a single customer arriving is given to state / (recall that
the service is declared finished in the next slot). Other possibilitics are handled
in the obvious way.

Here is the main result.

Proposition 9.6.2. Assume that the (BA) assumptions hold for Example
9.3.2, and let the AS be as above. Then the VIA is valid for (Ay) and the (AC)
assumptions hold for the function rV() = lim, . .. WY()-v¥(0).

Proof: We follow the four-step template in Proposition 8.2.1 with x = 0,
except that (AC3) will be verified directly rather than through Step 4.

Since py > 0, it is easy to see that under any stationary policy there is a path
from any nonzero state in Ay to state 0. Moreover we have Py = py > 0. Hence
the induced MC is unichain with aperiodic positive recurrent class containing
0. This completes Step 1.

Let us give an informal argument that (C.37-38) hold for the MC induced by
d. Tt will then follow from Proposition C.5.3 that the AS is conforming at d, and
hence Step 2 holds. Assume that the process is in state i with 1 < i < N_ It may
transition in the next slot to (r,a*, 1) where r > N. The probability of this event is
given to the state (N, a”, 1). It is clear that my. o 1old) Smyg o+ o(d). This argu-
ment relies on the fact that to reach 0 every customer must be served, one at a time.
If the process is in state (i,a,s) with 1 SiSNand 1 <5< M(N)- 2, then it may
transition in the next slot to r > N. The probability of this event is given to the state
N, and it is clear that myg(d) < mo(d). If the process is in state (i, a, M(N) — 1)
with I < 7 < N, then it may transition in the next slot to (¢ + j, a, M(N)) with
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i — 1 +j > N. The probability of this event is given to the state N, and it is clear
that mug(d) < m. j, o, mv o(d ). The argument for the other cases and for the first
passage costs is similar and hence (C.37-C38) hold.

Let us now verify that Step 3(iii) holds. We first verify that the (SEN)
assumptions from Section 7.2 hold for A (with distiguished state 0). This will
give us the existence of an average cost optimal stationary policy with constant
minimum average cost. It follows from Lemma 9.6.1 and Proposition 7.5.3 that
(SEN1-2) hold, It remains to verify (SEN3).

Observe that

Vali) 2 Vo(l),
Vali,a,5) 2 Vu(l,a,s), i21. (9.41)

If the process is in state i 2 1, then the situation is probabilistically identical to
the situation in state 1 except that the holding cost is greater. Hence the first
line of (9.41) is clear. The reasoning for the second line is similar.

Using (9.41), we see that it is only necessary to verify (SEN3) for states with
a buffer content of 1. Using reasoning similar to that in (8.6) but applied to A
yields h, (1) 2 —co((d).

Now assume that the process starts in (1, 4, 5), and let P;(k) be the probability
that exactly j customers arrive during k slots of a service. Then

Va(l,0,5) 2 i APy = k) Y, POVl
k=1 i
z i & P(X s = (P0) Val0) + (1 = (p)WVal(DI. (942)

k-1

Subtracting V,(0) from both sides yields
ha(1,,5) 2 ha(1) i a*P(Yq.5 = kX1 - (po))
k=1
=11 - )VaO)] i (l—l"_ik) P(Yas = k)
el [

2 -cold)=Z Y kPYus =)
k=1

2 ~cnld)-ZU, (9.43)

where Z is an upper bound for (1-a)V,(0), and U is from (BA3). Thus (SEN3)
holds.
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It follows from Theorem 7.2.3 that there exists an average cost optimal sta-
tionary policy f for A and the minimum average cost is a finite constant J.
There is a path from any nonzero state to state 0 under the MC induced by f,
which implies that there is a single communicating class Ry containing 0. Since
po < 1 and every service lasts at least one slot, we must have 1 € Ry. Let us
consider two cases concerning the service time distribution under f(1).

Under Case 1, one of three situations holds: this distribution is unbounded;
or it is bounded with maximum value B2 2; 0r B= 1 and py+p; < 1. In any of
these situations a queue can build up, and R, contains all the decision epochs.
Note that states of the form (i, a, s) are transient if the action a did not arise
under f. The reasoning in the proof of Lemma 9.6.1 shows that the expected
time and cost of a first passage from a state (i, a,s) to a decision epoch are
finite. Since f is average cost optimal and since the holding cost is unbounded,
it is intuitively clear that Ry must be positive recurrent. Hence f is 0 standard.

It may be argued that (C.37-38) held for the MC induced by f. The validity
of this argument does not require the policy to always choose the same service
time distribution. Instead, it relies crucially on two facts: first that exactly one
customer is serviced at a time, and second that in a given decision state i, the
action f(i) is constant (which is true for any stationary policy). It then follows
from Proposition C.5.3 that (Ay) is conforming at f.

and R= {0, 1}. Then it may be seen directly that mp = pg, 7| = p), and J = p1 (C(f(1))
+ H). These same results hold for (Ay) for N 2 1, and hence (Ay) is conforming
on R;. Hence in both cases we have conformity, and Step 3(iii) holds.

The verification of Steps I, 2, and 3 shows that (AC1), (AC2), and (AC4)
hold. We now give a direct proof that (AC3) holds. We have already shown that
r satisfies (8.1). It follows from Proposition 6.5.1(iii) that (9.39) is valid for
this example. The counterpart of (9.41) holds in (Ay), and hence it is sufficient
to verity (AC3) for a buffer content of 1.

Using reasoning similar to that in (8.6) yields, for sufficiently large N, that
hﬁ'(l) 2 -cf;’l (d|N). Then using (9.39) and the conformity of the AS at d, we
obtain liminfy . .. #¥(1) 2 —co\(d). This verifies (AC3) for decision epochs.

Now consider service-in-progress states. We may mimic the argument in
(9.42) in (Ay) to obtain, for I Ss<M(N) -1,

M(N}j~5~1 N-1 oo
Vitbanz Y &P, =04 Y BV + Y BV
Py joo JN

o N
+a70N P(Y - B9 Y PMIN) - V()
kaMiN}-s j=0
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+ 2 P{(M(N) - s)VQ’(N)}
j-N

M(N)-s5-1

2 ) @Pa, = B VIO + (- (pHVID)
k=1

+aMM N P = bl VY (0)
k=MN)~-x

+(1 = (po)"V 5y ). (9.44)

We now subtract V2(0) from both sides. Using reasoning similar to that in
(9.43) yields

B¥(1,a,5) 2 — cJ(dIN)

MN)-5-1
- [ - a)v;“(on{ kP(Y,,, = k)

k=1

k=M{N)}—y

P MY -5 Y P(Y,,.ﬁk)}

2 - ¢NdIN) - [(1 - )V (O)lry,
2 - efidIN) - (1 - VY. (9.45)

This yields r¥(1,a,s) = limy . 1- hY¥(1,a,5) 2 ~c{i(d|N) - J¥U. Recall that
we have verified (AC4), and hence limsupy, _, ., J¥ < J. Then taking the limit
infimum of both sides yields liminfy .. .. 7¥(1, 4, 5) 2 —co(d)~J U. This verifies
({AC3) with O = cqi(d) +JU. (I

9.7 COMPUTATION UNDER DETERMINISTIC SERVICE TIMES

Let us consider a single-server queue in which the actions are choices of deter-
ministic service times. Assume that action k corresponds to a service time of
exactly k units. If k = 1, then the SS and MS models of this service time coin-
cide. If k 2 2, then the SS model yields a single sample of k units. An exam-
ination of (9.17) and (9.19) shows that the SS and MS models with determin-
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istic service times are essentially equivalent, except that the SS model looks at
remaining service time while the MS model looks at elapsed service time.

Let us adopt the point of view of Example 9.3.2 and look at elapsed service
time. We compute an optimal policy under the assumption that the customer
arrival process is Bernoulli (p), with 0 < p < 1, and actions &k = 1, 2, 3. The
holding cost is given by H(i) = Hi, where H is a positive constant. This is
ProgramFive.

The basic assumptions of Section 9.6 are valid and hence the conclusions
of Proposition 9.6.2 hold. If it is the case that C(1) > C(2) > C(3), then we
would expect that an optimal policy f would satisfy f(i) is decreasing in i, and
this is bom out by the program, with one exception. Hence we may give the
optimal policy as two intervals, where the first interval indicates buffer content
for which it is optimal to serve in three slots, and the second interval buffer
content for which it is optimal to serve in two slots. In the remaining states it
is optimal to serve in one slot. For example [1, 5] & means that it is optimal
to serve in three slots when the buffer content is no greater than 5 and optimal
to serve in one slot for content greater than 5.

Given the AS as defined in Section 9.6 (note that there is no need to truncate
the service time), let us develop the expressions for the VIA 6.6.4. Let i* equal
i+ tif 1£i<N andequal N if i = N. Then

wu(0) = (1 - pluy(0) + puy(1),
wali) = Hi + min{C(1) + (} = pua(i — 1) + puy (i),
CQ) + (1 ~ punli, 2, 1) + puy(i*, 2, 1),
C(3) + (1 - phuy(i, 3, 1) + pun(i®, 3, 1)}
wali, 2, 1) = wp(i,3,2) = Hi + (1 = pitg(i ~ 1) + puy(i)
wiliy 3. 1) = Hi+ (1 = plun(i,3,2) + pun(i*, 3,2), 1<i<N,
Up e 1(.) = Wa() — wu(0). (9.46)

Remark 9.7.1. 1t is intuitively clear, and may be proved by induction on
(9.46), that if H and C(.) are multiplied by a positive constant, then the optimal
average cost is multiplied by that constant, and the optimal policy is unchanged.
For this reason we assume that H = | in all our scenarios. In all scenarios we
used the weaker convergence criterion (Version 1) of the VIA. |

Whether the queue is stable or unstable under a given action turns out to be
crucial, as we would expect from the examples in Chapter 8. The policy that
always chooses action k induces a stable MC if pk < 1. We have (a) stable
under {1,2,3} if p < §, (b) stable only under {1,2} if 1 < p < 1, and (c) stable
only under {1} if p 2 1.

The policy d that always serves in one slot is our benchmark. Then R, =
{0, 1}, and we may easily see that g = 1 - p, m; = p, and J; = p(C(1) + H).
Under condition (b} it is the case that the queue is also stable under the policy
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that always serves in two slots, and this policy might yield a lower average cost
than the benchmark. A similar comment holds under (a). In these cases we could
give a separate program to calculate the average cost under these policies for
a potentially better benchmark. We have not chosen to do this here.

As a check on the program, we let p = 0.3, H = 1, and C(.) = 2. It is clear
that d should be optimal with J = 0.3 (2 + 1) = 0.9, and this is born out by the
program.

Remark 9.7.2. Let us make the intuitively plausible assumption that an
optimal policy f eventually chooses k = 1. In this case Ry is finite, and a natural
limit is imposed on the buffer content. For example, assume that f = [1, 2] [3,
71. If there are 8 or more in the queue, then customers are served in one slot, and
since no more than one customer can arrive in a given slot, the queue cannot
build up. The states 0 < i < 8, together with the appropriate service in progress
states, form Ry. O

Scenarios 9.7.3. Some scenarios are given in Table 9.1. For each of them,
except for Scenarios 7 and 8, we let € = 0.0000005 and N = 80 and confirmed
with N = 100.

Scenarios | and 2 fall under the stability case (a). Note that in Scenario 2
we have C(2) = 4 C(3), and it is never optimal to serve in 3 slots. Scenarios
3 and 4 fall under the stability case (b). The optimal policy uses k = 2 quite
selectively and k = 3 only when there is one customer in the queue.

The remaining scenarios fall under the stability case (c) so that the queue
is unstable under k = 2, 3. In Scenario 5 the controller switches to k = 1 for
buffer content of 3 or more, even though C(1) = 10 C(2). A similar comment
holds for Scenario 8. In this case the program output is unclear for ¥ = 100.
Increasing to N = 200 yields the optimal policy unambiguously.

The program is not well-behaved in Scenario 7, in the sense that f(i) is not
decreasing in i, as we conjectured. Note that C(1) > 6C(2) and that p is fairly

Table 9.1 Results for Scenarios 9.7.3

Scenario 1 2 3 4 5 6 7 8

r 0.1 0.2 0.4 04 0.6 0.8 0.8 0.9

Costs 15.0 10.0 15.0 200 50.0 250 40.0 300
5.0 1.0 5.0 10.0 5.0 15.0 6.0 10.0
0.5 0.25 0.5 0.1 0.1 0.5 0.2 0.1

Ja 1.6 2.2 6.4 8.4 30.6 20.8 32.8 279

J 0393 0.667 3483 4576 15528 19755 25667 25.213

Savings 1.207  1.533 2917 3.824 15072 1.045 7.133 2.687

Optimal [1,3] (1,5} [1] (1}(2) DL, 2] [11@ D1, 38]7 S[1]
policy [4, 7] {2, 3]
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large. On the basis of N = 340 we have conjectured the policy given in Table
9.1. Several comments are in order. If there is a nonunique optimal policy, then
this might give rise to ambiguous output under any convergence condition. If
there is a unique optimal policy, then the ambiguity might be resolved in one
of several ways. First, a substantial increase in N might resolve it. Second, a
smaller N might be sufficient under Version 2 of the VIA. Third, if neither of
these remedies works, then we might conjecture that a policy e choosing k = 2
in states [1, L] is optimal or close to optimal. We could then develop a program
to calculate J, for various values of L to get close to J = 25.667. This mystery
is left for the interested reader to resolve! O

9.8 COMPUTATION UNDER GEOMETRIC SERVICE TIMES

Let us consider Example 9.3.2 with geometric service times. This is a single-
server queue with Bernoulli (p) customer arrivals and with the actions being
geometric rates {a;, @z, ..., ax}, where 0 <a; <a; <...<ag < 1. When a
service rate choice is made for a customer about to enter service, then a single
cost is incurred, and the chosen rate must be used until the service of that cus-
tomer is completed. This may be contrasted to the example in Section 8.5 in
which a new rate may be chosen (and cost incurred) in each slot of an ongoing
service. In the present case we envisage a situation in which the quality of ser-
vice (i.e., the service rate) given to a particular customer is to remain constant
throughout the service of that customer. This is ProgramSix.

Let the AS be defined as in Section 9.6, where no service can last more than
Lslots. Let i* =i+ 1if 1 Si<N and equal N if i = N. Then the expressions
for the VIA 6.6.4 are

wn(0) = (1 — pun(0) + pu,(1),
wal) = Hi + main{C(a) + (1 = plaw,(i — 1) + pau,(i)

+(1 - pX(1 - @uli,a, 1)+ p(l - a)u, (™, a, 1)},
wy(i,a,s) = Hi+ (1 ~ plau,(i — 1) + pau, (i)
+ (l - P)(l - a)uﬂ(i!ai s+ 1)

+p(1 - u,(i* a5+ 1), 1<s<lL,
wu(i,a,L) = Hi + (1 — pup(i — 1) + puy(i), 1€iEN,
Un 1) = wa(L) — wp(0). (9.47)

If H and C(a) are multiplied by a positive constant, then the optimal average
cost is multiplied by that constant and the optimal policy is unchanged. For this
reason we assume that H = 1 in all our scenarios.

Let d(a) be the policy that always serves at rate a for @ > p. The benchmark
policy d serves at the constant rate that realizes J; = min,,, {Jy,}. Note that
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the benchmark is defined as in Section 8.5. The expression in (8.12) is not
valid because the cost for service is charged only once, at the beginning of the
service, rather than during each slot of the service. The next result shows how
to modify (8.12) in this situation.

Proposition 9.8.1. Assume that a satisfies p < a. Let d(a) be the policy
that always serves at rate a, where the cost of service C(a) is charged once at
the beginning of the service. Then
Hp(1 - p)

a-p

Ja) = +pCla). (9.48)

Proof: Note that this MC and the one in Proposition 8.5.1 operate exactly
the same and hence the steady state probabilities are identical. The first term
of (8.12) is the expected holding cost and this remains the same. The second
term is the expected service cost, which equals P(service is taking place) C(a)
= (1 ~ my) Cla) = (p/a)Cla). In the present case, this is modified to E[service
cost] = P(service is taking place) (1/Eflength of a service]) C(a) = (p/a)aC(a)
= pCa), and hence (9.48) holds. O

Scenarios 9.8.2. Here K = 3. The results are summarized in Table 9.2 and
may be interpreted in a manner similar to Table 8.2. For these scenarios we chose
e = 0.00000005, N = 68, and L = 8, which was the maximum allowable under the
stack size restriction. The values of / and the optimal policies are, at a minimum,
quite close to optimal. Optimality should be confirmed with larger values of N and
L. Scenario 1 is a checking scenario and the results were as expected.

Table 9.2 Results for Scenarios 9.8.2

Scenario 1 2 3 4 5 6 7
P 0.6 0.3 0.5 0.6 0.7 0.8 0.9
Service 0.6 0.4 0.3 0.55 0.75 0.7 0.92
rates 0.7 0.6 0.5 0.8 0.8 0.85 0.95
0.8 0.8 0.9 0.9 0.85 0.95 0.99
Costs 2.0 1.0 0.0 0.25 0.1 0.0 1.0
20 50 0.1 100 20 10.0 50
20 25.0 50.0 15.0 10.0 25.0 10.0
Ja a=08 a=06 a=09 a4=08 a=08 a=085 a=092
24 22 25.625 7.2 35 11.2 54
J 2.400 1.83 7.51 5.54 3.16 10.48 4.38
Savings 0.0 0.37 18.12 1.66 0.34 0.72 1.02

Optimal oD n  @ne6 (L2 (1,2 (1 (1, 4]
policy (2. 23] B.71 B.13] [235] (51
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Rate: 0.7 085 095

Server
Cost: 0 10 25
0
-~
1 0.7 H{i)=i
—_
2
- 0.85
35
36
37 0.95
08

Minimum average cost 10.48
Figure 9.2 Scenario 6 from Table 9.2.

It is instructive to compare the model in this section with that in Section 8.5,
when the respective parameters are equal (arrival probability, service rates, and
service rate costs). Let us call this one Model New (the service rate can only
be changed at the beginning of a service, and the service charge is incurred
once during the service) and the other one Madel Old (the service rate can be
chosen during each slot, and the service charge is incurred during each slot of
service).

Let us compare Scenario 3 in Table 9.2 and Scenario 5 in Table 8.2. We
see that the optimal policy in Model New is slightly more conservative than
that in Model Old. The former policy switches to the maximum service rate
at the buffer content of 7, whereas the latter switches at a buffer content of
8. This behavior occurs because the queue can only be stabilized under the
maximum rate and because the controller in Model New is “locked in” and
cannot adjust the service rate until a service is finished. Hence it will tend to act
more conservatively. Note that the minimum average cost of 7.51 is somewhat
less than that of 8.003. This is because the cost of service is incurred only once
rather than throughout the service. However, the difference is perhaps less than
we would expect. This reflects the fact that most services finish in one or two
slots.

For another comparison, consider Scenario 6 in Table 9.2 (see Fig. 9.2) and
Scenario 7 in Table 8.2. In contrast to the previous case, the optimal policy
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in Model New is vastly different from that in Model Old. The reader might
consider why this makes sense before reading further. Here is an explanation.
Note that the queue is stable under both higher rates but the highest rate costs
2.5 times the middle rate. In Model New there is a trade-off between keeping
the queue stabilized and not serving so fast that a service finishes quickly so
that another begins and a new charge is incurred. In other words, the controller
in Mode! New has a much greater incentive to choose the middle rate than the
controller in Model Old. A service under rate (.85 has a 15% chance of not
finishing in one slot. During the second and subsequent slots of this service, no
service charge in incurred. A service under rate 0.95 has only a 5% chance of
not finishing in one slot, and hence it is less advantageous, at least for smaller
buffer contents. Eventually the holding cost consideration prevails and forces
a switch to the highest rate.

Note that the optimal policies for Scenario 7 in Table 9.2 and Scenario 8 in
Table 8.2 differ only for a buffer content of 5. The slight difference between
the optimal policies is more difficult to explain but is due to the same factors.

C

BIBLIOGRAPHIC NOTES

Some of the material in this chapter is based on an unpublished paper Service
Control of Discrete-Time Single-Server Queues, and the author would like to
express her gratitude 1o the anonymous referees of this paper. Their helpful
suggestions led to substantial improvements in portions of this chapter.

The author would also like to thank Dr. Ken Berk, a fellow of the American
Statistical Society, for pointing out the difference between an SS model and
an MS model and for emphasizing that care must be exercised to choose the
formulation most appropriate in a given situation.

Some of the material in Section 9.2 is found in Barlow and Proschan (1965),
Wolff (1989), and Ross (1996).

Although the vast majority of the literature on queueing systems deals with
queues in continuous time, research on (uncontrolled) discrete time queueing
systems has been steadily increasing in recent years. We mention only two ref-
erences. Bruneel and Kim (1993) contains a comprehensive treatment of the
Gl/G/1 queue. This is as in Example 9.3.1 with a single-service distribution.
Bruneel and Wuyts (1994) contains an analysis of the discrete time multiserver
queueing system with constant service times.

Bournas, Beutler, and Teneketzis (1992) treat a discrete time flow control
model. In this model there are several transmitters (queues with infinite buffers)
competing for a single channel (server). The service is organized in phases of
fixed length T. At the beginning of a phase the actions consist of the various
allocations of slots within the phase for use by the various queues to service
packets residing in their buffers. The objective is to show that there exists a
stationary policy (allocation) minimizing the expected average packet waiting
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time. A more difficult problem is to incorporate a choice of phase length T into
the decision process, together with a phase setup cost.

PROBLEMS

9.1.

9.2.

9.3.

9.4.

9.5.

9.6.

9.7,

9.8.

9!9.

Prove Proposition 9.2.3.

Give a distribution with a finite mean that is not BMRL. Hint: Look at
Proposition 9.2.5.

Verify that every distributionon {1, 2, ..., K'}, where X is a finite positive
integer, is BMRL.

What happens to (9.16) if the customer currently being served in an ongo-
ing service does not incur a holding cost?

Model Example 9.3.3 as an MDC.

Model Example 9.3.5 as an MDC under the assumption that the phase of
the chain is known at the beginning of each slot.

In this model assume that the batch acrival process is as in Example 9.3.1
and that service occurs in an MS fashion under a fixed distribution as in
Example 9.3.4. If the buffer is nonempty in the slot following a service
(or other activity) completion, then the server may choose action a = serve
the next customer, or b = leave the queue to perform other tasks. Perhaps
unfortunately, choosing b is referred to as taking a vacation and this type
of model is a vacation model. However, taking a vacation does not con-
note idleness, since the server is free to perform other tasks elsewhere!
Let us assume that the server must take a vacation when the butfer is
empty.

The length of a vacation is determined in an MS fashion by a distri-
bution G. Assume that there is a cost H({) for holding i customers in the
buffer and a fixed reward of R at the beginning of each vacation. Develop
this model as an MDC.

Model Example 9.4.2 as an MDC.

Give a rigorous proof of the positive recurrence of the class R in Lemma
9.5.3. This may be done by employing Corollary C.1.6 with test function
y(@@) = Yi, and y(i, s) = s+ Y(As+i—1). Show that for an appropriate choice
of the positive constant Y, we can make the drift in (C.10) identically
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9.10.

9.1!.

9.12.

OPTIMIZATION UNDER ACTIONS AT SELECTED EPOCHS

equal to —1 for nonzero states. It is possible to prove that R has finite
average cost by employing Corollary C.2.4 with an appropriate quadratic
test function, but the argument is much more complicated.

Give a rigorous proof of the positive recurrence of the class R in Lemma
9.6.1. This may be done by employing Corollary C.1.6 with test function
¥(i) = Yi, and y(i,a*,s) =74, s + Y(A1 s +i—1). Show that for an appro-
priate choice of the positive constant ¥, we can make the drift in (C.10)
identically equal to —1 for nonzero states. It is possible to prove that R
has finite average cost by employing Corollary C.2.4 with an appropriate
quadratic test function, but the argument is much more complicated.

Run ProgramFive for the following scenarios. Note: The three parameters
labeled “C” are the values of C(1), C(2), and C(3), respectively.

(@ H=04,p=025C=3,1,05.
For the remainder of the scenarios, H = 1.

®) p=025 C=15,25, 1.25.
(© p=01,C=6,5,05.

(d p=02 C=2510, 1.

() p=03,C=20,8,0.1

(f) p=04,C=15,5,0.1.

(8 p=08, C=20,3,0.1.

(h) p =09, C = 40, 15, 0.1.

() p =09, C=30,20,0..

For each scenario determine J and an optimal policy, and discuss your
conclusions.

Run ProgramSix for the following scenarios. Note: The three parameters
labeled “a” are the three service rates, and those labeled “C™ are their
respective costs.

(8 H=035,p=04,a=03,06,08, C=05,2,6.
For the remainder of the scenarios, H = 1.

(b) p=04,a=03,06,08 C=1,4,12.
() p=02,a=015,03,07,C=0.1,5, 15
(d) p=05,a=106 07,08, C= 1,20, 40.
(€) p=06,a=06,0809, C=0.1,5,15.
(f) p=065,a=0608, 09, C=01,5,15.
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9.13.

(8 p=08,4=08209 095, C=0.01,S5, 10.
(h) p=09,4=092,095 098, C=0.1,1,4.

For each scenario determine J, J 4, and an optimal policy, and discuss your
conclusions. Run some of the scenarios using ProgramFour and compare
the optimal policies.

Consider Example 9.4.1. The basic assumptions (with obvious notation)
are as follows:

(BAl). There exists a (finite) constant M such that F (M) = 1 for all 4.

(BA2). For all a, either u;(a) > 0 or there exist relatively prime integers
¥, z such that u.(a) > 0 and u,(a) > 0.

(BA3). The holding cost is Hi, where H is a positive constant. Moreover
we have r(a, s) = r(a) for all a.

(BA4). There exists a* such that po(a*) = 1, Moreover R(a*) = r(a*) =
0.

(BAS). For all a, py(a) > 0 and AP < eo.
(BAG6). There exists a” such that pe(a”) + pij(@”) < 1.

Note that (BAl) says that no phase can last more than M slots. Under
(BA2) phase lengths are “aperiodic.” Under (BA4) there exists a phase
with no packet arrivals; during this phase no rewards are earned. Under
(BA6) we avoid the trivial situation in which no more than a single packet
can arrive in any slot under any phase. In this situation a queue cannot
build up.

(a) Let d be the stationary policy that always chooses a*. Show that d
is 0 standard. Hint: Note that R, is finite.
Define the AS so that the buffer cannot contain more than N packets.
If a batch arrives that would cause a buffer overflow, then the prob-
ability of that event is given to the corresponding full buffer state.
For example, if the system is in state (i,a,s) for 1 £i <N, then the
probability of j > N--i+1 packets arriving is given to state (N, a, 5 1).
Show that the (VIA) is valid for (Ay) and the (AC) assumptions
hold for the function r¥(.) = lim,, . .. (v"(.)~v¥(0)). Follow the gen-
eral procedure in Proposition 8.2.1.
(b) Note that (BA2) and (BAS) are needed to verify Step 1. If (BA2)
is eliminated, then the aperiodicity transformation may be effected.
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It should be possible to verify the constancy of the minimum aver-
age cost in (Ay) under weaker conditions than (BAS), but we do not
explore this here.

(c) Argue that Step 2 holds for the policy d. Hint: It is only possible to
exit Sy from a transient state (i,a,s5), a # a .

(d) Argue informally that Step 3(ii) holds.

(e) Argue informally that V(i) 2 VY(0) and VY(i,a,s5) 2 V¥(0,q,s).
Use this to show that (AC3) holds.
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CHAPTER 10

Average Cost Optimization of
Continuous Time Processes

In this final chapter we show how to compute average cost optimal policies in
a certain class of processes operating in continuous time.

In Section 10.1 we review the exponential distribution and the Poisson pro-
cess. All the necessary background is contained in this section. The continuous
time processes we deal with have countable state spaces, as before. If the pro-
cess is in a given state and a certain action is taken, then the time until the next
transition is exponentially distributed with a parameter dependent on the state
and action. The theory may be extended to allow more general transition times,
but for brevity and simplicity we restrict ourselves to the exponential case.

Section 10.2 formalizes the definition of a continuous time Markov decision
chain (CTMDC). As an example, this section develops a CTMDC modeling
the service rate control of an M/M/1 quene. This is the most famous queuneing
system. It consists of a single server, serving at exponential rate, with arrivals
occurring according to a Poisson process. Here it is allowed to control the ser-
vice rate. A new rate may be chosen when a service is to begin or when a new
customer enters the system.

Section 10.3 discusses average cost optimization of the CTMDC. Under
an assumption requiring the mean transition times to be bounded above and
away from zero (which holds in practical models), it is possible to replace the
CTMDC by a (discrete time) auxillary MDC. We may then bring the previously
developed approximating sequence method into play to compute an average
cost optimal stationary policy for the MDC. Under a reasonable assumption
this policy is also optimal for the CTMDC. Hence, modulo the verification of
the assumption, we have rigorously computed an average cost optimal station-
ary policy for the original continuous time process.

Section 10.4 gives computational results for the service rate control of an
M/M/1 queue. In Section 10.5 we consider a system with arrivals according
to a Poisson process and a pool of K identical exponential servers. The actions
consist in choosing how many of these servers to turn on. This system is called

237
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an M/M/K queue with dynamic service pool. Computational results for this
model are given.

In Section 10.6 we consider a polling model, as in Fig. 1.7. Customers arrive
to each station according to a Poisson process. Both the service time of a cus-
tomer and the walking times are exponentially distributed. If the server is cur-
rently at a station, then a decision to initiate a walk may be made under any
of these conditions: The server has just arrived at the station, a service has just
been completed, or a new customer has arrived somewhere in the system. The
computation of an average cost optimal policy is illustrated.

10.1 EXPONENTIAL DISTRIBUTIONS AND THE POISSON
PROCESS

In this section we discuss the structure of service times and customer arrivals
in the continuous time models that are to be optimized. Let X be a random
quantity. For specificity we will think of X as a service time, but other inter-
pretations are also important. We say that X has an exponential (u) distribution
if its cumulative distribution function is

Fx(D=PX <t)=1-e*, t20. (10.1)

Here p is a positive parameter known as the rate of service. The complement
of the cumulative is P(X > t) = ¢ ¥, 1 2 (. The density is fx(£) = pe ™, t 2 0.

It may be shown that E[X] = 1/u. For example, if p = 2 customers per
minute, then each service lasts on average 0.5 minute, and the server is serving
at the rate of 2 customers per minute, on average.

Definition 10.1.1. Let r(8) be a function of the positive number 6. Then
r is o(8) (read “little oh of delta™) if limg .. ,, r(8)/8 = 0. This means that r is
small relative to 8 when & is small. For example, r(8) = 8 is o(8) as is r(8) = &°.
However, r(8) = § is not o(8) nor is r(8) = 8'72. 0

Here are some important properties of the exponential distribution.
Proposition 10.1.2. Let X have an exp (u) distribution. Then

PX>x+ylX>y) = PX>x), x,¥>0, (10.2)
P(X £8)=ud + 0(d). (10.3)

As an aside, note that (10.2} is the famous memoryless property of the expo-
nential distribution. It says that if a service was not completed in y time units,
then the probability that it will be uncompleted after an additional x units is the
same as the unconditional probability that the service lasts for at least x units.



10.1  EXPONENTIAL DISTRIBUTIONS AND THE POISSON PROCESS 239

In other words, a customer undergoing service according to an exponential dis-
tribution receives no credit for the amount of service rendered, if the service is
still uncompleted. This is undoubtedly a limiting assumption. However, it holds
(or approximately holds) for some important situations, such as the length of
a telephone conversation. The assumption of exponential service times simpli-
fies the mathematics considerably, since the model does not have to take into
account the amount of service rendered.

Equation (10.3) says that for a small interval of time, the probabiliy that the
service is completed in that amount of time is approximately proportional to
the length of the interval, with proportionality constant u.

Proof: To prove (10.2) note that

PX>x+y,X>y)
PX>y)

_PX>x+y)

PX>y)

PX>x+ylX>y)=

e HEtY)

ey

o e——[u
= P(X > x}. (10.4)

The first line follows from the definition of conditional probability. The second
line is clear. The other lines follow from (10.1).

It follows from (10.1) that P(X < 8) = ud + [1 - ud — e **]. Hence to prove
(10.3), it is sufficient to show that the expression in brackets is 0(6). Employing
L'Hopital’s rule yields

. 1 - pud— e . g e
e = —— = (). .
ah-ino o 'sl ;111') 1 (10:5)
This proves (10.3). "]

Consider a situation with server | and server 2, serving independently. The
service time of a customer serviced by i follows an exp(y;) distribution for i -
I, 2. We wish to obtain the probability that server 1 finishes first, as well as the
probability of both services finishing in a given interval, and the distribution of
the time until the first service completion. (Recall that there is a zero probability
of two independent exponential distributions taking on the same value.)

Proposition 10.1.3. Let X, and X; be independent exponentially dis-
tributed random variables, with parameters u, and u;, respectively. Then
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P(X; $8,X, < 8) = 03), (10.6)
PX, <Xy = B (10.7)
[ Il 5]

Let ¥ = min(X;, X3). Then Y has an exp(u, + p3) distribution.

Equation (10.6) says that if two independent exponential services are under-
way, then the probability that both will finish within a small interval of time
is negligible. The last statement says that the time until the first service com-
pletion is also exponentially distributed, with a rate equal to the sum of the
rates.

Proof: Note that

P(X, $8,X;,$8)=P(X; SOHPX,<8)
= (1 - e #18y(] — g72d), (10.8)

The first line follows from the independence of X; and X, and the second line
follows from (10.1). It may be shown that this expression is 0(6) by using
L'Hopital’s rule as in (10.5). This proves (10.6).

To prove (10.7), we condition on the value of X, and use the law of total
probability for continuous random variables to obtain

o 0o

P(Xy < X3) = P(X) < X2|X) = x)fx,(x) dx
Jo

p o

@ PX> > x)fx,(x) dx
v

oo

= e+ (ue M dx)
L 0

e B T
LI L IR (10.9)
By ¥ p2 0

Evaluating the last line of (10.9) yields (10.7).
To prove the last claim, note that

Y >x)=PX,>x,X;>x)
= P(X, > x)P(X3 > x)

= ¢ HIXgH2E

= g mI¥uakx (10.10)
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The second line follows from independence and (10.1) yields the result. O

In this chapter we treat certain continuous time models in which the service
time of a customer follows an exponential distribution. Let us now address the
customer arrival process.

The Poisson process is the most important stochastic process for modeling
customer arrivals, and it has several equivalent definitions. For our purposes the
following description will suffice. A Poisson process with rate A, denoted PoisP
(\), is a process that counts the number of customers arriving in any interval of
time [0, ¢]. The system is assumed empty at time 0. The time that elapses until
the arrival of the first customer as well as the successive times between customer
arrivals (interarrival times) are all independent exp(A) random variables.

To generate a PoisP (A), we sample from an exp(\) distribution to obtain the
time of arrival of the first customer. We then sample independently from the
same distribution to obtain the elapsed time between the arrival of the first and
second customers. This process is continued to obtain the time of arrival of the
third and subsequent customers.

The Poisson process is the correct model for completely random customer
arrivals. This follows from the memoryless property of the exponential distribu-
tion that yields the interarrival times. Assume that it has been at least y units of
time since the previous customer arrived and that there has been no new arrival.
In the purely random situation this information should not make it either more
or less probable that an arrival would occur in a certain time interval from that
point on. The exponential distribution has this valuable property.

The parameter M is the rate of the Poisson process. If A = 3 customers per
minute, then on average three customers will arrive in any one-minute period.
Note that if these customers are being served by a single exp(u = 2) server,
then we have trouble on our hands! On average, 3 customers are arriving to
the system every minute, but only 2 are being served, and this system is un-
stable.

10.2 CONTINUOUS TIME MARKOYV DECISION CHAINS

In this section we discuss a mathematical structure, called a continuous time
Markov decision chain (CTMDC), that is useful for modeling the control of
certain systems occurring in continuous time. As the explanation proceeds, we
carry along an illustrative example.

The CTMDC, denoted ¥, has a state space S that is a countable set. Asso-
ciated with each / € S is a nonempty finite set A; of actions available in i.
Assume that action a € A; is chosen. Then a cost is incurred. This may consist
of both an instantaneous cost G(J, a) incurred immediately and a cost rate g(i, a)
in effect until the next transition. The time until the next transition is exponen-
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tially distributed with parameter v(i, a). The new state is chosen according to
a probability distribution (P;(a));<s. The theory can be developed allowing
P;i(a) > 0. However, for most systems it is the case that P;(a) = 0, and we
assume this. That is, when a transition occurs, it is a “real” transition that can
be observed (an actual change of state) rather than a “dummy” transition from
a state to itself.

Example 10.2.1. Service Rate Control of the M/M/1 Queue. This is a con-
tinuous time analogue of Example 2.1.2. Customers arrive to a single server
according to a Poisson process with rate M. If the queue is nonempty, then the
action setis A = {a),aa,...,ax }, where 0 < a; <...<ag. If action a is chosen,
then the service time is exponentially distributed with parameter a.

There is a nonnegative holding cost rate H(i) for holding i customers in the
queue and a nonnegative cost rate c(a) in effect when serving at rate a. In this
model there are no instantaneous costs.

We set S = {i|i 2 0}. State () means that a service has just been completed,
leaving the queue empty. In state 0 there are no actions (null action). State 7 2 |
means that either a service has just been completed, and the served customer
has departed (leaving a nonempty queue with i customers), or a new customer
has just arrived (boosting the number in the queue to §). The action set is A.
Note that if a new customer arrives and a service is ongoing, we allow a new
service rate to be chosen. Because of the memoryless property of the exponen-
tial distribution, we do not have to take elapsed service into account and may
assume that a fresh service starts at that point.

The cost rates are given by

g(0) =0,
g(i,a) = cla) + H(i), i21. (10.11)

When the system is in state 0, then the waiting time until a customer arrives
(and the system enters state 1) is exponentially distributed with parameter A.

Now assume that the system is in state { = 1 and action a is chosen. Then two
“exponential clocks” are started. One measures the time until the next arrival,
which occurs with rate . The other measures the time until the service is fin-
ished, which occurs with rate a. Hence the time until a transition (to either
i+1 ori-1)is governed by the minimum of these two clocks. By Proposition
10.1.3 the transition time is exponentially distributed with parameter A+a. Thus
v(i,a) = N + a. The probabilities are found using (10.7). (Recall that there is a
probability of zero that these two exponential clocks register exactly the same
time. Hence we cannot have both an amrival and a service completion at the
same time.)

To summarize the transition rates and probabilities, we have
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H0)y=A, Py =1,

wi,a)=\+a,
A
Pii.i(a) = N+’
Pii@=—2—,  i21. (10.12)
A+a

O

This completes the specification of the CTMDC ¥ and the development of
an example to illustrate this concept.

10.3 AVERAGE COST OPTIMIZATION OF A CTMDC

In this section we give a set of assumptions that enable us to compute an average
cost optimal stationary policy for ¥. The first point that needs to be addressed
is the following: What constitutes a policy for ¥, and what does it mean for a
policy to be average cost optimal?

Informally we define a policy € to be a nonanticipatory rule for choosing
actions. It may depend on the history of the process through the present state
and may randomize among actions. The history includes the past states of the
process, the actions chosen in those states, and the times spent in those states.
A stationary policy is defined as in Chapter 2.

There are two common definitions of the average cost under an arbitrary pol-
icy. The first definition, and perhaps the most natural, considers the expected
cost incurred under the policy during the interval [0, 1), divided by 7, and then
takes the limit supremum of this quantity as t —» co. However, we employ the
second definition, which considers the expected cost incurred during n transi-
tions, divided by the expected time for those transitions, and then takes the limit
supremum as n — o, Formally let E4[C,] be the total expected cost incurred
under ¢ during the first n transition periods. Let E4[T,] be the total expected
time taken up under @ for the first n transition periods. Then we define

. . Eﬂ[C"‘XO = l]
J‘l'(t)zhmsu e e
o= AP EolTalXo =11

JY¥(i) = inf JYw, ies. (10.13)

To be fully rigorous, we need to do some work as in Section 2.3 to convince
ourselves that the quantities in the first line of (10.13) are well defined. For the
sake of brevity, this argument is omitted.

We are interested in conditions under which J ¥ (i) is identically equal to a
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(finite) constant J ¥ and there exists a computable average cost optimal station-
ary policy.

Note that if the process is in state / and action a is chosen, then the expected
time until a change of state is given by r(i,a) = 1/v(i,a). Here is a basic
assumption.

Assumption (CTB). There exist constants B and 7 such that

0<7<inf 7(i,a) < sup 7(i,a) S B < oo, (10.14)

O

Note that CTB stands for continuous time bounded. If the expected transition
times were unbounded, then the time to make a transition could stretch out as
time progressed, leading to “bad behavior.” Similarly, if the expected transition
times could be arbitrarily small, then a potentially infinite number of transitions
could occur in a finite interval, which again is “bad behavior.”

The following result is the analogue of Lemma 7.2.1:

Lemma 10.3.1. Let ¥ be a CTMDC satisfying Assumption (CTB), and let
e be a stationary policy for ¥. Assume that there exist a (finite) constant Z and
a (finite) function z that is bounded below in i such that

Zr(i, e} + z2(i) 2 G(i,e) + g(i, e)7(i, €) + 2 Pije)z( ), ieS. (10.15)
i

then J¥()<Z forie S.

Proof:  The proof involves some modifications of the proof of Lemma 7.2.1,
Only the necessary changes in that proof are indicated. To avoid confusion with
continuous time, let us employ k for the discrete time index. It is proved by
induction that E [2(X;)] £ ZBk + z(i) for k 2 0.

Equation (7.6) becomes

E [G(Xk. €) + g(Xy, e)(Xy, €))
SZE[r(Xr, )] + Ec[z(X)] - Eo[z(Xxs )], k20. (10.16)

Add the terms in (10.16) for £ = 0 to n - 1, and divide by the sum of the
expected transition times to obtain
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" ElG(Xy, ) + g(Xy, eyr(Xy, )]
0 Elr(Xi.e)]

Z(‘) - Ee [Z(Xn )}

<72+ po
oo ElrXi, o)l
<z 2L (10.17)
nr

where —L is a (finite) lower bound for z and 7 is from Assumption (CTB).
We now take the limit supremum of both sides of (10.17). The limit supre-
mum of the left side of (10.17) is J ¥ (i), and this yields the result. 3

The plan is to introduce a (discrete time) auxillary Markov decision chain A
that is closely connected to the continuous time process ¥. We may then form
an approximating sequence (Ay) for A and use the computational method intro-
duced in Chapter 8 to compute an average cost optimal stationary policy for A,
Under a certain assumption this policy is also optimal for ¥. The development
may be represented schematically as

¥ = A= (Ay), (10.18)

where ¥ is the original continuous time infinite state process, A is the discrete
time infinite state auxillary process, and (Ay) is the approximating sequence
for A consisting of finite state processes for which computation can be carried
out.

Let us now define the (discrete time) MDC A. Its states and actions are the
same as those of ¥. The costs and transition probabilities are given by

C(i,a) = GU,ap(i, a) + g(i,a),

x i, a)Pyla), j#i,
P‘/(“)‘{l—ru(i,a), j=i (10.19)

Note from (10.14) that (i, a) = 7/7(i,a) < 1. If the process is in state i, then
in each slot the probability of transitioning to j # i is proportional to the prob-
ability in ¥. There is also a nonzero probability of remaining in state i. This
may be contrasted to ¥ for which P;(a) = 0.

Observe that the sets of policies for A and for ¥ are not identical. A policy
for ¥ can only choose a new action when a state transition takes place. A policy
for A may choose a new action in each time slot, even if the state remains the
same. However, it is easy to see that the sets of stationary policies are identical.

Here is the crucial lemma that makes A useful.
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Lemma 10.3.2, Let ¥ be a CTMDC satisfying Assumption (CTB), let A
be an auxillary MDC, and let e be a stationary policy.

(i) Assume that there exist a (finite) constant Z and a (finite) function w
such that

Z+w2Cle)+ 3 Pilew()), ieS. (10.20)
J

Then Z and z = 7w satisfy (10.15).

(ii) Assume that there exist a (finite) constant Z and a (finite) function z such
that (10.15) holds. Then Z and w = z/r satisfy (10.20).

Proof:  To prove (i), assume that (10.20) holds. Substituting z/7 for w into
(10.20) and using (10.19) yields (10.15) after some algebraic manipulation. The
proof of (ii) is similar. Problem 10.10 asks you to fill in the details. O

We now make the following assumption linking the minimum average costs
in ¥ and in A. It is assumed that Assumption (CTB) holds and that an auxillary
MDC A has been formed.

Assumption (CTAC). We have J*(.) £ J¥(.), where J2(.) is the minimum
average cost in A o

Now assume that we have an approximating sequence (Ay)wvzn, for & The
following result is the analogue of Theorem 8.1.1 and allows us to compute an
average cost optimal stationary policy for ¥.

Theorem 10.3.3. Let ¥ be a CTMDC satisfying Assumption (CTB), let A
be an auxillary MDC such that Assumption (CTAC) holds, and let (Ay) be an
approximating sequence for A satisfying the (AC) assumptions. Note that (8.1)
becomes

J¥+ V) = ming CG,a)+ D Pi@NI() ¢,
a

J€ Sn

i€ SN,N ZN(). (1021)

Then:
(i) The quantity J * s limy . .J¥ is the minimum average cost in A and

(ii) Any limit point e of a sequence eV of stationary policies realizing the
minimum in (10.21) is average cost optimal for A and ¥.
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Proof: Since the (AC) assumptions hold for (Ay) and A, the proof and
conclusions of Theorem 8.1.1 hold for (Ay) and A, Hence from that result we
conclude that the quantity J ¥ is the minimum average cost in A, e’ is average
cost optimal in A, and (8.3) becomes

JT w2 CheY+ Y P m(), i€ . (10.22)
i

It follows from Lemma 10.3.2 that Z = J* and z = rw satisfy (10.15).

By (AC3) it is the case that w (and hence 7) is bounded below in i. Lemma
10.3.1 implies that J () < J*. Then J%() S J* = J3() s JY() S J¥(), where
the second to the last inequality follows from (CTAC). Hence these terms are all
equal. ;I‘his proves that e~ is average cost optimal for ¥ with constant average
cost J . O

The development in this section allows us to replace ¥ by the auxillary MDC
4, obtain an approximating sequence for 4, compute average cost optimal sta-
tionary policies in the AS, and know that any limit point of these is optimal
for ¥. In carrying out this program, we already know how to verify the (AC)
assumptions. The problem, of course, is the verification of Assumption (CTAC).
We will not be able to fully explicate its verification here. Rather we now indi-
cate how it can be shown.

Remark 10.3.4. Assume that we have been able to come up with a (finite)
constant Z that is a lower bound for the average costs in ¥, a stationary policy
f, and a (finite and bounded below) function z satisfying (10.15). This may be
accomplished by emulating, for ¥, the development of the (SEN) assumptions
in Chapter 7. It will then follow from Lemma 10.3.1 that f is average cost
optimal for ¥ with constant average cost Z.

Now assume that Assumption (CTB) holds and that an auxillary MDC A is
given. It follows from Lemma 10.3.2(ii) that Z, w = z/7, and f satisfy (10.20).
But it then follows from Lemma 7.2.1 that J /() < Z. Hence J4() S J7() <
Z =JY¥(), and Assumption (CTAC) holds. |

Remark 10.3.5. Assume that Assumption (CTB) holds, and let e be a sta-
tionary policy. Then e induces a MC in A. We call this MC. Similarly e induces
what is known as a continuous time Markov chain (CTMC) in ¥. We call this
CTMC. This method uses some results from the theory of average costs for
continuous time Markov chains. We will give the idea but omit the background
material.

The communicating classes of MC and CTMC are the same. Let R be a
class. Then R is positive recurrent in MC if and only if it is positive recurrent
in CTMC. In fact it may be shown that
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o) - (i, e)x ¥ (e)

= - , i € R. (10.23
Yier U, 0T (e) ' )

The denominator on the right of (10.23) is a normalizing constant, which we
denote by .

Using this, we may show that the average cost on R is the same for MC and
CTMC. This follows since

J2p=Y, Ch,emie)

i€ R

= Y (Gl Wi, ) + glis e)lw(e)

ie R

1
= G .9 (.1 ) (.’ l*
" E [G(i,e) + gli, e)r(i, e)7; (€)

ie R

e (10.24)

The second line follows from (10.19), and the third line from (10.23). The last
line follows from CTMC theory.

Now let us assume that J2() is a constant /2 and J¥(.) is a constant J¥.
Moreover assume that there exists an average cost optimal stationary policy f
for ¥ inducing a CTMC with a positive recurrent class R. Note that

JASTRg=T) k=Y. (10.25)

Hence Assumption (CTAC) holds. i}

10.4 SERVICE RATE CONTROL OF THE M/M/1 QUEUE

It is time to do some computation! In this section we compute an average cost
optimal stationary policy for Example 10.2.1.

Assumption (CTB) is satisfied with B = 1/X and 7= 1/[2(\ + ax)]. We may
then define the auxillary MDC A. Its costs and transition probabilities are given
by

C0)=0,
C(i,a) = c(a) + H(), i1,
Py =7\, Plo=1-7X,
Pioi@=7\, Pi.a)=7a, Pi@)=1-1(h+a), 21
(10.26)
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Equation (10.26) follows from (10.11-12) and (10.19). Note from (10.3) that
the transition probabilities may be interpreted as arising from a discretization
with step size 7, in which terms that are o(r) are ignored.

We operate under the following basic assumptions (BA):

(BAl). We have A\ < ay.

(BA2). The holding cost rate H(i) is increasing in i, and there exists a
(finite) constant D and a nonnegative integer n such that H(i) < D" for { 2 (.

The approximating sequence (Ay) is defined by letting Sy = {0,1,...,N}.
Note that there is excess probability only in state N, and we send this probability
to N.

It is possible to use previously derived results to verify that the (AC) assump-
tions hold for (Ay). In particular, we will fit A into the structure treated in
Example 7.6.4 and apply the results developed there. Consider Example 7.6.4
under the assumption of a Bernoulli arrival process with P(a single customer
arrives) = 7A. Under action a, the probability of a service finishing in a slot is
7a. Then the mean customer arrival rate 7A is less than the maximum customer
service rate 7ax. Hence the basic assumptions in Example 7.6.4 hold. It then
follows from Example 8.3.2 that the (AC) assumptions hold for Example 10.2.1
and that an average cost optimal stationary policy for A may be computed using
value iteration.

Assumption (CTAC) may be shown to hold using Remark 10.3.4, and we
will assume that this has been done.

We will compute an optimal policy under the assumption that H(i) = Hi,
for a positive constant H. It is likely (unless there are ties) that the optimal
policy computed using (AC) will be increasing in i and eventually choose a;.
The optimal policy may be given as a sequence of K — 1 intervals, with the
interpretation as in Section 8.5.

The expressions for the VIA 6.6.4 are given by

w,(0) = (1 = A, (0) + 7Au,, (1),
wo(i)=Hi+ IrLin{c(a) +rau,(i - 1)+ [1 ~ 7\ + a)lu, (i)
+N(i+ 1)), 1<isSN-1,
w,(N) = HN + min{c(a) + rau,{N — 1) + (1 — ra)u,(N)},
U, 1(8) = wo (1) — wp(0), O<isN. (10.27)

The second and third equations in (10.27) may be evaluated in the same loop

N for i = N. Note that the equations in (10.27) are almost the same as those
in (8.11) with changes in the costs and transition probabilities. ProgramSeven
gives this computation.

We would like to have a benchmark policy to compare with the optimal
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policy. Assume that rate a satisfies A < a. Then the policy d(a) that always
serves at rate a has finite average cost and can be implemented with open-loop

control. Our benchmark policy d serves at the rate a that minimizes J Z(a}. That
is, under d we serve at the constant rate that yields J ¥ = min,» ) {J “f(a)}.

Proposition 10.4.1.  Assume that a satisfies A < a, and let d(a) be the policy
that always serves at rate a. Then letting p, = A/a, we have

H
I = ouct@) + ”; : (10.28)
" Ha

Proof: It is well-known from the theory of M/M/1 queues that 7 (d(a)) =
(1~ pa)pf,, where p, < 1 is the utilization factor; in other words, the probability
the server is busy (e.g., Gross and Harris 1998). The cost rate is in effect when-
ever the server is busy giving the first term. The second term is the expected
holding cost and is easy to derive from 3 ix¥ (d(a)). O

Remark 10.4.2. 1t is intuitively clear and may be proved by induction on
(10.27) that if H and c(a) are multiplied by a positive constant, then the optimal
average cost is multiplied by that constant, and the optimal policy is unchanged.
For this reason we assume that H = | in all our scenarios. In all scenarios we
used the weaker convergence criterion (Version 1) of the VIA. C

Checking Scenarios 10.4.3. For the first check, we let A = 3.0 and H = 0.0.
The service rates are 4.0, 5.0, and 5.5 with respective cost rates 2.0, 5.0, and
6.0. Because there is no holding cost, it is optimal to always use the smallest
rate, and (10.28) yields J¥ = 1.5. This is born out by the program.

For the second check, we let A = 5.0 and H = 1.0. The service rates are 6.0,
8.0, and 10.0 with cost rates identically equal to 4.0. Because the cost rates
are the same, it is optimal to always use the largest rate, and (10.28) yields
J¥ =3.0. This is born out by the program. 3

Scenarios 10.4.4. Table 10.1 gives the results. Recall that the optimal pol-
icy is given as two intervals, with the interpretation that for queue levels above
the maximum shown, it is optimal to serve at the fastest rate. A dash in the
table means that entry is identical to the corresponding entry in the previous
column.

In Scenario 1 note that c(a) = 2a+5. It is optimal to serve at the fastest rate.
This is similar to an effect discussed in Proposition 7.6.7(ii). We might try to
prove a similar result for this model.

In Scenario 2 we have an unstable slowest rate and a very expensive fastest
rate. It is optimal to serve at the slowest rate when there are one or two cus-
tomers in the queue. Then it is optimal to switch to the middle rate and serve
at this rate until a queue level of at least 80. We suspect that for sufficiently
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Table 10.1 Results for Scenarios 10.4.4

Scenario 1 2 3 4 5 6 7 8
A 3.0 20 2.0 2.0 5.0 5.0 100  20.0
Service 2.0 1.0 — e 5.0 5.1 10.2 240
rates 4.0 4.0 5.5 53 10.6 270
8.0 7.0 58 6.0 120 300

Costs 90 1.0 1.0 1.0 0.0 0.0 0.0 1.0

13.0 50.0 50.0 500 10.0 10.0 100 15
210 500.0 150.0 1000 100.0 25.0 250 50

N 48 84 — — — - - =

¥ a=80 a-40 — — a=55 a-60 — a=270

8475 260 19.091 25.833 3.968

JY 8475 21091 — 20971 17.043 15193 — 3902

Savings 0.0 4909 — 5029 2048 10640 —  0.066

Optimal @@ [1.2] [(1,2] (L2 (L,7) (1, 12] — Q@I[L8)
policy [3,>80] [3,381 [31 [8.>80] @

large queue level, it is optimal to serve at the fastest rate, but this level was not
located for an approximation level of 84.

Scenarios 3 and 4 explore the effect on Scenario 2 when the cost of the
fastest rate is backed off. In Scenario 3 it is reduced to 150. Here the break
point to switch to the fastest rate is 39. In Scenario 4 it is reduced further to
100. The break point is reduced to 4. These are interesting results that you are
asked to explore further in Problem 10.11.

In Scenario 5 there is a free rate equal to the arrival rate, and a quite expen-
sive fastest rate. The break point to switch to the fastest rate was not located
for an approximating level of 84.

In Scenario 6 all the rates are stable with modest increases in cost. In this
interesting example, the optimal policy switches from the slowest rate to the
fastest rate at a queue level of 13. Note that in Scenario 7 the arrival rate and
service rates have been doubled, while the cost rates are the same. The optimal
policy and minimum average cost are identical to those in Scenario 6. You are
asked to explore this in Problem 10.12.

In Scenario 8 we have fairly large arrival and service rates. Note that it is
never optimal to serve at the slowest rate, even though the queue is stable under
this rate. O

10.6 M/M/K QUEUE WITH DYNAMIC SERVICE POOL

In this model customers arrive to a single queue according to a Poisson process
with rate A. There is a (finite) pool of K independent servers, each capable of
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serving a single customer, and the service time of that customer is exponentially
distributed with rate u.

The action set A = {0, 1,...,K}. If action k is chosen, the interpretation is
that k servers are available for service (i.e., turned on), while K — k servers are
turned off. If there are currently / customers in the queue with 1 <i <k, then
all these will be serviced. If k& < i, then only k customers will be serviced. Note
that k = 0 means that all the servers are turned off.

There is a holding cost rate H({) charged for every unit of time that the queue
contains i customers (where H(0) = 0). There is a cost rate c(k) operative for
each unit of time that k servers are turned on. It is natural to assume that ¢(k)
is an increasing functxon with ¢(() = 0, but this is not required.

Now assume that k* servers are presently turned on and a new action k is
chosen. There isa mamx D@* . k) of instantaneous charges, where D(k, k) = 0.
If k > k%, then D(k ,k) is a one-time activation charge for turning on some
servers; 1f k < k*, then it is a one-time deactivation charge for tuming off some
servers. The holdmg and service cost rates, as well as the instantaneous charges
are all nonnegative.

Let's model this as a CTMDC. Let § = {(i,k)]i 2 0, k € A)}. The state
(i, k) means that there are currently i customers in the queue, k servers are
turned on, and either a service has just been completed or a new customer has
arrived. [See Fig. 10.1 for an M/M/S system in state (7,4). Note that all 7
customers are considered to be in the queue.] The action set is A in every state.
The costs are

G(i, k™), k) = D™ k), g, k™), k) = HGQ) + c(k). (10.29)

Note that the cost rate is charged on the number of avatlable servers, whether
or not they are actually serving.

SHROROROR0

Pois P(1)
Figure 10.1 M/M/5 dynamic service pool system in state (7, 4).
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The transition rates are given by
(i, k™), k) = N+ min{i,k}p,  Lk20. (10.30)
The transition probabilities are given by

A

Py vy b= S mmia
Gk i+ 1Io(k) A+min{i, k}p

min{i, k}n

Piovi- 1.0k = m,

i k20. (10.31)

This completes the specification of this example as a CTMDC V.

We now develop the auxillary MDC A. Clearly Assumption (CTB) holds,
and we may set 7 =: 1/[2(\ + Kp)}.

The costs in A are given by

C((, k™), k) = D™, k)N + min{i, k}p) + H(i) + c(k),
i,k20. (10.32)

This follows from (10.19) and (10.29). The transition probabilities are

PG ke yie 1,00k = TX,
P::,k")(iw 1,k k) = Tmin{i, k }p,
Pl ryerk) = 1 - rQv # min{i, k)p), i,k 20. (10.33)

This follows from (10.19) and (10.31) and completes the specification of A
We operate under the following basic assumptions (BA):

(BAl). We have A < Kpu.

(BA2). The holding cost rate H(i) is increasing in i, and there exists a
(finite) constant D and a nonnegative integer n such that H(i) < Di" for i 2 0.

An approximating sequence for A is obtained by not allowing more than ¥
customers in the buffer. Hence Sy = {(i,k)J0 S i SN, 0SSk <K} In Athe
only possible transition from a state in Sy to the outside occurs if the system
is in state (N, .), Suppose that action k is chosen. If an arrival occurs, then the
system would transition to (N + 1, k). The probability of this event is given to
state (N, k). This defines the ATAS (Ay).

It may be argued that the (AC) assumptions hold for (Ay) and that the VIA
is valid. In the interest of brevity and because this argument is similar to ones
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presented previously, it is omitted. Assumption (CTAC) may be shown to hold
using Remark 10.3.4, and we will assume that this has been done.

We will compute an optimal policy under the assumption that H(i) = Hi and
D(k* k) = D|k* - k| for positive constants H and D. The base point for the
calculations is (0, K'). The expressions for the VIA 6.6.4 are given by

wali,k*) = Hi+ min {c(k) + DIk — k|Ov + min{i, k}p) + TAun(z k)

+rminfi, kuup(z4, k) + [1 - 70+ min{i, k }p)lu, (G, k*)},
0<i<N,
Up o1 () = wp() ~ wy(0,K). (10.34)

The auxillary variable z* equals i + 1 for i < N and equals N for i = N. The
auxillary variable z, equals i — 1 for i > 0 and equals O for i = 0. ProgramEight
gives the computation.

Remark 10.5.1. 1t is easy to prove, by induction on n, that if H, c(k), and
D are each multiplied by a positive constant, then the optimal average cost is
multiplied by that constant and the optimal policy is unchanged. For this reason
we may assume that H = 1 in all our scenarios. O

Let d(k) be the stationary policy that always has k servers turned on. For
Mu < k < K the queue is stable under d(k). Note that if the process starts
in a transient state (i,k*), k* # k, it will reach the positive recurrent class
under d(k) in one step and with finite cost. From the theory of continuous time
queueing systems, we may obtain a formula for the average cost under d(k).
We then use as our benchmark the policy d(k) with the smallest average cost.
The next result gives the details.

Proposition 10.5.2. Let k be a positive integer satisfying A/u < k < K, and
let d(k) be the stationary policy that always has k servers tumed on. Let

k-1

A ¥"
Y= *;” and ﬂ(k): 2 —-

n!
n=0

Then

k
¥ ‘
Lo =e®+ |14 ey | 1039

Proof: Because k servers are constantly turned on, the average cost
includes a term of c(k) per unit time. The second term is H times the average
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steady state number in the system. An expression for the average number in
the system is given in Gross and Harris (1998), and the second term in (10.35)
follows from that after some algebraic manipulation. For the interested reader,
Problem *10.14 asks you to derive (10.35) from the expression in Gross and
Harris (1998). As a check on (10.35) note that the second term reduces to the
second term in (10.28) for k = 1. |

It is difficult to optimize (10.35) analytically. Hand calculations may be done
for the appropriate values of k and the one yielding the minimum value then
defines the benchmark. Alternatively, a short program to perform the optimiza-
tion can be written.

Checking Scenarios 10.5.3. For the first check, we let K = 5, A = 3.0,
p =10, H=10 D=0.0, and c(k) = 2.0. Because the service cost rate is
constant, it is clear that the policy d(5) is optimal. We calculate J ¥, = 5.354
from (10.35), and this is born out by the program. The computed optimal policy
turns servers off as customers depart and turns them on as customers enter.
Because D = 0.0, there is no penalty for doing this, and the program is set up
in such a way that it will be done. Note that (10.35) still applies to calculate
the minimum average cost under the computed optimal policy. (Why?)

For the second check, we let K =4, A =5.0, u = 2.0, H=1.0, D=5.0, and
c(k) = 1.0. Because the service cost rate is constant, it is clear that the policy
d(4) is optimal. We calculate J 3'(4, = 4,033 from (10.35), and this is bormn out
by the program. O

Scenarios 10.5.4. Table 10.2 gives the results. In all scenarios we have
H = u =~ 1.0. Scenarios 1 through 4 explore the situation with K = 5, c(k) =
2k, A = 3.0, and D increasing. Note that in these scenarios the benchmark is
constant. As D increases, we expect the minimum average cost to approach the
benchmark, and that is what happens.

The determination of an optimal policy requires some explanation. Let us
begin with Scenario 2, since it is most representative of the method. The pro-
gram output gnves the optimal pool size k for any number in the system and
current value k*. Thus, if the current state is i = 0 and k™ = 1, then the optimal
choice is k = 1; that is, do nothing. We claim that state (0, 1) is transient under
the Markov chain induced by the optimal policy e.

To verify that (0, 1) is transient, let us identify the positive recurrent class in
the MC induced by e. Here is the method. Begin with a larger state in which all
servers are turned on, say (6, 5). Then the printout yields e(6, 5) = 5. Assume
that a service completion occurs so that the new state is (5, 5). Then (5, 5)
= 5, If a service completion occurs, the new state is (4, 5), and we see that
e(4, 5) = 4. This means that if the queue length decreases to 4, then it is opti-
mal to turn off one server. If a service completion occurs in (4, 4), then the
new state is (3, 4) and (3, 4) = 4. We continue to work our way down in this
fashion. If a service completion occurs in (3, 4), then the new state is (2, 4) and
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e(2,4) = 3. So, if the queue length decreases to 2, it is optimal to turn off another
server. If a service completion occurs in (2, 3), then the new state is (1, 3) and
e(l, 3) = 2. So, if the queue length decreases to 1, it is optimal to turn off
another server. If a service completion occurs in (1, 2), then the new state is
(0, 2) and (0, 2) = 2. This means that no change is optimal.

We now begin to work our way up. If the process is in state (0, 2) and an
arrival occurs, then the new state is (1, 2) and ¢(1, 2) = 2. We continue until
it is seen that e(4, 2) = 3. This means that if the queue length increases to 4,
then another server should be tumed on. Continuing, we see that yet another
will be turned on when the queue length reaches 6. Finally all 5 servers will
be turned on when the length reaches §. Then the process repeats itself.

Hence it is clear that it is never optimal to have less than two servers turned
on and that states such as (0, 1) are transient. The positive recurrent class under
the optimal policy may be given as [2] (4, 6, 8, 4, 2, 1). The first term indicates
the minimum number of servers to be always turned on. If the queue is empty,
then 2 should be turmed on. When the queue length increases to 4, then a third
server should be turned on. When it increases to 6, then a fourth server should
be turned on. Finally, when it increases to 8, then all the servers should be on.
Similarly, when it decreases to 4, then one server should be turned off. When it
decreases to 2, then another should be turned off. When it decreases to 1, then
a third server should be turmned off, leaving 2 on.

Notice that as the queue length increases, the number of servers turned on
lags behind the queue length. Similarly, when all the servers are turned on and
the queue length begins to decrease, there is a lag in tirning them off. This
phenomenon is known as hysteresis, and it occurs since D > 0. Note that there
is no hysteresis in the optimal policy for Scenario 1. The effect of increasing
D in Scenarios 1 through 4 is to increase the minimum number turned on and
to increase the hysteretic effect.

In specifying an optimal policy, it is only necessary to specify its positive
recurrent class. The reason is that if the process reaches this class in finite
expected time and with finite expected cost, then its average cost will equal
the minimum average cost. If the process starts in a transient state, the con-
troller can immediately turn all servers on, run the system until it empties, and
then tum off all but the minimum number indicated. From this point on, the
system will operate within the positive recurrent class.

The process of identifying the positive recurrent class seems complicated, but
with a little practice it will be easy (and fun!) to scan the output and identify
the positive recurrent class induced by an optimal policy. (Notice how easily
the optimal policy might be programmed into a control mechanism.) Problem
10.15 asks you to run ProgramEight for Scenarios 3 through 7 and identify the
optimal policies as given in Table 10.2.

Scenario 5 is the same as Scenario 2 except that the pool of servers has been
increased to 7. It is conceivable that the benchmark policy could change, but
in this case it doesn't. Because we are not charging for having a certain pool
size, it is clear that the minimum average cost is a decreasing function of K and
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hence has a limit. Thus the minimvm average cost for Scenario 5 must be less
than that for Scenano 2. Now compare the optimal policies. Notice that they
are the same on the “ends” but differ in the middle because of the availability
of servers 6 and 7.

Scenario 6 explores an example in which the cost rate is nonlinear in the
number of servers turned on. Scenario 7 explores a situation with a fairly large
pool of 10 servers. 0

10.6 CONTROL OF A POLLING SYSTEM

Consider a polling system as in Fig. 1.7. Stations 1, 2, ... , K are arranged
in a ring. Each station has an infinite buffer, and customers arrive to station k
according to a Poisson process with rate A;. The service time of a customer
at station & follows an exponential distribution with rate u;. The server travels
around the ring counterclockwise from station 1 to station 2, and so on, and
finally back to station 1. The walking time for the server to get from station
k to station k + 1 is exponentially distributed with rate ;. Note that station
K + 1 is station 1. The arrival processes, service times, and walking times are
all independent.

We say that the server is walking if it is presently undergoing a walk. If it is
presently at a station, we say it is stationary. Let i = (i, ..., ix) be the vector of
buffer occupanices. The state space for the CTMDC ¥ for this model consists
of all mples of the form (i, k, z), where z = 0 or 1 and i is the vector of current
buffer occupancies. The state is (i, k. 0) if the server is walking from station
k and a new customer has just arrived to the system (it is counted in i). There
are no actions in this state. The state is (i, &, 1) if exactly one of the following
holds: (1) a walk terminating at & has just been completed, (2) the server has
just finished a service at k (the customer has departed and is not counted in i),
or (3) the server is stationary at k and a customer has just arrived to the system
(it is counted in i). The action set in these states is {a, b}, where @ = remain
at the current station and b = initiate a walk. Note that a server is allowed to
initiate a walk whenever it arrives to a new station, completes a service, or is
stationary and observes a new customer arriving. Also note that the server has
the option of choosing to stay at a station even if the buffer of that statjon is
empty.

One might also assume that if the server has just arrived to a station and
chooses action a, then an additional setup time is incurred. Our model does not
treat this elaboration.

A holding cost rate H(i) is charged on the current buffer contents. A walking
cost rate Wy is charged for each unit of time spent walking from station &
to station k + 1. It is possible to develop more elaborate cost models, but for
illustrative purposes this will suffice. Note that if H(i) = 3 i, and W, = 0,
then an average cost optimal policy minimizes the expected long run average
number of customers in the system.
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The costs in the CTMDC model are

g((i, k,0)) = g((i, k, 1), b) = H(i) + W,
g((i, k, 1), a) = H(i). (10.36)

To develop the transition rates and probabilities, let ¢; be a K-dimensional unit
vector with a 1 in the jth position and 0’s elsewhere. Let A = 3, Ax be the total
arrival rate. The transition rates are given by

v((i, k,0)) = W@, k, 1),0) = N + w,

. A i = 0,
v((i, k, 1),a) = {)\ fu izl (10.37)
The transition probabilities are given by
P s = Pok ive koy(b) = N 1Sj<K
4.k, 0Ki+ &5, k,0) = Pk, i+ e.k,0) "o $j<K,
Wy
. = Pt . W) = ,
Pa k.o k+ 1.0 = Pk k1, 1(0) N+ o
Posiisgin@ =~ 15j<K
ok dKiv e b DY N+ T(i; -7'-‘-0)#;;’ ’
I, # 0
Pk, - ek, (@) = : ek (10.38)

N+ TG # Oy

Here 7 is an indicator function, enabling us to handle the cases of an empty
buffer or a nonempty buffer with the same expression. This completes the spec-
ification of ¥.

We now develop the discrete time auxillary MDC A. Let ¢ =2 max; {ps, o1 }-
Clearly Assumption (CTB) holds, and we may set 7 =: 1/[2(\ + ¢)].

The costs in A are given by

C((i, k,0)) = C(G, k, 1), b) = H(i) + W,
C(G,k,1),a) = H(D). (1039)

This follows from (10.19) and (10.36).
The transition probabilities are
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Pit0neg. k.0 = Pik s g .00(B) = TN, 1sjsK,
Phkoxikenn = Pak ks 1,1)(0) = Tag,
Pl kv k0 = Plok ik n(B) = 1= 7O+ ay),
P(*ic,k.l_)(nej.k.i)(a) = TN, 1<j5K,
Pl i1 i - e b, (@) =TI # Q)
Pk ik, (@) = 1= 70+ i # O)pu). (10.40)

This follows from (10.19) and (10.37-38).
Let pi = A\¢/pk. and let p = Y pi. We will compute an average cost optimal
stationary policy under the following basic assumptions (BA):

(BAI). We have p< 1.

(BA2). We have H(i) = D Hyiy for positive constants Hy.

The approximating sequence (Ay) is defined as follows: No buffer is allowed
to contain more than N customers. If a customer arrival would cause a particular
buffer to overflow, then the probability of that event is given to the appropriate
state with buffer content N. Assume, for example, that N = 10, i = (8, 10, 3,
5), and the server is serving at station 3. Thus the current state is ((8, 10, 3, 5),
3, 1). If there is an arrival to station 2, then the system would transition to ((8,
11, 3, 5), 3, 1). The probability of this event is given to ({8, 10, 3, 5), 3, 1).
Other cases are handled similarly.

Note that (BA1) is the condition for stability of the polling system under
a stationary policy known as exhaustive service, denoted d. This operates as
follows: Whenever the server arrives to a station, it serves customers at that
station until the buffer completely empties, and it then walks to the next sta-
tion and repeats the process. Upon arrival to a station with an empty buffer, it
immediately initiates a walk. Note that when the system is empty, the server
will continnally cycle until a customer enters the system.

One may show that the (AC) assumptions hold for A and (Ay), and that
Assumption (CTAC) holds. We omit this lengthy argument.

The expressions for the VIA 6.6.4 are given by

Wall, k, 0) = HO) + Wi +7 3 Ntta(i +€;,k,0)

J

T, (L k+ 1, 1) +[1 = 7N + w) (i, &, 0),
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wali, k, 1) = H(i) + min< 7 Z Njttn(i + €, k, 1) + TGy, # Ol ~ €4, k, 1)
J

+ 11 = 7O+ ped G 7 ONJun(, k, 1), Wy +7 Z Njitn(i + €, k,0)
J

+ rapup(lLk+ L, D+ [1 - 7O\ + wp)Jua (i, &, 1) »,

Ups l(-) = Wn(') - WH(O, 1, ])- (10.41)

ProgramNine gives the computation.

We will develop a benchmark for the special case in which the holding cost
coefficients equal 1, the walking costs equal 0, and the mean service rates are
all equal. The benchmark is the average cost under the exhaustive service policy
d. In this situation the average cost is precisely the expected number of cus-
tomers in the system in steady state. Note that operating the system under d is
essentially open-loop control, since implementation of this policy only requires
the server to know when the currently served queue empties out.

Proposition 10.6.1. Let d be the policy of exhaustive service, and assume
that H, =1, W, =0, and u; = u. Note that p, = \;/p and p = N/p. Let

1 1
D
k k

be the mean (respectively, the variance) of the total walking time of one polling
cycle (one trip around the ring). Then

v P NN/

Ji= ]_p+ >t 30 =) . (10.42)

“Proof: We will apply a pseudoconservation law derived in Boxma and
Groenendijk (1987). This applies to a polling system with Poisson arrivals and
general service and walking times (first and second moments of these quantities
must be finite). Some notation is required, which later will be specialized to the
case in the proposition.

Let us assume that the system operating under d is in steady state and intro-
duce the following random variables, which apply to a station : Let ¥; be the
service time, and note that p; = M E[Y:]. Let Q) be the waiting time (i.e., the
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time until service begins) and T the system time. Note that T = Q; + ¥;, and
hence E[T;] = E[Q«] + E[Y]. Let L; be the number of customers, Finally let
L =7, L be the total number of customers in the system.

It follows from Little's formula (a well-known result in queueing theory) that
E[L] = ME[T:]. This expresses the intuitively appealing idea that the average
number of customers in a queueing system in steady state equals the average
arrival rate of customers to the system times the average time a customer spends
in the system. Summing over k& and using the above relationships yields

EILl= ) MEIQ: +p. (10.43)
k

Let Z be a random variable representing the total walking time in a polling
cycle. The form of the psecudoconservation law given in Takagi (1990, p. 278)
is

o ZME[YA pvaZ) EZ)p- X0}
Z""EIQ‘]" 201 - YEZ YT 20—

(10.44)

Observe that if the mean service times are constant, say E{Y;] = b, then b
may be factored out of the left side of (10.44). Then using (10.43) and a bit of
algebraic manipulation, we obtain

A MELYD) L Mvar@) E[ZYN- b3S
2(1 - p) 2E1Z] 2(1-p)

E[L] = (10.45)

In the situation of the proposmon we have E[L] = J ¥ ds EIZ} = r, var[Z] =
= 1/u, and E[Y}] = 2/u*. Substituting these quantities into (10.45) and
91mphtymg yields (10.42). 0

Checking Scenario 10.6.2. The program was run with A} = 0.25, \; = A3 =
05 pe=20,0, =10, W, =20, H = Hy=1{, and H, = 1.0. In this case there
i$ no incentive to serve customers as stations 1 or 3, and hence the server should
remain stationary at station 2. The value of J¥ should be the average number
of customers in an M/M/1 queue with utilization factor X2/u; = 0.5/2.0 = 0.25.
This yields J ¥ = 0.25/0.75 = 1/3 from the second term in (10.28). This is bomn
out by the program which yields an optimal policy identically equal to 0 1 0.
Here O means walk at stations 1 and 3, and | means remain stationary at station
2. O

Scenarios 10.6.3. Table 10.3 gives the results. In all scenarios we set
Hy = 1. The value of p is a measure of system loading. The convergence to
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Table 10.3 Results for Scenarios 10.6.3

Scenario 1 2 3 4 5 6
Parameters A; =0.25 — AMNA=025 N=1.00 A =015 N=025
pe = 1.25 pe=125 M =025 X=0.1 py = 1.00
wr=l00 W=20 wy=05 N3=025 A=02 u2=20
Wi = 0.0 Wi=00 p=40 =100 p3=30
wr=10 ur=05 w,=100
We=00 p3=09 Wi=00
w) = 1.00
wy = 0.5
w3 = 2.0
W,=10
0.6 —_ — 0.375 0.572 0.458
20 20 20 20 25 20
¥ 4.125 NA 6.750 4.275 NA NA
J¥ 3.95 456 6.64 3.76 3.27 2.88
Optimal 0,0,0) 0,0, 000 (G0, (0,0,00 ©0.0
policy 111 111 111 101 111 |G I
0,000 ©00D 0,0, 1)
101 111 101
©0,1,0 @© 5L (1,0  Seetext See text
0t1 111 110
(1,0,0) (1,.0,0)
110 111

the optimal policy is much more rapid than the convergence to J¥. It should
be noted that larger values of N might yield a slightly more accurate value of
J¥ . The optimal policy is indicated only for those states where it deviates from
the exhaustive policy d for at least one station. The deviations are indicated by
giving the state followed by a triple of numbers, with 0 indicating that it is
optimal to walk and 1 that it is optimal to remain at the corresponding station.

Scenario 1 is a symmetric situation with no walking cost rate. The minimum
long run average number of customers in the system differs from the average
number under d by a modest 4.2%. When the system is empty, it is optimal
to remain stationary. This is the only deviation from d, which would have the
server cycle until reaching a station with a customer. It might be conjectured that
there are deviations from d when the system is extremely imbalanced. However,
a moment’s thought will convince the reader that this is not so. The reason is
that “a bird in the hand is worth two in the bush.”” That is, there is no incentive
for the server to forsake serving a customer in its present location and begin a
walk to reach another station where there may be many more customers. Hence
the optimal policy for Scenario 1 differs from exhaustive only when the system
is empty.

Scenario 2 is identical to Scenario 1 except that there is a cost for walking
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of 2 per unit time. The value of J¥ suffers an increase of 13.4%. Interestingly
the optimal policy differs slightly from that in Scenario 1. The optimal policy
again remains stationary when the system is empty. Note that the three states
with 1 customer in the system are symmetric images of each other, as is the
indicated optimal policy. The only deviation from d occurs when the server is
at an empty station that is two walks away from the station with the customer.
In this case it is optimal to remain at that station.

Scenario 3 is identical to Scenario 1 except that the walking rate has been cut in
half. This means that the expected time to complete each walk is doubled. In this
case the savings over exhaustive is slight. The optimal policy remains stationary
both when the system is empty and when it contains exactly 1 customer.

Scenario 4 is a system with identical service rates but imbalanced arrival
rates, with station 1 receiving customers at a rate 4 times that of stations 2 or
3. The savings in the minimum average number in the system over d is 12%.
The service at station 2 is exhaustive. When there is exactly one customer in the
system and that customer is at station 3, then the optimal policy behaves exhaus-
tively at 3 but is stationary at 1. See Fig. 10.2. This is because it anticipates
the next customer arriving there rather than at station 2. A similar explanation
holds for the remaining exception to d.

Scenarios 5 and 6 consider situations in which the service rates are unequal.
For unequal service rates there will typically be massive deviations from d, and

A3 =0.25 Ap = 0.25
o~
Station 3 Station 2
Station 1 Service rate p = 4.0 at
each station
A=10

Minimum average number
of customers 3.76

Figure 10.2  Scenario 4 from Table 10.3.
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one should not attempt to print the output. Instead, it can be readily scanned to
identify the pattern of deviation. For these cases more work should be done to
obtain a “user friendly” form for the output.

In Scenario 5 the arrival rates, service rates, and walking rates are all unequal.
It costs 1 per unit time when walking. It is optimal to remain stationary when
the system is empty. We will indicate the other deviations from d for buffer
occupancies up to 10. There are deviations with optimal actions 0 O 1. These
oceur in states (0, L 0r 2,29), (0,3 or 4, 2 10), (0, Sor 6, 2 11), (0, 7 or 8,
2 12), (0, 9 or 10, 2 13). Notice that the deviation occurs only at station 2. Its
buffer is nonempty, but it is optimal to walk to station 3 when the imbalance
reaches a certain level. The reason is that the service rate at 3 exceeds that at
2. So does the arrival rate, but we suspect that this is a smaller factor.

All other deviations (except one) have optimal actions 1 0 1, and these occur
in states for which station | is nonempty and the imbalance between 2 and 3
exceeds a certain amount. The deviation occurs only at station 2. These states
are (1, 1or2,28),(,30r4,29),(1,50r6, 210, (1, 7or 8 2 1I1), (1,
9 or 10, 2 12), and continuing in a similar fashion as the occupancy of buffer
I increases. For example, when its occupancy is 4, we have (4, 1 or 2, 2 5),
4,30r4,26),(4,50r6,27),(4,7 or 8, 28), and (4, 9 or 10, 2 9). When
the state is (10, 1, 0), the actions are 1 0 0, which again is a deviation at station
2. Last we have action 1 0 | in state (10, 1, 1).

Scenario 6 has equal arrival rates and unequal service rates, and again we
see substantial deviations from d. Actions 0 1 1 are optimal in states (1, O,
29, (1, 1,28),(1,2,27),(1,3,26),(1,4,25),(1,5t07,24), (1,8, 2 2),
(1,9, 2 1), and (1, 10, 2 0). In state (2, 0, 2 9) action 0 0 1 is optimal. In state
(2, 1, 2 8) action 0 1 1 is optimal. It continues in this fashion until state (9, O,
2 12) in which 0 0 1 is optimal and state (9, I, 2 11) in which 0 1 1 is optimal.

The interesting conclusion is that we may see substantial deviations from d
under unequal service rates, but less deviation when the service rates are equal
and the arrival rates are unequal. The intuitive reason is that unequal arrival rates
induce only “potential differences” between the stations and cause the optimal
policy to exhibit a mild anticipatory effect. However, unequal service rates are
“real differences” between the stations and cause much more of an effect.

Much additional work remains to be done to understand the optimal control
of polling systems. 8]

BIBLIOGRAPHIC NOTES

The subject of uncontrolled continuous time queueing systems is a vast one.
Kleinrock (1975), Gross and Harris (1998), Cooper (1981), and Wolff (1989)
are some standard references.

Jewell (1963) contains foundational material on the control of continuous
time systems. The approach we have followed of introducing an auxillary MDC
for the CTMDC is due to Schweitzer (1971) who developed it for the finite state
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space case. Our approach of applying the (AC) assumptions to the auxillary
MDC and assuming Assumption (CTAC) is new. Sennott (1989b) develops an
existence theory for CTMDCs that may be used to verify Assumption (CTAC)
as in Remark 10.3.4.

See also Ross (1970), Lippman (1975b). Serfozo (1979), Puterman (1994),
Bertsekas (1987) and (1995, Vol 2), Spicksma (1990), and Kitaev and Rykov
(1995). Stidham and Weber (1993) contains a summary of recent results as
well as a valuable bibliography. The focus of most of this work is on obtaining
structural results for optimal policies rather than on computing optimal policies.

Tijms (1994) presents some material on stochastic dynamic programming,
including some computational results. In particular, the model in Section 10.5 is
treated. The Schweitzer transformation is applied to obtain an auxillary MDC.
The computation is performed by truncating the state space and assuming that if
20 or more customers are present in the system, then all the servers will be turned
on. A computation is done with K = 10,A = 7.0, ¢ = 1.0, H = 10.0, D = 10.0, and
c(k) = 30k. The computation produces an upper bound on the minimum average
cost of 319.5 and a lower bound of 319.3. According to our theory, H, D, and c(k)
may be divided by 10 without affecting the optimal policy. Note that this produces
our Scenario 7 with an optimal average cost of 31.937. Agreement is sweet!

The literature on polling models is voluminous, and we mention only a few
references. A seminal work is Takagi (1986), where the stability criterion under
exhaustive service was derived heuristically. It is shown rigorously in Altman
et al. (1992) and Georgiadis and Szpankowski (1992). See also Fricker and
Jaibi (1994). Takagi (1990, 1997) are useful survey articles containing many
references.

The pseudoconservation law employed in Proposition 10.6.1 is due to Boxma
and Groenendijk (1987). An equivalent form of this result is in Takagi (1990,
p. 278). It is possible to derive the average number in the system under general
service rates. This may be done using Little’s formula and results giving the
expected waiting time at each station. These quantities may be calculated recur-
sively. See Takagi (1997), Cooper et al. (1996), and Srinivasan et al. (1995).

Some results on the control of polling systems are beginning to appear, and
a few papers are discussed in Takagi (1997). We mention Browne and Yechiali
(1989) and Kim et al. (1996). In the former paper, the control problem is for-
mulated as a semi-Markov decision process and some heuristic rules for min-
imizing the cycle time are given. In the latter paper, various algorithms are
compared for the optimization of a polling system identical to ours except that
the buffers are truncated. The control of polling systems is a subject wide open
for further research and discovery.

PROBLEMS

10.1. Prove that the exponential distribution is the only continuous distribution
with the memoryless property. Hint: Use the fact that the only real-val-
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10.2.

10.3.

104.

10.5.

10.6.

10.7.

ued monotonic function r satisfying r(x +y) = r(x)r(y) for x, y 2 0, and
with r(0) = 1, is r(x) = ¢** for some constant «.

The random variable X has a I'(n, A\) distribution, where A > 0 and n is
a positive integer, if its density (the derivative of Fy) is given by

fx(x)=

~hx n- 1 >
——~—-(nv1)!e Ax)" 7, xz20.

Let Xy, X3, ..., X,, be independent exp(\) random variables. Prove that
X=X +Xy+...+X, has a I'(n, \) distribution. Hint: Prove this by
induction on n. Use a conditioning technique similar to that in (10.9) to
obtain an expression for P(X > y). Then differentiate P(X < v) to obtain
the density.

Let W, be the waiting time unti} the nth arrival in a PoisP(\). Show that
W, has a I'(n,\) distribution.

Assume that customer arrivals to a system follow a PoisP(A). Show that
the number of customers arriving in [0, ] has a Poisson distribution with
parameter N!. Hint: Calculate the probability of n customers arriving by
conditioning on the value of W, from Problem 10.3. It is also the case
that the number of customers arriving in any interval of length ¢ has the
same distribution. Argue informally why this should be true.

Develop a CTMDC model for Example 10.2.1 if there is an instanta-
neous cost for initiating a service at rate a. Assume that if a new cus-
tomer arrives, then another rate may be chosen and another instantancous
cost incurred (even if the same rate is selected).

Develop a CTMDC model for Example 10.2.1 if there is an instanta-
neous cost for changing the service rate. Assume that the action set A
also applies to state O so that a rate may be chosen (or remain in effect)
in anticipation of the next armival.

Consider an M/M/1 queue with service rate g and controllable arrival
rate. All customers are admitted. Just after a new customer arrives or
just after a service completion, the controller chooses from action set
{1,2,...,K}, where action k means that the time until the next customer
arrival follows a PoisP(\;) process. Assume that there is a nonnegative
instantaneous cost C(k) associated with action k as well as a cost rate
c(k) and a holding cost rate H(i) as in Example 10.2.1. Model this system
as a CTMDC.
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10.8.

10.9.

10.10.

10.11.

10.12.

10.13,

*10.14.

10.15.

10.16.
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Model the continuous time version of the routing to parallel queues
example treated in Section 8.6 as a CTMDC. Assume that a holding
cost rate of H,(i) + Ha(j) is charged when there are i customers in the
first queue and j customers in the second queue.

Consider a CTMDC on {1,2,3,...} with one action in each state and
P; i1 = 1. Assume that

. . I, iodd,
g} = vl) = { 2, ieven.

Calculate J ¥(1).
Complete the proof of Lemma 10.3.2.

Run ProgramSeven for the following scenarios. Each one is as in Sce-
nario 3 of Table 10.1 except that the cost of fastest service is changed
to the value indicated. Discuss your results.

(a) 140.0

(b) 125.0

() 110.0

In ProgramSeven show that if A and each service rate @ are multiplied
by the same positive constant, then the optimal policy and minimum
average cost are unchanged. Hint: Prove this by induction on 2 using
(10.27). What is the relation of the new value of 7 to the old value?

Run ProgramSeven for the scenarios below and discuss the results. Each
scenario has the value of A followed by the three service rates and their
respective costs:

(@ A=10;a=-09,12, 1.5; c(a) = 1.0, 3.0, 6.0.
(b) A=0.5;,a=0.5,0.75, 1.0, c(a) = 0.0, 5.0, 10.0.
() A=8.0;a=1.0, 8.0, 9.0, c{a) = 0.0, 20.0, 40.0.

Derive the expression in (10.35).
Run ProgramEight for Scenarios 3 through 7 in Scenarios 10.5.4, and
verify the positive recurrent class for the optimal policy in each case.

Make additional runs of your choice, and discuss the results.

Consider the situation in Proposition 10.6.1, and assume that we have
a second system with the same parameters except that each walking
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10.17.

10.18.

time parameter is cut in half. Let J}* be the average number of cus-
tomers in the second system. Prove that J¥* = 2Y - p/(1-p).

Consider the situation in Proposition 10.6.1, and assume that we have
a second systemn with the same parameters except that the arrival rates,
as well as the common service rate, are doubled (so that p remains con-
stant). Let J¥* be the average number of customers in the second sys-
tem. Prove that the expression in Problem 10.16 also holds in this case.

Run ProgramNine for the following scenarios and discuss your results.

In each scenario except (d) set H; = 1.0.

(a) )\k = (.5, Wy = 3, Wi = 0.75, Wk =1.0.

M) A =50, 7 =05N=10, u =10, 0, =50, W, =0.0. Let ¥ be
25 or 30.

(c) This system is as in Scenario 5 of Table 10.3 except that W, = 0.0.

(d) This system is as in (a) except that H, = 3.0.
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APPENDIX A

Results from Analysis

Certain results from analysis are used repeatedly throughout the book and are
collected here for the convenience of the reader. Standard statements and proofs
of some of these results involve measure theory. However, the material in this
book does not require that level of generality. For this reason all the proofs
provided here are tailored to our special case. The proofs are not requisite to
an understanding of the text and may be omitted.

Sections A.1 and A.2 contain the most frequently used theorems from analy-
sis. Section A.3 contains basic material on power series. Section A .4 contains an
important Tauberian theorem that provides a link between the infinite horizon
discounted cost criterion and the average cost criterion. Section A.5 contains
an example illustrating this theorem.

A.1 USEFUL THEOREMS

In this section a collection of useful results is presented.

Proposition A.1.1. Let (g(a)).c 4 be a probability distribution on the finite
(nonempty) set A. Let u: A —» (—o0, 0} be a function. Then Zae 4 @@uia) 2
minge 4 {€(a)}, and equality occurs if and only if the probability distribution is
concentrated on the subset B = {b € Alu(b) = min,¢ 4 {u(a)}}.

Proof: (Recall the convention that 0 - e = 0. So any terms with g(a) = 0
may be discarded. The distribution is concentrated on B if g(a) = O fora ¢ B. To
simplify notation, the subscripts on the minimum and summation are omitted.)
If u = oo, then it is easily seen that the claims hold.

Now assume that min {u(a)} = w < oo. Then u(a) =2 w, and hence
3 g(au(a) 2w Y g(a) = w. This proves the first statement.

Since the minimization is over a finite set, the set B of minimizing actions
must be nonempty. If ¢ is concentrated on B, then it is clear that we have
equality. Now let us assume that there exists a* € A - B such that q(a*) > 0.

270
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We show that equality cannot hold. Let u(a ) = W+ 5 where 8 > 0. Then
S g@u@zw S, .. gla) + (w+8)ga”) = w+g(a)e > w. O

Let us informally review what is meant by the limit infimum (respectively,
limit supremum) of a sequence of extended real-valued numbers. The limit infi-
mum (respectively, supremum) is the smallest (respectively, largest) limit point
of the sequence. The limit exists if and only if the limit infimum equals the
limit supremum, and the hmlt is then this quantity.

Consider the sequence 0, . 3. 0, %, 0, l, 0, 2, ... . The limit infimum equals
0, and the limit supremum is the limit of the subsequence l, %, ;, ..., which

equals 1. Since 0 < I, the limit does not exist. For the sequence 5, =, 5, 5,
-1,5,5,5,-2,5,5,5,5, -3, ..., the limit supremum equals 5 and the limit
infimum equals —oo

An alternative definition of the limit supremum of the sequence u, is
himsup, . .. {u4n} = limy . .. sup, s, {u,}, with a similar definition for the limit
infimum. It can be seen that the two definitions agree.

Remark A.1.2. Section A.1 and A.2 deal with various functions u(,N).
These functions are always assumed to be defined for integers N 2 Ny, where
Ny is some nonnegative integer. We sometimes deal with sequences Sy of sets,
and likewise these are assumed to be defined for N 2 Nj. O

The next result shows that a limit infimum may be passed through a mini-
mization over a finite set.

Proposition A.1.3. Let A be a finite (nonempty) set and u(a,N) an
extended real-valued function of a€ A and N.

(i) Then liminfy ., . minge 4 {u(a,N)} = min,c 4 {(liminfy _, .. u(a, N)}.
(ii) If limy . .. u(a, N') exists for every a, then limy . .. min, ¢ 4 {1(a, N)} =
minge 4 {limy . . u(a,N)}.

Proof: (To simplify notation, drop the subscript on min and let — oo
be understood.) To prove (i), observe that min{u(a,N)} < u(a,N). Hence
liminfy min{u(a, N)} < liminfy u(a, N). This implies that

lin;vinf min{u(a,N)} < min{lir[;‘,inf u(a,N)}. (A1)

We need to show that (A.1) is an equality.

Consider two cases. First suppose that liminfy min{u(a, N)} = —ec, This
means that there exists a subsequence N, such that lim, min{i(a,N,)} = —oo,
Since A is a finite set, there must cx:st atanda subsequence of N, (call it N, for
notational convemcnce) such thatu(a N,)=min{u(a, N,)} for all s. This implies
that lim, u(a®, N,) = —co. This clearly implies that equality holds in (A.1).
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Now assume that liminfy min{u(a,N)} > —oc and that equality fails. This
implies that there exist a sequence N, and ¢ > 0 such that min{u(a,N,)} +
e < min{liminfy u(a,N)}. Since A is a finite set, there must exist a* and a
subsequence N, such that u(@®,Ny) = min{u(a, N,)}. This is casily seen to yield
a contradiction. Hence equality must hold in (A.1).

The proof of (ii) is omitted. O

Example A.1.4. This example shows that A.1.3(i) does not hold with min
replaced by max. Let A = {a,,a,}, and define u(a;, N) to equal 0 for N even
and | for N odd (whereas u(a;, N) equals 1 for N even and O for N odd). Then
liminfy u(.,N)=0. Hence max {liminfy u(.,N)} = 0. Now max {u(.,N)}=1,
and hence liminfy max{u(.,N)} = 1. O

The next result shows that the limit infimum of a finite sum of terms equals
or exceeds the sum of the limit infimum of each term.

Proposition A.1.5. Let G be a finite (nonempty) set and u( j, N') a function
of j € G and N with values in (~eo,cc]. Then

lim inf Y wiNz Y (liminf u(j,N)) (A2)

Je G je G

under the condition that there is no indeterminate form in the summation on
the right of (A.2).

Proof: (An indeterminate form occurs in a summation if one summand
equals o= and another equals —ee. The notation is simplified by omitting the
index of summation and — <.) The condition on « implies that some values
may be e but none can be . Hence an indeterminate form cannot occur in
the summation on the left of (A.2). Let liminfy u(.,N) = u(.).

Consider three cases. First assume that u(j ) = —oo for some j Avoxdmg
an indeterminate form on the right means that u(j) < o for j # j . Then
Y u(j) = —oo, and the result holds.

Next assume that u(j*) = e for some j* Avondmg an indeterminate form
on the right means that u(j) > —oo for j % j". Let H = {jlu(j) = =}. There
exists N* such that u(j,N) 2 u(j) - 1 for N>N"* and j € G - H. Recall that
IG H| denotes the cardinality of the set. Then 3 u(j,N) = 3. 5 u(j,N)

jer WULNYZ oy u(j,NY + 3, 4 u(j) ~ |G- HI. Takmg the limit
mﬁmum of both sides yields liminfy Z u{j,N) = oo, and the result holds.

Finally assume that u is finite-valued, and let u( J)=U and ¢ > 0. There
exists N ¥ %uch that u(j,N) 2 u(j)—¢/|G| for N2 N*. Then Z u(j,NY2U-e¢
for N > N*. Taking the limit infimum of both sides and using the fact that €
is arbitrary yields the result. O
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Example A.1.6. This shows that the inequality in (A.2) may be strict, Let
G = {j,j*}. Define u(j,N) to be 0 for N even and 1 for N odd, while u(;*,N)
is 1 for N even and 0 for N odd. Then it is casily seen that the right side of
(A.2) is 0, whereas the left side is 1. 0

The next result generalizes Proposition A.1.5 for the case of a nonnegative
function.

Proposition A.1.7, Let S be a countable set and u(j,N) a functionof j € §
and N with values in [0, e}, Then

liminf Z u(j,N)2 Z im inf u(j,N). (A.3)

N oo

j€S JjesS

Proof: Recall that the sum of an infinite series is defined as the himit of its
sequence of partial sums if that limit exists. Since the terms of the series on
the right of (A.3) are nonnegative, the sequence of partial sums is increasing.
Hence the limit exists (it may be o). To prove (A.3), it is sufficient to show
that

lim inf 2 u(j,N)2 2 liminf u(j,N)) (A4)

jes je G

where G is an arbitrary finite subset of S.
Now

lim inf Z u(j,N) 2 fim inf Z u(j,N)
j€S je G

2 z (timinf u(j,N). (A.5)

ieG

The first line follows from the nonnegativity of u# and the second line from
Proposition A.1.5. This completes the proof. O

The next result is a variant of Proposition A.1.7.

Proposition A.1.8. Let S be a countable set and (Sy) an increasing
sequence of subsets of S such that USy = S. Let u(j, N) be a function of j € Sy
(or of j € §) and N taking values in [0, e]. Then
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lim in 2 u(j,N) 2 z (tim inf 4(j,N)). (A.6)

j€ SN jeS

Proof: Define the function «* by

*, . _Ju(j,N), je Sy,
u (.]iN) - {0’ je S— SlVa (A'7)

and note that liminfy «"(..N) = liminfy u(.,N). Then

Y uG Y=Y W G, (A8)

je Sy je S
and the result follows from Proposition A.1.7. ]

Example A.1.9. This shows that Proposition A.1.8 may fail if 4 can take
on negative values. Let S= {1,2, ...} and Sy = {1, 2, ..., 2 N}. Let u(j.N)
equal 0 for 1 <j < N, and equal —1 for N <j < 2N. Then liminfy u(,N) =0,
and hence the right side of (A.6) is 0. However, 3°¢ u(j,N) = -N, and hence
the left side of (A.6) is —eo, O

Proposition A.1.10, Let (&,),20 be a sequence of real numbers, and let w,

-3t uy, for n 2 1. Then

. . w, . w, .
liminf u, < liminf — <limsup — < limsup u,. (A.9)
n-—» oo n—e oo n 7= 0o n~= oo

Proof: 'We prove the leftmost inequality. Fix a positive integer M. Then for
n>M we have

M-t a1
ey ur Y w
k=0 k=M
M-1
> B -
2 u+n-M) Msil;tn—l {u )
k=0
M-
> . - i . .
2 u. +{n M)klg{l {uy } (A.10)
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Let us divide both sides of (A.10) by n and then take the limit infimum as n
— oo, This yields liminf, w,/n 2 infy>p {4:}. Then let M — oo to obtain
the result.

The proof of the rightmost inequality is similar. ]

A.2 FATOU’S LEMMA AND THE DOMINATED CONVERGENCE
THEOREM

We use the results in Section A.] to prove several famous results.

Proposition A.2.1 (Fatou’s Lemma). Let S be a countable set and (P;); ¢ 5
a probability distribution. Let u(j, N) be a function of j € § and ¥, taking values
in [- L, «] for some nonnegative (finite) constant L. Then

liminf ZS Piu(j,N) 2 zs‘ Py(liminf u(j,N)). (A.11)
J€ je

Proof: Recall that 0-cc = 0. Hence, if any P; = 0, then that term may be
discarded. So assume that P; > 0 for all j.
Let r(j,N) = u(j,N) + L, and note that r 2 0. We have

Z Pu(j,N)= 3 Pir(j,N)- L. (A.12)
jes jES

Then from Proposition A.1.7 it follows that

lim inf > Putj,N)= lim inf > RGN - L
jeS Jje s
2 imi i Yy —
2 Z(lm}vmf Hj,N)y-L

jes

= Pjlliminf u(j,N)+L] - L

jeS§
- 2 P;(liminf u(j, N)). (A.13)
j€S v
This completes the proof. m|

The next example shows that (A.11) may fail if the function is unbounded
below.
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Example A.2.2. LetS={1,2,...}, and let P; = 1/2/. In a moment we will
need the fact that 377, | 1/7 = 1/2"" Define u(J,N) to equal 0 for j S N
and to equal - 2% for J > N. For j fixed, observe that liminfy «(j,N)= 0 and
hence that the right side of (A.11)is 0. But 3, Pju(j,N)= -2V I E/2 )
= =2V Hence the left side of (A.11) is —co.

The following result gives a sufficient condition for passing a limit through
an infinite summation:

Theorem A.2.3 (Dominated Convergence Theorem). Assume that the
following hold:

(i) § is a countable set with probability distribution (P;);¢ 5.

(1) u(j,N)and w(j, N) are finite functions of j € S and N such that |u| < w.
(iii) Limy , 4(,N) = u(.) and limy ., . w(,N) = w(.) exist.
(iv) Limy ..« 3. ¢ Pyw(j,N) exists and equals 3, ¢ Piw(j) <oo.

Then limy . « 3 5 Pju(j,N) exists and equals 37, ¢ Pju(j).

Proof: Fatou’s lemma may be employed to give a simple proof of this
result. Let 3, ¢ Piw(j) = W. Since |u| < w, it follows that 3 _ ¢ Pu(j) = U
exists and |U| S W.

Note that w + 1 2 0. Applying Proposition A.2.1 to this function yields

lim inf 2 Pi(w(j,N) +u(j,N)) 2 2 Pyw(j) + u(j))
J J

=W+ U. (A.14)

But note that

liminf 2 Pi(w(j,N) +u(j,N))
]
= lim inf (Z Pw(j,N)+ Z P,-u(j,N))
J J
= W+ liminf 2 Pju(j,N), (A.15)
}

since the limit of the first term on the right exists. Then (A.14-15) imply that
liminfy 3 Pju(j,N)2 U.
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We also have w ~ « 2 0. Applying Proposition A.2.1 to this function yields
liminf 3 POv(,N) =i, V) 2 D7 Pilw(j) - u(j)
J i

=W-U. (A.16)

But note that

liminf " Piw(j, N) = u(j, V)
I

- lim jnf (Z Pw(j,N) - Z F’ju(j,N))
i j
= W - limsup Z Pu(j,N), (A.17)
Moo
Then (A.16-17) imply that lim sup, Zj Piu(j,N) < U. This proves the result.

a

An important special case of the dominated convergence theorem occurs
when the function w(j, N} is independent of N.

Corollary A.24. Assume that the following hold:

(i) § is a countable set with probability distribution (P;);e¢ s.

(i) u(j,N) is a function of j € S and N such that limy .. .. #(.,N) = u(.)
exists.

(iii) w is a finite function on § such that |u] Sw and 37, ¢ Piw(j) < ee.
Then limy . .. 3, ¢ Pju(j, N) exists and equals 2jes Piu(j).
We now treat the counterparts of Fatou's lemma and the dominated conver-

gence theorem for the case in which the probability distribution may also be a
function of N.

Proposition A.2.5 (Generalized Fatou’s Lemma). Assume that the fol-
lowing hold:

(i) § is a countable set with probability distribution (P;);¢ 5.
(ii) (Sy) is an increasing sequence of subsets of S such that USy = §.
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(iii) (Pj(N));c sy is a probability distribution on Sy satisfying limy . .. Pi(N)
=P;jforje S.

(iv) u(j,N)is a function of j € Sy and N taking values in [-L, o], for some
nonnegative (finite) constant L.

Then
liminf " Pi(N)u(j,N)2 D Piliminf u(j,N).  (A.I8)
j€ Sy JjeS§
Proof: Lletr(j.N)=u(j,N)+ L. Then
> PNWGNY = Y PN N) - L. (A.19)
je Sy jeSy
The proof follows in a manner similar to (A.13), using Proposition A.1.8. O
Theorem A.2.6 (Generalized Dominated Convergence Theorem). As-
lowing:
(iv) There exist finite functions «(j,N) and w(j,N) of j € Sy and N such
that |u] S w.

(v) Limy . .. (., N) = uf.) and limy . .. w(,, N} = w(.) exist.
(vi) Limy .. 25, Pi(NIW(j,N) exists and equals 2, . ¢ P,w(j) <eo.

Then limy .. 3, 5y P{(N)u(j,N) exists and equals 3. s Pju(j).

Proof: A proof can be given using the generalized Fatou’s lemma and fol-
lowing the ideas in the proof of the dominated convergence theorem. 0

An important special case occurs when the function w{(j,N) is a constant.

Corollary A.2.7. Assume that (i-iii) from Proposition A.2.5 hold and in
addition that:

(iv) There exists a function u( j, N) of j € Sy and N such that limy . . u(.,N)
= u(.) exists, and

(v) there exists a (finite) constant w such that ju]| < w.

Then limy .« 3, 5 Pi(N)u(j, N) exists and equals 3, s Pu(j).
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A3 POWER SERIES

This section presents some elementary facts about power series. For the proofs
of these results, the reader should consult a book on analysis such as Apostol
(1974).

Let o € [0,0), and let 4, be a sequence of nonnegative terms with uy < oo,
The series

U() = 2 ou, (A.20)
n=0

is a power series (about the origin). Note that we consider only power series
with nonnegative terms. Since the terms are nonnegative, it is the case that the
sequence of partial sums is increasing and hence the sum U(a) always exists
(it may be o). (Note that U(a) denotes both the series itself and its sum. This
is a regrettable notational confusion that is enshrined in mathematical history.)

We are interested in determining those values of o for which the sum
U(a) < oo; in this case we say that the series converges. It is the case that
(A.20) converges (to uy < =) for a = 0. The number

-1
R= (limsup \/u_) e [0, 0] (A.21)

, N+

is the radius of convergence of the power series. If R = 0, then (A.20) converges
only for a = (. If R = oo, then (A.20) converges for a € [0,50). If 0 <R < oo,
then (A.20) converges for o € [0,R) and diverges to o for a € (R,e0). Its
status for & = R must be checked.

Remark A.3.1. Let us assume that R > 0. Then U(x) is a differentiable
function of a € (0, R). Its derivative is the power series

dUl@) ~ ., ,
T ~-Z na" " 'uy, (A.22)

n=l

which is obtained by differentiating (A.20) term by term. The amazing result is
that the radius of convergence of (A.22) is also R. This can be seen from (A.21).
Hence this procedure can be repeated on (A.22) as many times as one wishes to
find higher derivatives. The radius of convergence never changes. 0

Remark A.3.2. Let U(a) (respectively, W(a)) be a power series with radius
of convergence R; > 0 (respectively, R, > 0). Their product is the power series
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2 2
Ua)W(a) = (up + oty + ¢ iz + .. J(wy +awy + ¢ wa +...)
= Upwy + Q(MQWI + Uywy) + az(u0W2 + Wy + Hawp) + ... (A23)

which has radius of convergence R = min{R, R,} and converges to the product
of the individual sums on [0, R). ]

Remark A.3.3. The best-known and most important power series is the
geometric series, obtained when u, = B, for some (finite) positive B. In this
case the radius of convergence is R = 1, and we have

Ul)=B(l+a+a*+a’ +..)

= —B— o€ [0,1). (A.24)
1 -«
A useful related formula is
Bla+2a+3c0+..)= —2% . ae[0,1). (A.25)
(1 - a)

This is obtained from (A.24) by differentiating the power series and then mul-
tiplying through by «. &

A4 A TAUBERIAN THEOREM

In this section we prove an important result for power series. In the theory of
Markov decision chains, this result provides a crucial link between the infinite
horizon discounted cost and average cost optimization criteria. The reader need
only understand the statement of Theorem A.4.2. The rest of the material in this
section is starred.

The following lemma is used in the proof of Theorem A.4.2. It involves
the function r(a) whose graph appears in Fig. A.1. This function has a jump
discontinuity at e~'. Note that

] }
j r(x) dx = j a (A.26)
0 el X

. *Lemma A.4.l. Given ¢ > 0, there exist continuous functions s(«) and
s (@) for a € (0, 1) such that s*<r<sand

H i
1~esj s*(x)dxsj s(x)dx<1+e. (A.27)
4] 1]
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r{a)
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0 et 1 [+3

Figure A.1 Graph of r(a).

Proof: The functxon s is indicated in Fig. A.2, and the function s* in Fig.

A3, Clearly we have sf<res htis easy to see that (A.27) will hold for
appropriate choices of é and v. The details are omitted. 0

Here is the fundamental result. It is called a Tauberian theorem after the
mathematician A. Tauber (1866-1947), who studied results of this type.

s{o)

23 ol

Q-

-8 e 1

Figure A.2  Graph of s{«).
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Figure A.3 Graph of s*(a).

—

Theorem A.4.2. Let U(a) be a power series as defined in (A,20). Let w,
= ';“l u; for n 2 1. Then

l‘;'l"— < liminf (1 - @)U(@) < limsup (1 - 0)U(o)  lim sup ‘1;;"—»
o« -1

n—= oa

lim inf

R~ oo

(A.28)
The following statements are equivalent:

(i) All the terms in (A.28) are equal and finite.
(i) Limy, . .. w,/n exists and is finite.
(in) Limg _, - (I — a)U(«) exists and is finite.

*Proof: We first take care of a special case. Assume that u,, = oo for some
ng. Then U(a) = oo, and so the middle terms of (A.28) are both . Moreover
w, = oo for n 2 ny+ 1. This implies that the outer terms are both oo, Thus (A.28)
holds in this case, with all terms equal to oo,

Now assume that u, < o for all n. Let R be the radius of convergence of
U{a). We consider two cases.

First assume that R < 1. Then U(a) = oo for « € (R,1). This implies that
the middle terms of (A.28) are both oo, It follows from (A.21) that limsup,, _ .,
/u, > 1. This implies that there exist ¢ > 0 and a subsequence n; such that
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Un)™ 21+¢,  allmy. (A.29)
Then u,, = (1 + €)™. And hence

(1 +¢e)% < Up, <WnA+l
m+l T om+l T+l

(A.30)

As we let k - oo, the term on the left of (A.30) approaches =. This implies
that the rightmost term in (A.28) equals o, and this proves that (A.28) holds.
Now assume that R 2 1. It follows from Remarks A.3.2-3 that

(Zan) (Za"un) s(l+a+a’+.. Nug+oau +ciuy+...)
nz=0

n.{)
2
=ug+o(ug+ Uy +a“(up+u +uz)+...

= i w1, {A31)

n=10

and this power series converges to U(a)/(1 - &) for o € [0, 1).
Therefore for a € [0, 1), and for any positive integer M we have

(1- U@ =(1-a) Y "W
n={

-~ +1

n=

M1

Wnael C
< - ) "Wt + SU " 1 -a) + Da”
(I-a) "_S_'D O Wy nzg(nﬂ)( o) "go(n o
= (1 - @)? 5 "Wy + SUP (M) ) (A.32)
nzm \ ntl

<

"=

Eq. (A.32) yields limsup, _ - (1 — a)U(@) S sup,5p Wne1/(n+ 1). Then
letting M — oo yields the rightmost inequality in (A.28).

It remains to show that the leftmost inequality in (A.28) holds. From the
second equality in (A.32), it follows that



284 RESULTS FROM ANALYSIS

(- )U(x) 2(1 - ) Z n+ D" ( v,:l; )

2 inf ( n‘) {1 —a)‘[Z(n+ Da” - 2 (n+ l)a"]

n=0

M-1
e f Wast T a2 n
'nlg{d(n+1)[l (1 - a) 2(n+l)a}. (A.33)

n=0

Eq. (A.33) yields liminf, . ;- (I - a)U(e) 2 inf, 2y Wuy 1 /(n+1). Then letting
M -+ oo yields the Jeftmost inequality in (A.28). This completes the proof of
(A.28).

It is clearly the case that (i) & (ii) = (iii). So to complete the proof, it
remains to show that (iii) implies (ii). We give an elegant but nonelementary
proof due to Karamata (see Titchmarsh, 1939).

Let f(c) be an integrable function of a € (0, 1), and let Us(a) be the series

Up(e) = Z ot fla). (A.34)
n=()
Note that this is not necessarily a power series, but for each o € (0,1} it is a

series of real numbers. Let im,, ., (1 — a)U(a) == L < oo, and consider the
statement

i
lin}_ (I -a)Us(a)= L I f(x)ydx. (A.35)
@ 0

We will prove that (A.35) holds for polynomial functions, then for continuous
functions, and then finally for the function r from Fig. A.l.

Let p() be a polynomial function. Clearly it is sufficient to show that (A.35)
holds for terms of the form p(a) = o for k a positive integer. Then

(1 - Up(@) = (1~ @) 3 unfe* )"

n=0

w[_._—._._l I—;i‘}{(]_akﬂ) z u,,(cx""')"}. (A.36)
n=0

Now let « — 17, The term in square brackets approaches 1/(k+1) = j") x* dx.
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The term in curly brackets approaches L by assumption. Hence (A.35) holds
for polynomials.

Now let s(«) be continuous, and fix ¢ > 0. By a theorem of Weierstrauss
(see Apostol, 1974), there exists a polynomial p such that

pla) — € £ s(a) < plo) + €, O<a<l. (A.37)

This implies that

] 1 !
j px)Ydx—e€ s J sx)dx < I pix) dx +e. (A.38)

0 0 0

It follows from (A.37) that (1 ~ a)U () S (1~ o) {Up(a) + eU(ar)}. We
have

1
limsup (1 ~ )l (o) < L(I px)dx+ e)

a-- 1" 0

i
sL ( I s(x)dx+ 26) . (A.39)

1]

The first inequality in (A.39) follows from (A.35) for p, and the second inequal-
ity follows from the leftmost inequality in (A.38). Using similar reasoning, we
find a lower bound for the limit infimum. Since ¢ > 0 is arbitrary, this proves
{A.35) for s.

The proof of (A.35) for the function r uses Lemma A.4.1 and what has just
been proved for continuous functions. Because it is quite similar to the reason-
ing we have just gone through, we omit the argument.

Let us see how (A.35) for the function r may be used to complete the proof.
Note that a” 2 ¢ ' if and only if n < - (In o) !. So we have

[~na) ')
(I-Uf@=(1-a) Y
)

= (1 - (!)W[_”n ay 11+1- (A40)

Here [] denotes the greatest integer function, so [5.3] = 5, [8.9] = 8, and so on.

The limit of the quantity on the left side of (A.40) exists and equals L for
any sequence of discount factors approaching 1. Suppose that we let « = e™'/".
The right side of (A.40) becomes
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(1 -e V™) ns+ 1)}( :”' ) . (A.41)

As n — oo, the term in curly brackets in (A.41) approaches 1. Because the left
side of (A.40) approaches L, it is the case that the limit of the term in round
brackets in (A.41) must exist and equal L. This proves that (ii) holds. O

A5 AN EXAMPLE

In this section we give an example illustrating Theorem A 4.2. Under “most
common circumstances” all of the terms in (A.28) are equal, and hence the lim-
its exist. Here is how to construct an example for which some of the inequalities
are strict.

Example A.5.1. The example is a sequence of Os and 1s. Let (g,),>1 be
a sequence of positive integers, to be specified later. Figure A.4 shows the
sequence, which consists of blocks, with first ¢; Is, then ¢, Os, and so on.
Let u, be the nth member of the sequence. If we begin the indexing with 0,
then we have u, = 1 for 0<n<q; - 1, and so on.

Then w,/n = (¥ of s in first # terms)/n. It is readily seen that this propor-
tion is minimized by takmg the subsequence n = 2qy, 2(q1 + q2), ... , and the
minimum propomon is , This implies that liminf, . .. w,/n = 5.

The proportion is maximized by taking the sequence n = q, 2q, + g, 22Uy +
g2) + q3, and so on, and for this subsequence we have the following values for

wy/n:

a1 +q2 qdi+gar+ 4
2i+q" A +g)+qy’

(A.42)

let 5, = ZL, qr. Then for n = 2 the sequence in (A.42) becomes (1 +
Sp-1/8n)" L

QOur task now is to find values of g; that make this quantity approach a
number greater than . Neither of the simple choices of g; = q or g; = k will
work. In each case the resulting sequence has a limit equal to 2

Let Choice One be g, = 1 and inductively q;.; = s;. This implies that s,
= 28,-1 and yields a limit supremum of 2/3. Let Choice Two be g; = 1 and
inductively gy . = (k+ 1)s;. This implies that s, = (n+1)s,, - and yields a limit
supremum of 1.

{ ©« « « 1 0 @ = «a 0 1 « = « 1 0 « « « 0 = =« =
N — RN - N g VI ;
g4 g q2 Q2

Figure A4 Example AS.1.
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In either case the equivalence of (ii} and (iii) in Theorem A.4.2 implies that
the middle inequality in (A.28) is strict. It is much more difficult to construct
an example for which the leftmost inequality, say, is strict. Such a construction
is given in Liggett and Lippman (1969), and we do not present it here. 0

BIBLIOGRAPHIC NOTES

Some of these results appear in any good book on analysis, for example, Apostol
(1974). Some of the results are modifications of known results, and some of the
proofs have been developed for this text.

The proof of Theorem A.2.3 is an elaboration of a cryptic proof in Royden
(1968, p. 232).

The continuous time version of Theorem A.4.2 appears in Widder (1941).
A proof for the discrete case was given in Sennott (1986b). The proof of (iii)
= (i) is due to Karamata and appears in Titchmarsh (1939, pp. 227-229).

Langen (1991) gives some results in a more theoretical setting similar to
those in Section A.2.
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APPENDIX B

Sequences of Stationary Policies

Throughout the book we deal with sequences of stationary policies. The con-
cept of a stationary policy that is a limit point of such a sequence is fundamen-
tal. This idea has two variants, one for the MDC A and one for an AS (Ax).
The proof of Proposition B.3 is optional, since it utilizes certain concepts from
topology. The reader who desires to pursue this proof should consult a general
topology text such as Pervin (1964) for the relevant background. The proof
of Proposition B.5 depends only on the statement of Proposition B.3. Finally
Proposition B.6 is a related result for functions. Its proof is also optional.

A sequence of stationary policies for A is a map from the natural numbers
{1,2,3,...} to the set of stationary policies for A. Thus fy, f2, f3, ... is a
sequence of stationary policies, where 1 is mapped to f;, 2 is mapped to f>,
and so on. These policies do not have to be distinct. We could have f, =f.

We could also have the sequence €3, €4, ¢, ..., where 1 is mapped to ¢z,
2 is mapped to e,, and so on. Or we could have the sequence dy;, dys3, dya,

., where 1 is mapped to 4,3, 2 to d3, and so on. Informally, a sequence of
stationary policies is just a list of them, with the proviso that there be infinitely
many policies in the list (although the policies do not have to be distinct).

Now suppose that we have a sequence f, of stationary policies. Then a sub-
sequence of this sequence is a selection, in order, of policies from the list that
also forms a sequence. For instance, if f1, f2, f3. f4, fss f6, f7. s fo, ... 18
the original sequence, then f3, fa, fo. f3, ... is a subsequence. Moreover there
can be subsequences of subsequences. Note that f, f3, ... is a subsequence of
the subsequence. Every subsequence of a subsequence is a subsequence of the
original sequence. And every subsequence is a sequence in its own right.

What about notation? If f, is the original sequence, then a subsequence is
denoted f,,, where r; denotes an appropriate selection from the original indexes.
If we need to consider a subsequence of a subsequence, we denote it by f,, or
some other appropriate notation; triple subscripts are not employed.

Here is the definition of a limit point of a sequence of stationary policies.

Definition B.1. Let f, be a sequence of stationary policies for A. The sta-
288
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tionary policy f is a limit point of the sequence if there exists a subsequence
fr, such that given i € §, it is the case that f, (/) = f(i) for sufficiently large
index r; (how large may depend on i). We denote this by limy f,, = f or by

0

frk"f-

This says that for a given state i, the policies in the subsequence choose the
same action at i as the policy f, as long as we have gone “far enough out” in
the subsequence. The amount necessary to go out may vary with ;. Here is an
example to clarify this concept.

Example B.2, LetS={0,1,2,...}, and assume that there are actions g and
b available in each state. The transition probabilities and costs are irrelevant and
are omitted.

Let f be the policy that always chooses a. Let e, be the policy that chooses
ainstate 0Si<n, and b in states { 2 n+ 1. Then e, —f. To prove this, fix i
and choose n so large that i < n. Then e,(i) =a=f(i) fornzi.

Let d be the policy that always chooses b, and consider the sequence ey, d,
e, d, e3,d, ... Then ey, e, e3, ... is a subsequence converging to f, and
d,d,d, ... is a subsequence converging to d (a “trivial” subsequence). Notice
that this sequence has two limit points. Can you construct a sequence with two
nontrivial converging subsequences? O

Here is the first result.

Propesition B.3. Every sequence of stationary policies for A has at least
one limit point.

*Pmof For each i the finite action set A; may be considered a compact

mctm, space in its discrete topology. Consider the topological product space

= IL;c sAi. There is a one-to-one correspondence between the points of A*
and the stationary policies for A. This comes about through the identification
of a stationary policy d with the element (d(i));c s in A%

Since the topo}oglcal product of compact topological spaces is compact,
it follows that A™ is a compact topological space. It is known that a countable
product of metric spaces is metrizable. That is, it has a metric compatlble with
the product topology. By means of this result it follows that A* is a compact
metric space.

In a compact metric space it is the case that every sequence of points has a
convergent subsequence. So, if £, is a sequence of stationary policies, then there
exist a stationary policy f and a subsequence f,, converging to f in the product
topology. This means the following: Given i, we have f,, (i) converging to f(i)
in the topological space A;. But since this is a finite discrete space, convergence
implies that f,, (i) = f(i) for sufficiently large index r;. But this is precisely the
notion of convergence in Definition B.1, and hence f,, —f. O
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The fact that S is countable is used crucially in this proof. If § is uncountable,
then A™ is still a compact topological space, but it is not metrizable. It is the case
that every net in a compact topological space has a convergent subnet, where
the notion of net generalizes that of a sequence. However, it is not necessarily
the case that every sequence has a convergent subsequence. The finiteness of
the action sets is also crucial to the proof. Do you see why?

It is necessary to have a similar result involving an AS for A.

Definition B.4. Let (Ay) be an AS for A. For each N let ¢” be a stationary
policy for Ay. The stationary policy e for A is a limit peint of the sequence
e" if there exists a subsequence ¢ such that given i € S, it is the case that
e"r(§) = e(i) for sufficiently large index N,. 0

Note the difference between Definitions B.1 and B.4. In the first case the
stationary policies f, are defined on S, while in the second case the stationary
policy e" is defined only on Sy. Here is the second result.

Proposition B.5. Let (Ay) be an AS for A. Every sequence e" of stationary
policies for (Ax) has a limit point.

Proof: For each i € § choose and fix an arbitrary a; € A;. Define the
stationary policy fy for A by

Ny s )
Futi) = {e (i), ie Sy,

a;, ie S-Sy

Then f v is a sequence of stationary policies for A, and by Proposition B.3 it has
a limit point. Hence there exist a stationary policy e for A and a subsequence
N, such that fy_—e. Then, given i € S, we have fy (i) = ei) for N, 2 s.
Here s is an index dependent on i. Now choose and fix N* such that i € Sy
for N 2 N*. Then for N, 2 max{s,N*} we have fy,(i) = e" (i) = e(i). This
proves the result. I

Here is a related result for functions using the same proof technique as that
of Proposition B.3.

Proposition B,6. Let L()) and M(i) be nonnegative (finite) functions on §.
Assume that (i) is a sequence of functions on § with L < u, < M for all
r. Then there exist a subsequence r; and a function w, with ~L < w £ M,
satisfying limy . o 4, (i) = w(i) for all i € §.

*Proof? Note that [ L(i), M(i)] is a closed interval of the real line and hence
is a compact metric space. The product space II, ¢ s[-L(i), M($)] is a compact
metric space. Moreover there is a one-to-one correspondence between points of
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the product space and functions y on § with —L <y < M. Namely y is identified
with the point (y(i))ies.

Hence u, is a sequence in the product space. Since every sequence in a com-
pact metric space has a convergent subsequence, there exist a subsequence ry
and a function w such that «,, -~ w in the product topology. But this means
that pointwise convergence holds. Hence limy . . w,, (i) = w(i) for all i € §S.

C

BIBLIOGRAPHIC NOTES

The background in topology appears in any good text such as Pervin (1964).
Proposition B.3 appears in Sennott (1989a), and Proposition B.5 in Sennott
(1997a).
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APPENDIX C

Markov Chains

This appendix deals with Markov chains on a countable state space. Section
C.1 summarizes background material on Markov chains and Section C.2 treats
Markov chains with an associated cost structure. Section C.3 deals with the
special results that apply when the state space is finite.

Some of the results in these sections are attributed, some are proved, and
some are stated without proof. The proofs of the latter may be found in any book
containing a good treatment of countable state Markov chains. For example, the
reader may consult Karlin and Taylor (1975), Taylor and Karlin (1984), Ross
(1996), or Cinlar (1975). The most advanced treatment is Chung (1967).

In Sections C4 and C5 we present results involving approximating
sequences for Markov chains.

The proofs that are given are for the convenience of the interested reader.
It is not necessary to read these proofs to understand how the results in this
appendix are applied in the text.

C.1 BASIC THEORY

A Markov chain (MC) I is a discrete time process defined on a countable state
space S fort =0, 1,2, .. .. Associated with i € S is a probability distribution
(Pij)j 5. where P;; is the probability that I’ will transition to state j during the
next slot, given that it is currently in state i. We assume that 3°, P;; = 1 for all
i, and hence the process cannot leave S. The characteristic property of a MC
is the memoryless property. If the chain is currently in state /, then its future
evolution dependb only on i and not on the history of the chain prior to that
time. A more rigorous definition of a MC is found in the references

Let P be the matrix of transition probabilities. Let P ) be the probability
of wansitioning from i to j in two slots, Then P(‘) Zk PPy, and these
probabilities are the entries of the product matrix P“ In general, P; “ is the
probability of transitioning from i to j in 7 slots and is given by the yth entry
of the product matrix P‘. We let P = b.

292
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As T moves from state to state forever, we are interested in classifying the
types of behavnor that a state may exhibit. For states i and j, if there exists
t 2 0 such that P }> 0, then we say that i leads to j. If i leads to j and j leads
to i, then we say that i and j communicate. Communication is an equivalence
relation on S (that is, every state communicates with itself; if i communicates
with j, then j communicates with /; and finally, if /{ communicates with j and
communicates with k, then i communicates with k). This implies that S decom-
poses into disjoint equivalence classes of communicating states, If § is a single
communicating class, then I' is irreducible.

Let X, be the state of the MC at time ¢. Given initial state Xy = i, let T be
a random variable denoting the time to return to i. There are two possibilities,
either P(T <o)< 1 or P(T <o) = 1.

If P(T < o) < 1, then we have P(T = oo) > 0. This means that there is a
positive probability of never returning to i/, and we say that { is transient. Note
that the chain may well visit i several times. However, after each visit there is a
fixed positive probability of never returning. Hence the visits form a sequence
of repeated independent Bernoulli trials that eventually result in never returning
to i. Therefore a transient state is visited only finitely many times during any
evolution of the MC.

If P(T < o0) = 1, then state { is visited infinitely many times, and we say that
i is recurrent. There are two types of recurrent states. Note that E[T] denotes
the expected time of a first return (first passage) to . If E{T'] = o, then i is said
to be null recurrent. In this case the chain returns to i infinitely many times
but the mean time for any return is infinite. If E[T] < «, then i is said to be
positive recurrent. In this case the chain returns to / infinitely many times, and
the mean time between any two visits is finite. As notation we set E[T] = m;;.

These properties are class properties; that is to say, every state in a com-
municating class is either transient, null recurrent, or positive recurrent. A nuil
recurrent class must be infinite. Positive and null recurrent classes are closed,
since no state in such a class can lead to a state outside the class.

Example C.1.1. To facilitate understanding of these concepts consider the
MC whose structure is shown in Fig. C.1. It is seen that S consists of three
copies of the nonnegative integers. We choose the distribution (p; > 0);» such
that A = 3 jp; < <o and the distribution (g; > 0);> such that ¥ j Jgj = >

Each row forms a communicating class From any middle state i* > 1, there
is a probability of ! of transitioning to 0. From 0% there is a probability of 1
of never returning to the middle row. Hence the middle row is a transient class.

It is clear that the other two classes are recurrent. Conditioning on the first
state visited shows that mgy = 1+, jp; = 1 +A < oo, and hence the top row is a
positive recurrent class. Similarly we have mogox = 1 + 3 jg; = =0, and hence
the bottom row is a null recurrent class. 0

Let
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and note that this is the expected number of visits to state j per unit time in
[0, n — 1] when starting in state /.

It is the case that W = lim, ., Q ) exists. The quantity x; is the steady state
probability of being in state j. Assummg that X = j, it may be thought of as
the limiting average number of visits to j per unit time, or alternatively as the
probability that a random observer finds the chain in state j after a long time
has elapsed.

If j is transient or null recurrent then @; = 0. If j is positive recurrent, then
@; > 0. It is the case that x; = (m;;)"', where for j transient or null recurrent we
have m;; = « and the quotient is interpreted as 0.

Now let T;; be a random variable denoting the first passage time to go from
i to j, namely the number of transmons required to first reach j from i. Then
Chung (1967) proves that lim, _, .. Q = P(T;; < oo)x;. This will be 0 unless
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both j is posmve recurrent and / leads to j. If R is a positive recurrent class,
then hm,Hu,QU =%, forall i, je R.

Proposition C.1.2. Let R be a positive recurrent class.

(i) We have 7 = 3, o Pym; forj € Rand 3, p#; = |. The nonnegative
solution to these equations is unique.

(ii) For i, j € R let ¢; be the expected number of visits to j during a first
passage from i to i. Then w; = e;;/m;; = m;e;;. (See Chung, 1967.)

Example C.1.3. In Example C.1.1 recall that the top row is a positive
recurrent class. We have my = (mog)~! = (1 + A\)"!. For i 2 1 it follows that
7, = ®oep; = (1 +X)"' 37, pj. The steady state probabxlmes for states m the
second and third rows are 0. We have P(T;+j < =) = § L and P(T;» it < 00) = - for
all ¥, i it O

Now assume that R is a positive recurrent class. Then R is aperiodic if x; =
lim,, - )) for /, j € R. Note that this is a stronger convergence requirement
than the one introduced above, which involves averaging. A sufficient condition
for R to be aperiodic is that P; > 0 for some i € R. A necessary and sufficient
condition is the following: There exist an element i € R and posmve mtegers

(m}
n and m, with greatest common divisor equal to 1, such that P,, and P;; are
both positive. The requirement of aperiodicity of a positive recurrent class rules
out “periodic” behavior.

Now fix a state i and a nonempty set G C S. We introduce some important
concepts. The taboo probability GPS;‘" is the probability of transitioning from i
to k in ¢ slots while avoiding the taboo set G. The initial state i and the terminal
state & may lie m G, but none of the intermediate states are allowed to be in
G. Note that pP,k = Py and GP,k = 8.

Let Ty; be the first passage time from { to G, namely the number of transi-
tions required to first reach G from i. If { € G, then the chain must make at least
one transition before returning to G. Thus it is always the case that T;; 2 1.
Let gu;x be the expected number of visits to £ in a first passage from i to G.
For k € G we have guy, = 0 if i ¢ G, and guy = & if i € G. Note that ;u;;
generalizes the quantity ¢;;, which was introduced earlier for i and j elements
of a positive recurrent class.

Let m;; = E{Tig] be the expected first passage time, If P(Ti; < o} = 1, then
the chain eventually reaches G and m;; may be finite or infinite. If P(T;g <
o) < 1, then myg = . If G = {j}, then the expected first passage time is
denoted m;;.

Proposition C.1.4, Let G be a nonempty subset of S.

(i) For k € G we have uic = dy + 3o, 6P,
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(i) We have mic = 3, _ 5 Glis-
(iii) It is the case that

Pi =Y, PicP, ke Szl €2)
jeG
Glik = ik + 2 Py gy, ike§ (C.3)
jea
mc=1+ z P,-jmjc, ieS. (C.4)
jeG

(iv) If G is contained in a positive recurrent class R, then 7; = 3, - 7 guj;
forje Rand 3, s mimig = 1.
(v) If R is a positive recurrent class, then m;; <ece for all i, j € R.

Proof: Tt is easy to see that the expressions in (i-ii} hold. Equation (C.2)
follows by conditioning on the first state visited. For k € G it is easily seen
that (C.3) holds. For k ¢ G we sum both sides of (C.2), for ¢t = 1 to oo, add
and subtract appropriate terms, and employ (i} to obtain (C.3). Equation (C.4)
follows by summing (C.3) over k and employing (ii). This verifies (iii).

The first equation in (iv) follows from Grassman et al. (1985), and we omit
the proof. The reader may note that if G = (i}, then this equation reduces to
the one in Proposition C.1.2(ii). The second equation follows by summing both
sides of the first equation over j € R.

Let us prove (v). Equation (C.4) yields

m,j =14+ Z ijmkj. (C.S)

k #j

We know that m;; < oo, Fix { #* j. Since j leads to i, there exists ¢ > 0 such that
(0 I ) .

P > 0. By choosing the smallest such 1, we have ;P;;” > (. Employing the

expression in (C.4) allows us to iterate (C.5) f - 1 times to obtain

ij 2 2 jP]‘i:.)m;‘j. (C6)
k#j

Here some nonnegative terms have been discarded from the right side. It follows
that we must have m;; < oo, W]

Proposition C.1.5. Let G be a nonempty subset of §. Assume that there
exist a (finite) nonnegative function y on § and ¢ > 0 such that
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Y Pilyp-ydls-¢, i€G. (k)
J

Then for i ¢ G we have P(T; <o) = 1 and m;g < y(i)/e.

Proof: Using the fact that y is nonnegative, (C.7) implies that

yDZze+ D Pplj),  igG. (C8)

jeG

Iterating this n times yields

i)z e +e(z GPE,‘-’) £ GPYT 0. (C9)

-1 jeG jeG

As a shorthand let T = T;z. Since T 2 1, we have P(T > 0) = 1. Then we
see from (C.9) that y(i) 2 ¢ 2710 P(T > t), where the last term on the right
of (C.9) has been dropped, since y is nonnegative. Now P(T > 1) 2 P(T = o),
and hence y(i) 2 e(n+ 1)P(T = o). Letting n — o< yields a contradiction unless
P(T = o0} = 0. Thus P(T < o) = 1. Using a familiar property of nonnegative
random variables, the inequality yields E{T) =3, P(T > 1) S y(i)/e. 0

Corollary C.1.6. Assume that there exist a distinguished state z, a (finite)
nonnegative function y on §, and ¢ > 0 such that

> Py <o,
J
D P -YS -6, itz (C.10)
b
Then P(T;, < o) = | for all i. Moreover m;, < y(i)/e for i # z. Finally m_, < eo,
and hence z is positive recurrent.
Proof: Choosing G = {z} in Proposition C.1.5 proves the claims concerning
P # 2
Now P(T,, < ea) = Zj PP(T,, < o|X; =j)= P, + e P ;P(Tj, <o0) = 1.
Then my, = 143, Poimj S1+(2, . Pyy(i))/e <oe. a

The function y in the two results above is called a Lyapunov function and the
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use of such functions is crucial to the results in the book. If § = {0,1,2,...},
then a particularly useful choice is y(i) = i. In this case we say that v; =:
2. Pij(j - i) is the drift at i. It measures the expected movement of I' in one
transmon The following result is proved in Sennott et al. (1983):

Proposition C.1.7. Assume that I' is positive recurrenton § = {0, 1,2,...}
and that P;; = 0 for i 2 2 and j < i 1. That is, the chain can transition downward
only one state at a time. Then ), #;y; = 0.

C.2 MARKOV CHAINS WITH COSTS

Assume that to each state i is attached a (finite) nonnegative cost C(¢). In this
section we discuss the important ideas related to a Markov chain with costs,
which we continue to refer to as the MC I'.

Let

. 1 n-1 ' .
5= E[Z C(Xz)|X0=l]
" =0
=Y ey, ies, (C.11)
J

be the expected cost incurred per unit time in [0, n— 1] when starting in state i.

Given that m,c < o, we let ¢;; be the expected cost of a first passage from
i to G. Since costs may be 0, it doesn’t make sense to talk about the expected
cost of a first passage without knowing that the expected first passage time is
finite.

Proposition C.2.1. Let R be a positive recurrent class.

(i) Forie R, lim, ,.J ::") exists and equals the (finite or infinite) constant
Jr =1 2, g W CU)-
(i1) For i € R we have Jg = ¢;;/m;;.
@) Jg = Z/‘e R MEICX)IXo = jl for n 20.

Proof: We first prove (ii). Fix i € R. It follows from Proposition C.1.2(ii)
that Jg = Zje z C(Pey/mi; = cii/mij. Observe that m;; < o but we may have
Cjj = oo,

To prove (i), note that Q,j —»m; for i € R. From (C.11) and Proposition
A.1.7 it then follows that lim inf, . . J E" 2 Jg, Thus, if Jg = oo, the limit
exists and equals oo for every i.

Now assume that J = ¢;;/m;; < e. Then (i) follows from the renewal reward



C.2 MARKOV CHAINS WITH COSTS 299

theorem. For example, see Ross (1996), A MC proof is given by Chung (1967,
p. 93). The lengths of successive first returns to a state / in a positive recurrent
class are independent and identically distributed, and hence these successive
first-passage times constitute a renewal process. In renewal theory the length
of such a first passage is called a cycle. The renewal reward theorem says that
the average cost, namely the limit of J f-"’ . 1s given by the expected cost incurred
during a cycle (which is ¢;) divided by the expected length of a cycle (which
is m,-,).

We prove (iii) by induction on z. It holds for # = 0 by definition. Now assume
that it holds for n. Then

2 ME[CX, . )Xo =j]= 2 C(k)z TjP;T 1

JjeR ke R JjeR
-3, e 33 e et
ke R se R\jeR
DICPI I 4
ke R se€ R
= Jg. (C.12)

The first line follows by definition of the expectation. The interchange of the
order of summation is justified, since all terms are nonnegative. The second line
follows from the basic discussion in Section C.1. The third line follows from
Proposition C.1.2(i). The fourth line follows by a rearrangement of the terms
and an application of the induction hypothesis. |

The next three results are the cost counterparts to the expected first passage
time results in Section C.1.

Proposition C.2.2. Let G be a nonempty subset of .

(i) Assume that m;g < e for some i. Then ;¢ = 3, C(k) guix.
(i) Under the hypothesis of (i), we have

cig = CQ@) + z Pijcig. (C.13)

jeG

(ii) If G is contained in a positive recurrent class R, then Jg= 3. ¢ ®iCiG-
(iv) If R is a positive recurrent class with Jg < oo, then ¢;; < o for all i,
j€R.
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Proof: It is clear that (i) holds. Part (ii) follows by multiplying both sides
of (C.3) by C(k), summing over k, and applying (i).
Part (iii) follows by multiplying the first equation in Proposition C.1.4(iv)
by C(j) and summing over j € R.
To prove (iv), observe that from Proposition C.1.4(v) it follows that m;; < o,
Moreover cj; < 0. The proof is now similar to the proof of Proposition C.1.4(v).
O

Proposition C.2.3. Let G be a nonempty subset of S such that m;; < o for
all i ¢ G. Assume that there exist a (finite) nonnegative function r on S and a
finite subset H < § - G such that

Y PirG) - rdl S - CG@), i ¢ GUH,
i

D Pyr(j<,  ieH. (C.14)
j

Then there exists a (finite) nonnegative constant F such that ¢;g < r(i) + Fm;g
forige GHHH=0, thencig<sri)fori ¢ G.

Proof: Let C = max;e y C(i) and D = max;. y4 ):j Pir(j). These are both
finite constants. Let F = C+ D,

Let Xp = i, Xy, ..., X, € G be a first passage with X, ¢ Gfor 0 £ 1 <
n. lf X, ¢ H, then from the first inequality in (C.14) it follows that C(X,) +
E[r(X,. )|X;] S r(X,). If X, € H, then C(X,) £ C, and the second inequality
in (C.14) yields E{r(X;.1)|X;] € D. Hence in either case we have C(X,) +
Elr(X, . 1)|1X:} £ C+ D+ r(X,) = F+r(X,). Taking the expectation of both sides
of this inequality yields

E{CX )]+ E[r(X,. )] < F+E[r{X)], 0st<n, (C.15)

Note that it follows from (C.15) by induction that E{r(X,)] <eefor0 <t < n.
We now add the terms in (C.15) to obtain E{Z::ol C(X)] < r(i)+ Fn. If this is
multiplied by the probability that the first passage is of length n and surnmed
over n, then we obtain the first result. The proof for H = @ is an obvious
modification of this proof. O

Corollary C.2.4. Assume that m;, < e for some distinguished state z and
all i Assgme that there exist a (finite) nonnegative function r on § and a finite
subset H~ containing z such that
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Y Pip<, i€ H,
i

*

D Pylr()-rdls - CH),  ieH™.

i

(C.16)

Then there exists a (finite) nonnegative constant F such that ¢;; < r(i}y+ Fm,,
for i # z. If H* = {z}, then ¢, S r(i) for i # z. Finally we have ¢, < oc.

Proof: We apply Proposition C.2.3 with G = {z} and H = H* — {z} to
obtain the first two claims.

We have assumed that m,. < oo, and hence it makes sense to talk about c_,.
We have c;; = C(2) + X« Prjcjiz S C(2) + 3 4 Pojlr(j) + Fmy ] = C@) - F +
Fmy + 3, Pyr(j)<ee. 0

The following type of MC is frequently employed in the text:

Definition C.2.5. Assume that there exists a distinguished state z such that
m;. <o and ¢;; < oo for all i € §. Then the MC is z standard. |

This definition entails the following powerful implications.
Proposition C.2.6. Assume that I is z standard.

(i) The state space S decomposes into a positive recurrent class R contain-
ing z and a set U of transient states.

(i) The average cost Jg on R is finite.
(i) Limy-... J" exists and equals J for all i.

Proof: By assumption m;, < s, and hence the communicating class R con-
taining z is positive recurrent. Clearly any state in {/ = $~ R must be transient,
since it leads to z. Since ¢;; < o= it follows from Proposition C.2.1(ii) that
Jr < oo. This proves (i-ii).

By Proposition C.2.1(i) it is only necessary to prove (iii) for transient states.
If the process starts in { € U, then in a finite expected amount of time and with
finite expected cost, it will be in state z, and the average cost associated with z is
Jr. The delayed renewal reward theorem then gives (iii). See Heyman and Sobel
(1982, p. 184). Intuitively the result follows because there is an initial renewal
interval with a different distribution, namely the first passage to z, and from
then on the renewal process behaves as discussed in the proof of Proposition
C.2.1. O

Remark C.2.7. (1) If Corollaries C.1.6 and C.2.4 hold, then T is z standard.
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(i1) It follows from Propositions C.1.4(v) and C.2.2(iv) that if T' is irreducible
and positive recurrent with finite average cost, then it is z standard for any
state z. [

C.3 MARKOV CHAINS WITH FINITE STATE SPACE

The results in Sections C.1 and C.2 apply when the MC has a countable state
space, that is, a finite or denumerably infinite state space. However, when § is
finite, additional results of a special nature hold.

Throughout this section we assume that I' is a Markov chain defined on a
finite state space §. Then I has at least one positive recurrent class. Let Ry, R,
..., Rx be a list of the positive recurrent classes. Let U be the set of states
not in a positive recurrent class. Since a null recurrent class must be infinite, T
has no null recurrent classes and the states in U must be transient. Moreover
it is the case that from [ € U some positive recurrent class is reached in finite
expected time and with finite expected cost. If p;(i) denotes the probability that
class Ry is reached first, then we have 3, py(i) = L.

We know from Proposition C.2.1(i) that the average cost or Ry is a constant
Jx. Since the costs are bounded, it follows that J;, < eo. It may be seen that
J(0) = 3 pe(i)Jk. That is, the average cost at an arbitrary state i is a convex
combination of the average costs on the positive recurrent classes. It is clear
that the average cost function is a constant J if and only if J; = J.

For S finite we say that the MC is unichain if there is just one positive
recurrent class R. In this case the average cost function must be constant. If the
distinguished state z is an arbitrary element of R, then the chain is z standard.
It is the case that a MC with a finite state space is z standard if and only if it
is unichain with positive recurrent class containing z.

C.4 APPROXIMATING SEQUENCES FOR MARKOYV CHAINS

In this section we have a Markov chain I' with costs on a denumerable state
space 5. We are interested in constructing an approximating sequence of finite
state Markov chains. The following definition is the MC counterpart of Defi-
nition 2.5.1:

Definition C.4.1. The sequence (T'y)v>w, is an approximating sequence
(AS) for I if there exists an increasing sequence (Sy)y 2w, of nonempty finite
subsets of S such that USy = S. Each 'y is a MC with costs on Sy. Given
i € Sy the cost at { equals C(i), and there is a transition probability distribution
(Pii{N))je sy satisfying limy ... Py(N) = Py fori,je §. O

Quantities such as first passage times in the AS will be denoted by m;(N),
and so on. The next result provides some general relationships.
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Proposition C.4.2. Let the AS be given, and let G be a finite nonempty
subset of S.

(i) Limy .« gPN) = GPY fori ke S, 121.
(i) gui(N) = guy = 6ix for k € G, i € S, and N sufficiently large. In
general, we have liminfy . . gui(N) 2 quy fori, k € S.
(iti) Lim inf,\r_. =mic(N) 2 mig forie S.

Proof- Since G is finite, we may assume that N is so large that G < Sy. We
prove (i) by induction. Now GPf,i)(N Y=Pyu(N)—P; = (;Pfi,“), and hence the
statement is true for ¢+ = 1. Now assume that it is true for £. Then (C.2) for Sy
yields

Pl VW)= Y PyNIGPIN). (C.17)
JESN-G

Taking the limit of both sides of (C.17), employing Corollary A.2.7 with bound-
ing function 1 and the induction hypothesis, yields the result for r + | and
proves (i).

The first statement in (ii) is clear. To prove the second statement, consider
the equation in Proposition C.1.4(i) for Sy. Take the limit infimum of both sides
of this equation and employ Proposition A.1.7, what has just been proved, and
Proposition C.1.4(i) to obtain the result. This proves (ii).

To prove (iii), consider the equation in Proposition C.1.4(ii) for Sy. Take
the limit infimum of both sides of this equation and employ Proposition A.1.8,
what has just been proved, and Proposition C.1.4(ii) to obtain the result. O

Proposition C.4.3. Let an AS be given. Then the following hold:

(i) If i € S is transient or null recurrent, then limy . . :(N) = 7; = 0.

(i1) Let R be a positive recurrent class in I'. Then given a sequence N,, there
exist a subsequence N, of N, and a constant b, with 0 £ b < 1, such that
lim, _, . m(N,) = bx; for i € R.

*Proof: Assume that { is transient or null recurrent. Then m;; = oo, and it fol-
lows from Proposition C.4.2(iii) that m;(N ) — eo. Then m;(N) = 1/m;(N)— 0,
which proves (i).

To prove (ii), fix the sequence N,. We may assume that the sequence of
functions x;(N,) is defined on all of S by setting m;(N) =0 for i ¢ Sy. Note
that 0 < m;(N,) < 1. By Proposition B.6 there exist a subsequence N, of ¥, and
a function ¢;, with 0 € ¢; < 1, such that m:(N,) - g, for all i.

If i is transient or null recurrent, then from (i) it follows that ¢; = 0. If
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i is positive recurrent, then from Proposition C.4.2 we have 1/¢g; = lim, . .
m(N,) 2 iminfy , . mi(N) 2 m;; = 1/%;. This implies that ¢; < =;.
Consider the equation

GN) = 3, PyNIm(N),  j € Sw. (C.18)

ie Sy

In Proposition C.1.2(i) we gave this equation as valid for a positive recurrent
class in I'y. However, it is easily seen that (C.18) holds in the general case, in
which there may be transient states and multiple positive recurent classes.

We now take the limit infimum through values of N, of both sides of (C.18)
and employ Proposition A.2.5 10 obtain

q; 2 Z Piqi, jes. (C.19)

Now assume that j € R. On the right side of (C.19), notice that P;; can be

posmve in only two cases, namely i € R or i transient. If { is transient, then

= 0, and we may omit that term. Hence (C.19) yields (*): g 22,z Piqi

for J€R Smce g; < m;, it follows that 2ierd S L If we assume that the

inequality in ( ) is strict for some j and sum bcth sides over j € R then we

obtain a contradiction. Hence equality holds in * }. We then iterate ( ) n times
and average to obtain

4=, 00a jeR (C.20)
ie R

We wish to take the limit of the right side of (C.20) and pass the limit through
the summation. To justify this, we may use Corollary A.2.4 with bounding func-
tion 1. Note that (g;);« k may not be a probability distribution, but since 3, _ . g
=: b £ 1, a term with the extra probability (multiplied by 0) can be added to
the right side of (C.20). This easily yields g; = bw; for j € R. a

The constant b in Proposition C.4.3 depends on the positive recurrent class
and on the sequence N,. Note that b = 1 for all positive recurrent classes and
sequences, is equivalent to x{N)—»x; for i € §, and we will use the two
expressions interchangeably. The next example shows that we may have b < I,

Example C4.4. letS=1{0,1,2,...} withPyy=tand P;;_;=1fori=1.
Then w5 = 1 and x; = 0 for i 2 1. We construct two approximating sequences
with Sy = {0,1,... . N} for N2 2.

To define ASy, let Poy(N) = 1 - N7', Pou(N) = N71, P, {(N) = 1 for
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1 £isN-1,and Pyy(N) = 1. This satisfies 7;(N) = 0,0 <i S N -1, and
wn(N)=1.In this case b = (.

To define AS;, let the transition probabilities be as in AS; except set
Pyy_y(N) = 1. This makes I'y into an irreducible MC, and it is easy to see,

using reasoning similar to that in Example C.1.3, that xmy(V) = % and #; = 5:7
for 1 i< N. In this case b = 1. O

Here is a result related to the cost structure.

Proposition C.4.5. Let an AS be given, and let G be a finite nonempty sub-
set of S. Assume that m;; < =0 for some ¢ and that m,;(N) < o for sufficiently
large N. Then liminfy _. .. cig(N) 2 ¢ig.

Proof: From Proposition C.2.2(1) it follows that

cciN) = Y, Clygu(N). (€21

ke Sy

We then take the limit infimum of both sides of (C.21) and employ Proposition
A.1.8 and Propositions C.4.2(ii) and C.2.2(i) to obtain the result. 0]

Proposition C.4.6. Let an AS be given, and let R be a positive recurrent
class in I'. Then the following are equivalent:

(i) m(N)—=; fori € R.
(i) m ,(N)— m_, for some z € R.
(i1i) my(N)-— m;; for any nonempty finite subset G of R and i € R,

Now assume that any (and hence all) of the above conditions hold. Then the
following are equivalent:

(iv) JGYN)—Jg forie R
v) ¢, AN)—c,, for some z € R.
(vi) cig{N) — ¢ for any nonempty finite subset G of R and i € R.

Proaf: Observe that (i) is equnivalent to 7,(N) — «, and if this holds, then
we must have b = 1 for R. Thus (i) and (ii) are equivalent. Clearly (iii) implies
(ii), so it remains to prove that (i) implies (iii).

So let G be a nonempty finite subset of R, and fix a subsequence N,. Let
liminf, , wmig(N,) =: w(i) forie S.

Part (i) implies that for sufficiently large N, the finite set G is contained in
a positive recurrent class R(N) of T'y. Then Proposition C.1.4(iv) yields
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1= z xAN)miG(N). (C.22)

ie G

We first show that m;c(N) -+ m; for i € G. Take the limit infimum of both
sides of (C.22) through values N, to obtain

12 z xw(i)

i€G

> 2 x;(l}iéxl inf m,-c(N))

ieG

2 }E‘mﬂng

i€ G
= 1. (C23)

The second line is clear and the third line follows from Proposition C.4.2(iii).
The fourth line follows from Proposition C.1.4(iv). Hence all the terms in (C.23)
are equal. This readily implies that w(i) = m;¢, which yields m;g(NV) - m;g, for
1€ G.

Now consider (C.4) for I'y. Taking the limit infimum of both sides through
values N, yiclds

wiZ1+ D Ppw(j), Q€S (C.24)
je G

Now fix k € R — G. It is easy to see that there must exist i*e Gandr21
such that GP".'; > 0. Iterating (C.24) n - | times yields

n-1
Wiy 214> Y GPE+ Y P

t=1 jeG jeG
n-1
2103 3, o7 3, oPhime
=1 ;@G jeG
p— (C.25)

The second line follows from Proposmon C.4.2(ii1). The third line follows from
(C.4) for T iterated n - 1 times. Since w(i*) = m;+¢, it follows that all the terms
in (C.25) are equal. This readily implies that w(k) = my¢ and proves (iii).
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Now assume that (i-iii) hold, and fix i € R. It is easily seen that / and z are
elements of a positive recurrent class R(V) for N sufficiently large. It follows
from Proposition C.2.1(ji) that JGXN) = J()YN) = ¢, (N)/m(N) and that
Jg = ¢,./m,.. From this it easily follows that (iv) and (v) are equivalent.

Clearly (vi) implies (v). The proof that (iv) implies (vi) is similar to the proof
above, and we omit it. O

Example C4.7. Let I' and Sy be as in Example C.4.4. Define 'y by
Po(N) = 1 - N2 Pou(N) = N2, and P;;_((N) = 1 for 1 £i £ N. This
makes I'y into an irreducible MC, and it is easy to see, using reasoning similar
to that in Example C.1.3, that my(N) = 1 + N~! which converges to .

Assume that C(i) = . Then cg = 0, but

1 NN + 1
coo(N) = F(_..(__*_))

2
N+l

0

The following definition embodies the idea that the convergence is properly
behaved:

Definition C.4.8. Assume that T is z standard. An AS is conforming if the
following hold:

(i) There exists N* such that T'y 1s unichain with z an element of the pos-
itive recurrent class for N 2 N ™

(i) We have m, (N) —m;, and c,k(N }—»c;. for all i. (I}

Here are some consequences of the notion of conformity.

Proposition C.4.9. Assume that I' is z standard and that the AS is con-
forming.

(1) J(N)— Jg, where J(N ) is the constant average coston 'y for N2 N *,

Proof- U i e U, then the convergence in (i) follows from Proposition
C.4.3(1). If i € R, then it follows from Propesition C.4.6. To prove (ii), note
that J(N) = ¢ (N)/m AN} —c../m,. = Jp. 0

It is sometimes useful to have the following weaker notion of conformity:
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Definition C.4.10. Assume that I' has a positive recurrent class R with
finite average cost Jg. Then an AS is conforming on R if, for i € R, we have
7{N)—x; and JGYN) = Jg. ]

C.5 SUFFICIENT CONDITIONS FOR CONFORMITY

The examples in Section C.4 tell us that achieving conformity requires addi-
tional assumptions on the approximating sequence. Developing appropriate
assumptions is the task of this section. These assumptions require the AS to
be of a special type, namely the counterpart of the augmentation type approxi-
mating sequence introduced in Definition 2.5.3 for MDCs. For clarity we give
the definition here for MCs.

Definition C.5.1. Assume that we have a MC with an approximating
sequence. The AS is an augmentation tvpe approximating sequence (ATAS)
if the following holds: Given i € Sy, for each r ¢ Sy there exists a probabil-
ity distribution (g;(i,r, N));¢ sy, called the augmentation distribution associated
with (i, r, N), such that

PyN)=Py+ 3 Pigi.r,N),  je€Sy. (C.27)

re S-Sy

0

The idea is that the original probability associated with states in Sy is not
changed, but excess probability associated with a transition to a state outside
of Sy is redistributed to the elements of Sy according to some probability dis-
tribution.

The next result involves an ATAS that sends excess probability to a finite set,

Proposition C.5.2. Let T' be a z standard MC, and let G be a finite
nonempty subset of S. Any ATAS that sends excess probability to G is con-
forming. The weaker notion of conformity in Definition C.4.10 also holds as
long as G is a subset of R.

*Proof: We first argue that there is no loss of generality in assuming that
z € G, since if G does not already contain z, then we may add it in. The
approximating sequence is still an ATAS that sends the excess probability to
G. (There is no requirement that any excess probability be sent to )

Now assume that N is so large that G C Sy. We claim that (*): (,Pf?(N )S
cP,‘ fort21,i € Sy, and k € Sy—G. Think about why this is mtumvel) clear!
We prove ( *) by induction. For ¢ = 1 we have (;Pf-,t)(N) = Py(N) = Py =
GPf-,'(). Now assume that the result holds for ¢. Then
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P MW= Y PPN

jeSn-G

O]
< 2 P Pk

jESN_G

S 3 el

jeS-G

= P4 Y. (C.28)

The second line follows from the induction hypothesis and what was just proved
fort= l The third and fourth lines are clear. This completes the induction and
hence ( ) holds.
It then follows from Proposition C.1.4(i) that ( ) cui(N) € guip for k €
- G. Then

mcN)=1G € G+ Y. GuiN)

ke Sy~G

flie G+ Z Glik

ke SN-G

<lie G)+ 2 Glik

keS-G

= MyG. (C.29)

The ﬁrst and last line follow from Proposition C.1.4(ii). The second line follows
from (**), and the third line from the nonnegativity of the terms. From (C.29)
we have ( ) mi{(N) € myc for i € Sy. Then Proposition C.4.2(iii) implies
that m;c(N) — m;¢ for all i.

Since z € G and T' is z standard, it follows that m;; < o for all i. Hence it
follows from (***) that m;g(N) < o for i € Sy. This implies that G must inter-
sect every positive recurrent class in I'y. Moreover it follows from Proposition
C.1.4(i1) that gu;;(N) <o for i, j € Sy.

Consider the first equation in Proposition C.1.4(iv). It was stated for a finite
subset of a positive recurrent class. It is easy to check that under the above
conditions the equation holds in general for Sy. Thus

nN)= Y wiN)gusN),  j € Sw. (C30)
ieG
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Now let F(N) be the number of positive recurrent classes in I'y, and note
that F(N) 2 1. Then adding up the terms in (C.30) yields

FN) =Y w(Nmi(N)

ieG

< 2 (N )mig. (C.31)

i€eG

The first line follows from Proposition C.1.4(ii), and the second line follows
from (***).

Given a sequence N,, there exist a subsequence N, and b, with 0 £ b < 1,
such that x;(N,;}—bwx; for i € R. Moreover x;(N)-+~0 for i € U. This
follows from Proposition C.4.3(ii). Let H = G N R, and note that H is
nonempty. Using these facts, it follows from (C.31) that | < liminf; . .. F(N,) <
limsup, , . FIN)SbY,  , Timig=b,; ., Timyy = b. The next to last equal-
ity follows since m;; = m;y for i € H < R. The last equality follows from
Proposition C.1.4(iv). Hence & = 1. Since this holds for any sequence, it follows
that #;(N ) — =; for i € R. Then Proposition C.4.6 yields that m;.(N) — m;_ for
ieR

This also proves that F(N)— 1. Since F(N) is an integer, we must have
F(N) = 1 for sufficiently large N. It follows from what has been proved that
must lie in the positive recurrent class R(N) for sufficiently large N, say N =
N™. This verifies Definition C.4. 8(1)

Using Proposition C.2.2(i) and ( ) we obtain ¢;g(N) € ¢ig for i € Sy. Then
it follows from Proposition C.4.5 that ¢,g(N)— ¢,c. For N 2 N* , since Ty is
unichain, we see that Proposition C.2.2(iii) may be generalized to give J(N) =
Zie G ‘H’,‘(N)C,’(;(N). Then this yields J(N)“’ Zie H‘JI';C,‘(; = Zie HECin = JR.
It follows from Proposition C.4.6 that ¢;.(N)—¢;. fori € R.

It remains to verify Definition C.4.8(ii) for / transient. We reason, in general,
for initial state i # z. Let T;(N) be the time to first reach either z or § —
Sy (call this first passage 1), and let T; be the first passage time to z (call
this first passaoe 2). Note that both first passages take place in T. Let u/ (N)
(respectively, u%) be the expected number of visits to k dunng ﬁrst passage 1
(respectively, first passage 2). Clearly it is the case that u/,(N) < u%. Summing
both sides over & yields E[T;(N)] S m,;.

Now assume that i € Sy, and consider m;.(N). Note that I'y operates just as
T until either z is reached (and the first passage is completed) or until S - Sy
is reached. If the latter occurs, then the process is reset to an element of G
according to some probability distribution and then begins anew an attempt to
reach z (unless it is reset to z). Let us define y;(N) =: P(I" reaches §— Sy before
it reaches z|X, = ). Then we see that
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mi:(N) = E[Ti{N)]

+ Y Eladditional time to reach z|Xrw) = IPXrm) = 7)

re S-Sy

Sm.»z+y.-uv)( Y mjz(N))

Jje G- {2}

=my; + yi(N)M(N), (C32)

where M(N) is defined to be the summation in brackets in the second line. Note
that M(N) < oo for N2 N*,

Now let us sum both sides of (C.32) over j € G ~ {z}. Solving for M(N)
yields

2iec-15y M
1= e 6oy YN

M(N) < (C.33)

Then substituting (C.33) into (C.32) yields

yilN)
mi:(N)Smi;+< > m,z){ S P } (C.34)

je G- {z}

We now prove that y_(N)— 0. This will imply that limsupy __ . mi,(N) < m,,
and hence by Proposition C.4.2(ii) it follows that m;.(N) — m;,.

Observe that y;(N) is decreasing in N, and hence limy _. .. y:(N) =: y; exists.
Now

YN = D Pur D PanV)

re §$-8Sy ke Sy - {2}
< D, P+ Y PuntN), iz (C35)
reS—-Sy ke S- (2}

Take the limit of both sides of (C.35) as N — oo, The first term on the right
approaches 0. We may apply Corollary A.2.4 to the summation (with bounding
function 1) to obtain y; < Zk # 2 Picyx. lterating this yields
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()
vi £ :Pr'k Yk

k#z

{r)
§ ; :Pik
k#

P(T; > n). (C.36)

1A

The second line follows, since y; < 1. The finiteness of m;, implies that P(T; >
n)—»0 as n—» oo, this implies that y; = 0.

We now deal with the first passage costs. The above argument may be
easily modified to yield the analogue of (C.34) for the expected costs. This
yields limsupy _ .. ¢i:(N¥) < ¢i;, and hence by Proposition C.4.5 it follows that
ciZ(N)—ciz.

It remains to prove the second statement of the proposition. To accomplish
this, we may simply reduce § to the positive recurrent class R (in which case
it is z standard for any z € R) and apply the first statement. O

The next result utilizes an ATAS satisfying a structural property.

Proposition C.5.3. Let I’ be z standard. Assume that we have an ATAS
and a nonnegative integer N* such that the augmentation distributions satisfy

Y gGrNmSm.,  ieSyreSnN2N, (C.37)
Ji€ Sn- (2}
and
2 g, r,N)ej:Sc.. i€ Syr e Sy N2N™. (C.38)
J€ 8~ (2}

Then the ATAS is conforming.

Proof:  The basic idea of (C.37) is that the convex combination of first pas-
sage times in I' corresponding to excess probability P;, cannot exceed the first
passage time associated with r. This is a type of structural property. A similar
comment holds for (C.38).

Observe that
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Z Piy(N)m;, = 2 Pijmj. + 2 Pir( Z qj(i,r,N)mj:)

Jje Sy -{:} je Sy -} reSy Jj& Sy - {2}
Z Pim;. + Z Pi.m,,
j& Sy {z} reSn
=mj; ~ |, ie Sk (C39)

The first line follows from (C.27). The second line follows from (C.37), and
the last line from (C.4).

The hypotheses of Corollary C.1.6 are satisfied for I'y (with y(i) = m;; for
i € Sy~ {z} and y(z) = 0), and hence it follows that m; (N) < m; for i €
Sy — {z}. Proposition C.4.2(iii) implies that m; . (N) —m;, for i # z.

Now

mN)=1+ D PyNymp(N), (C.40)

je Sy -1z}

We wish to apply Theorem A.2.6 with bounding function m;.. The hypotheses
will hold if it can be shown that

(*) limN_. o Luje Sy - {2} P:,(N)mr = sté: szmjz.

If (*) can be shown then Theorem A.2.6 yields m (N} —= 1+3, . P:;m;; = m;
So let us show (*). It follows from (C.39) and Proposmon A.1.8 that

m,, - 1 2 limsup Z P(N)m;,
N jedy-ta)

2liminf Y Py(N)m;

N 00

je Sy - {z}
2 2 P_im;,
i#z
=my, - 1. (C41)

Hence all these terms are equal, and (*) holds.
The proof for the costs is similar and is omitted. O

We now explore two special results valid when § = {0,1,2,...}. f F;; = 0
for i 22 and j < i~ 1, then the transition matrix is upper Hessenberg. In this
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case the MC can transition downward at most one state at a time. If P;; = 0 for
i20andj>i+ 1, then the transition matrix is lower Hessenberg. In this case
the MC can transition upward at most one state at a time.

Corollary C.5.4. Let I be a 0 standard MC with upper Hessenberg transi-
tion matrix. Assume that Sy = {0,1,..., N} for N 2 | and that the ATAS sends
the excess probability to N. Then it is conforming.

Proof: 'We apply Proposition C.5.3 with N * = 1. In this case we have
gn() =1, and (C.37) becomes the requirement that myo < m,o for r > N. This
is equivalent to the requirement that m;o be increasing in / for / 2 1. But this
is clear for an upper Hessenberg matrix because myy = my;_ + m;_ 1. Similar
comments are true for the expected first passage costs. a

Another proof of this result is given in Sennott (1997a) and is based on
Gibson and Seneta (1987). The following result for lower Hessenberg transition
matrices is stated (for the steady state probabilities alone) in Gibson and Seneta
(1987) with a proof in Gibson and Seneta (1986). A complete proof, based on
the Gibson and Seneta proof and including the cost structure, is given in Sennott
(1997a). We state the result here.

Proposition C.5.5, Let I’ be a standard MC with lower Hessenberg tran-
sition matrix that is irreducible on S. Assume that Sy = {0,1,...,N} for N 2
1. Let an be a probability distribution on Sy that converges to a probability
distribution o on § as N — oo, Let the ATAS satisfy ¢;(N,N + 1, N) = an(j).
Then it is conforming.

Note that there is excess probability only in state N and it is Pyy. ;. This
probability is distributed to the states of Sy according to the probability distri-
bution ay.

An example in Gibson and Seneta (1987) shows that conformity may fail
to hold for a MC with a lower Hessenberg transition matrix and an ATAS that
sends the excess probability to N.

BIBLIOGRAPHIC NOTES

Proposition C.1.5 and Corollary C.1.6 are modifications of a result due origi-
nally to Foster (1953) and generalized by Pakes (1969). For much additional
material, see Tweedie (1976, 1983), and for these results and recent develop-
ments, see Meyn and Tweedie (1993).

For versions of Proposition C.2.3 and Corollary C.2.4, see Sennott (1989a)
and Meyn and Tweedie (1993).

Concerning approximating sequences for Markov chains, earlier authors have
restricted attention to Markov chains without costs. We have developed the sub-
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ject to include costs, and most of our results and proof techniques are modifi-
cations of prior work.

To obtain Proposition C.4.3, we have generalized a result due to Wolf (1980);
this paper also stimulated other results in Appendix C. Proposition C.5.2 is
basically due to Gibson and Seneta (1987). Proposition C.5.3 is due to Sennott
(1997b). Corollary C.5.4 is due to Gibson and Seneta (1987), and see Heyman
(1991) for another proof. Qur proof uses Proposition C.5.3. Proposition C.5.5
is also due to Gibson and Seneta (1987) with a proof in Gibson and Seneta
(1986). Based on their proof, Sennott (1997a) gives a proof including costs.

An ATAS type approximating sequence for Markov chains is studied in Van
Dijk (1991) and applied to some queueing systems.
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