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Preface 

The subject of stochastic dynamic programming, also known as stochastic opti- 
mal control, Markov decision processes, or Markov decision chains, encom- 
passes a wide variety of interest areas and is an important part of the curriculum 
in operations research, management science, engineering, and applied mathe- 
matics departments. 

This book is unique in its total integration of theory and computation, and 
these two sorands are interleaved throughout. First the theory underlying a par- 
ticular optimization criterion (goal for system operation) is developed, and it is 
proved that optimal policies (rules for system operation that achieve an opti- 
mization criterion) exist. Then a computational method is given so that these 
policies may be numerically determined. 

Stochastic dynamic programming encompasses many application areas. We 
have chosen to illustrate the theory and Computation with examples mostly 
drawn from the control of queueing systems. Inventory models and a machine 
replacement model are also treated. An advantage in focusing the examples 
largely in one area is that it enables us to develop these important applications 
in depth and to concomitantly expand the subject of control of queueing sys- 
tems. However, the theory presented here is general and has applications in 
diverse subject areas. 

A total of nine numerical programs are fully discussed in the text. Text prob- 
lems give suggestions for further exploration of these programs. 

It is intended that the book can be successfully used by an audience ranging 
from advanced undergraduates to researchers. This may be done as follows: 

For advanced undergraduates, omit all proofs. Focus on motivation of the 
concepts, and exploration and extension of the nine programs. 
For first- and second-year graduate students, accompany the motivation of 
the concepts by reading selected proofs under the direction of a professor. 
For advanced graduate students, professionals, and researchers, read a 
selection of proofs as desired. The more difficult proofs are starred, and it 
is suggested that these be deferred to a second reading. 

xi 
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0 For the reader whose primary interest is in applications and Computation, 
omit the proofs zi desired and concentrate on the material relating to com- 
putation. 

The important background material is given in the appendixes. The ap- 
pendixes are intended to be used as references, to be dipped into as needed. 
Some of the appendix material includes proofs. These are for the convenience 
of the interested reader and are not requisite to understanding the text. 

The mathematical background necessary for comprehension of the text 
would be encompassed by a semester course on basic probability and stochastic 
processes, especially on the theory of Markov chains. However, since all the 
necessary background results are reviewed in the appendixes, the number of’ 
specific results the reader is expected to bring to the table is minimal. Perhaps 
most important for the reader is a bit of that famous ever-vague “mathematical 
maturity,” which is always helpful in understanding certain logical idea$ that 
recur in many of the arguments. The prospective student of this text should 
keep in mind that understanding the basic arguments in stochastic dynamic pro- 
gramming is a skill that is developed and refined with practice. It definitely gets 
easier as one progresses! 

The chapter dependencies are shown in the flowchart (Fig. P.1). Chapter 1 is 
an introduction, and Chapter 2 gives the definitions of’ the optimization criteria, 
Chapter 3 presents theory and computation for the finite horizon optimization 

Figure P.l 
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criterion, and Chapter 4 presents theory and computation for the infinite horizon 
discounted optimization criterion. Chapter 5 presents an inventory model under 
the infinite horizon discounted cost criterion. This model is not a prerequisite 
to any other material. 

Chapter 6 presents theory and computation for the average cost optimization 
criterion, when the state space of the process is a finite set. For computation, a 
thorough and very general treatment of value iteration is developed. Chapter 6 
sets the stage for Chapter 8, which deals with the computation of average cost 
optimal policies when the state space of the process is an infinite set. Most of 
the material in Chapter 8 refers directly to results in Chapter 6. Chapter 7 deals 
with the existence theory of average cost optimal policies when the state space 
is infinite. The bulk of this material is not requisite to the computational results 
in Chapter 8 and may be omitted or referred to as desired. 

Chapter 9 deals with (discrete time) models in which actions may only be 
taken at selected epochs. It is shown that the theory for this situation reduces to 
the general theory previously given. The computational examples focus on the 
average cost criterion. This material is not requisite to understanding Chapter 
10. 

Chapter 10 deals with the average cost optimization of certain continuous 
time systems. Again the theory here is reduced to that previously given. 

The text is unique in combining theory and programs. The computational 
output from nine programs is presented and fuily discussed. Numerous prob- 
lems, both theoretical and computational, illuminate the text and give the reader 
practice in applying the ideas. Some of the problems involve explorations of 
the programs and include ideas for modifying them to obtain further insight. 

I would like to express my profound thanks to Kevin Rock, a former stu- 
dent and now an instructor at Illinois State University, who read the complete 
manuscript carefully for understanding and identification of errors. He also 
helped set up a web site for the book. 

1 would like to express my deep gratitude to Professor Apostolos Burnetas, 
his Ph.D. student E. L r m n  Ormeci, and Professor Ulrich Rieder. Each of them 
read large portions of the manuscript, identified some errors, and made many 
helpful suggestions that improved the presentation. Any remaining mistakes, of 
course, are my responsibility. I would like to express my thanks to Professor 
Bob Cooper, who provided crucial references for Section 10.6 and checked the 
formula in Proposition 10.6.1. 

I would also like to thank other professional colleagues who have pro- 
vided insights, support, and encouragement over the years, including Roland0 
Cavazos-Cadena, Emmanuel Fernandez-Gaucherand, Onesimo Hernandez- 
Lema, Mary Johnson, Marty Puterman, Sheldon Ross, Henk Tijms, and Mark 
VanOyen. I would like to thank friends and colleagues at Illinois State Uni- 
versity for their support and wish particularly to mention Ken and Laura Berk, 
Lotus Hershberger, Jan Neuleib, Virginia Owen, the late Bob Ritt, Paul Schol- 
laert, and Jane Swafford. My thanks also go to Steve Quigley, my editor at John 
Wiley & Sons, for his support and encouragement; his assistant Alison Bory; 
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and associate managing editor Angioline Loredo, for her gracious and careful 
attention to the book’s production. 

Finally, I wish to express my appreciation to my husband Jim, my son Kyle, 
and my new daughter-in-law Anastasia. for their love, understanding, and belief 
in me. 

This book is for the reader to delve into, to study, and ultimately to take 
off from. Perhaps it will suggest new avenues for the reader’s exploration and 
development and give impetus to the growth of this exciting and ever-develop 
ing field. 

Comments are invited at sennott@math.ilstu.edu. The Pascal source code 
for the programs is available for viewing and downloading on the Wiley web 
site at http://www.wiley.codproducts/subject/mathematics. The site contains a 
link to the author’s own web site and is also a place where readers may discuss 
developments on the programs or other aspects of the material. The source files 
are also available via ftp at ftp://ftp.wiley.com/public/sci_tech_neci/stochastic. 
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C H A P T E R  1 

Introduction 

We are considering systems, evolving in time, that have chance or random 
aspects to their behavior. Such a system may evolve either in discrete or in 
continuous time. In the discrete setting the time axis is partitioned into fixed 
equal length segments, called slors or periods. Events affecting the system may 
take place during a slot, but typically they are registered by the system at the 
beginning of the following slot. In contrast, in a continuous time system evenb 
can occur at any instant of time and are registered as they occur. Many inter- 
esting models Occur naturally in discrete time, while others occur naturally in 
continuous time, In this book attention is  focused on discrete time systems, with 
the exception of Chapter 10 which treats a class of continuous time systems. 

Our focus is the sequential control (also known as dynamic or real time 
control) of discrete time systems with random aspects. Such systems are called 
discrete time controlled stochastic systems. With the advent of computer-con- 
trolled processes, it is the case that control will often be applied at discrete time 
steps, even if the system under control occurs in continuous time. Therefore the 
control of an inherently continuous time model with random aspects is often 
well treated as a discrete time controlled stochastic system. 

To control such systems, various actions may be taken, at various times, to 
affect the future behavior of the system. In the discrete time setting we assume 
that control can only be exercised at the beginning of a given slot and not at 
any other tim during the slot. A fundamental dichotomy exists: Either control 
is exercised at the beginning of every slot or only at the beginning of certain 
selected slots, called epochs. 

It turns out that the case of control available in every slot is more fundamen- 
tal than the case of control available at selected epochs. The theory for control 
available in every slot is developed in Chapters 2 through 8. The theory for 
control available at selected epochs turns out to be a special case of this, and 
no new theoretical results are needed. This topic is treated in Chapter 9. 

A certain class of continuous time control processes may be treated within 
the discrete time framework; this class consists of processes governed by expo- 
nential distributions. This development is in Chapter 10. 
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The next section illustrates control problems of the type that are covered in 
the text. Let us emphasize that the theory developed in the book is of a general 
nature and its applications are not limited to the particular models chosen for 
illustration. 

1.1 EXAMPLES 

The theory of discrete time controlled stochastic systems is motivated by sys- 
tems that arise in applications. We are especially interested in using these r~sul ts  
to gain an understanding of discrete time controlled queueing systems. A queue- 
ing system includes servers, customers and, usually, waiting lines or queues for 
the customers awaiting service. In the discrete time setting the servers may, for 
example, be transmitters, computers, or communication lines, or they may be 
stations on a production line. The customers may be messages, or fixed length 
groups of bits known as packets, or objects in the process of being manufac- 
tured. The queues are often called buffers, and we usually employ this termi- 
nology. 

An inventory system i s  another example of a queueing system. In inven- 
tory systems the “customers” are items in the inventory, and the “servers” are 
external demands that remove these customers from the system. This example 
illustrates the importance of being very open in our thinking about what con- 
stitutes a queueing system. As we develop this flexibility, we will begin to see 
queueing systems everywhere. 

In order to understand the types of control mechanisms that are of interest, 
let us now examine some common queueing systems. In Section 1.2 we will 
revisit some of these examples with more specificity. 

Example 1.1.1. Single-Server Queue (Fig. 1 . I ) .  Packets (customers) enter 
the buffer, wait their turn, are served by the single server, and depart the system. 
Service is usually in the order of arrival, which is First Come First Served, but 
can be by other service disciplines such as h t  Come First Served or Service 
in Random Order. Obviously, if the customers in a queueing system are human 
beings, FCFS is preferred. 

Now consider the control options. We might place the controller at the 
entrance to the buffer to decide which packets to admit to the buffer. Or we 
could impose a control on the server that would adjust the rate at which packets 

El are served. Both methods of control can be imposed simultaneously. 

n o  questions arise as we begin to consider controlling queues. The first 
question is: To what end are we controlling the system? Clearly the control 
must be designed to achieve a goal. This goal is known as our optimization 
criterion, on which we will have more to say in the next section. A policy is a 
rule of operation that tells the controller which actions to choose, and an optimal 
policy is one that realizes the goal of the particular optimization criterion. 
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Customers completing 
service depart 

Customers enter 
Figure 1.1 Single-server single-buffer system. 

The second question is: What information about the current system condi- 
tion, or stare, is known to the controller? In this example, it would certainly 
be heIpful to know how many packets are in the buffer before making a deci- 
sion on admission or service rate. Throughout the book it is assumed that the 
controller hasfull infonnurion about the system. T h i s  may be contrasted with 
situations where the controller has only partial information, information cor- 
rupted by observation errors, or information received with a time delay. The 
full information case is fundamental to the development of a comprehensive 
theory and needs to be well understood before the case of partial or delayed 
information is treated. 

Example 1.1.2. An Inventory Model. The demand for the product follows a 
known probability distribution. The demand for a particular period is assumed 
to be fully revealed just at the end of that period and is satisfied, as much 
as possible, from existing inventory and/or itemr produced during that period. 
Unfilled demand is backlogged; that is to say, these orders are registered to be 
filled in the future as inventory comes availabIe. For example, if 5 items are on 
hand at the beginning of a period, 7 items are produced during that period, and 
10 items are demanded during that period, then at the beginning of the next 
period the inventory level is 2, If 15 items are demanded, then the level is a 
backlog of 3 items. 

The inventory level is observed at the beginning of each period. The control 
actions that may be taken relate to the number of items that may be produced 
during that period. 
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Figure 1 3  Tandem system. 

Example 1.2.3. Tandem Queueing System (Fig. 1.2). Here we have a num- 
ber of stations (servers) in series. There may or may not be buffers before each 
station. Customers enter the system at the buffer of station 1, receive service at 
station 1 ,  enter the buffer at station 2, receive service at station 2, and so on, 
until they pass through all stations and leave the system. 

Control may be exercised by restricting entry to the system, by adjusting the 
0 service rate of each of the servers, or by combinations of both. 

Example 2.2.4. Routing to Parallel Queues (Fig. 1.3). Here there are a 
number of servers with individual buffers. Customers arrive at the router and 
are sent to one of the buffers. It is assumed that once the routing has taken 
place, the customer cannot switch from one queue to another @ailed jockey- 
ing) and must therefore remain in the buffer to which it was routed until it 
receives service and leaves the system. 

n Router 

U 

Customers arrive 
Figure 1.3 Routing to parallel buffers. 
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~ t 
Empty 
buffer 

Customers arrive in three streams 

Figure 1.4 Single-server serving multiple hufferu/classes. 

In this example we assume that the service rates of the servers are constant. 
The control mechanism is invoked through the routing decision for each arriving 

0 customer (or batch of customers). 

Example 1.1.5. A Single-Server, Multiple-Buffer Model (Fig. 1.4). A sin- 
gle server is responsible for serving multiple queues. The server/controller may 
be considered the same mechanism. The server must decide which buffer to 
serve at a decision epoch and (possibly) how fast to serve. 

It is important to note that the buffers need not be physically distinct. For 
example, the buffers might represent priority classes. The customers might all 
reside in the same location but be identified (or fagged) by their priority class. 
The decision of which buffer to serve is then the decision of which priority 
class to serve. The control options might also include the rate at which a given 
class i s  served. n 

Example 1.1.6. A Single-Buffer, Multiple-Server Model (Fig. 1 S). In this 
model the service rates are fixed, but they may vary server to server. At most 
one customer can receive service from any server at any time. All customers 
not receiving service are queued in the single buffer. If there is a customer 
awaiting service and at least one server is free, then the control options include 
sending the customer to a selected free server or letting the customer remain 
in the queue. 0 

Example 2.2.7. Queueing Network (Fig. 1.6). Here a number of stations 
provide service to customers, and each station has its own buffer. Customers 
arrive from outside (exogenous customers) to each buffer. In addition, when a 
customer finishes service at a station, the customer may be muted to another 
station (or back to the one it just left) according to known routing probabilities. 
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Busy 

(KJ 6 
X 1 A n g  decisions ~ 1 -  

t 
Customers arrive 

Figure 1.5 Single buffer served by multiple servers. 

Exogenous arrivals 

Endogenous arrivals 

Exogenous arrivals 

Figure 1.6 Network. 



I .  1 EXAMPLES 7 

li X 

i 
Customers arrive 

Figure 1.7 Polling system. 

These are endogenous customers. It is assumed that every customer eventually 
leaves the system. Such a structure is called an open network. Control options 

ci include admission control and/or service control. 

Example 2.2.8. Cyclic Polling System (Fig. 1.7). Here a number of sta- 
tions, each with its own buffer, are arranged in a ring. A server travels around 
the ring, say counterclockwise, from station 1 to station 2, then to station 3, and 
so on. When at station k the sewer has the control option of remaining there 
(idling if the buffer is empty, or serving packets in k’s buffer if it is nonempty) 
or of moving to the next station. It i s  usually desirable to model a nonnegligible 

0 transit time in moving from one station to another. 

Example 2.2.9. Machine Replacement. A machine may be in one of vari- 
ous conditions, with condition 0 corresponding to a perfect machine and other 
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conditions corresponding to various levels of wear. If the machine is in a state 
of wear, then we may make the decision to replace it with a perfect machine or 
to do nothing. A machine in a state of wear will continue to deteriorate accord- 
ing to a certain probability distribution. A perfect machine may be assumed 
to remain perfect for one slot and then begin to deteriorate. A more complex 
model would also allow the option of repairing a worn machine to bring it into 
a better condition than its present state. n 

1.2 ASPECTS OF CONTROL 

This section introduces the framework that will be employed for the control of 
the models in Section 1 .I and other systems as well. The discussion is on a 
general level with more precise definitions developed in Chapter 2. 

The framework in which we will work is known as stochastic dynamic pro- 
gramrnitig. A stochastic dynamic program is also called a Markov decision pro- 
cess. When time is discrete the process is (usually) called a Murkov decision 
chain. 

A Markov decision chain consists of 

1. States 
2. Actions 
3. costs 
4. State equations (optional) 

5. Transition probability distributions 
6. An optimization criterion 

The state of the system is the relevant information needed to describe 
the current condition of the system. The state space is the set of all system 
states. Because we are treating the full information case, we need to include in 
the state description all the relevant information concerning the current situa- 
tion. 

In Example 1.1.1 the relevant state information is the number i of packets 
in the buffer at the beginning of a slot (this includes the packet being served, 
if any). In this case the state space S - (0, 1, 2, . . .). 

In this example we are allowing the buffer to be of infinite cupaciry. This is 
a useful modeling device, even though it is not physically realizable. One can 
simply imagine that when a new batch of packets arrives, the capacity of the 
physical buffer is increased to accommodate it. 

Models involving infinite capacity buffers occur frequently. They may be 
contrasted with models assuming finite capucicy buffers. In the latter there is 
a fixed capacity K for the buffer content, and no more than K customers can 
reside in the buffer. In some models the assumption of finite capacity buffers is 
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appropriate, whereas in other models the assumption of infinite capacity buffers 
is more desirable. The folowing are possible reasons for allowing buffer capaci- 
ties to be infinite: (1) We may not have information on the actual buffer capac- 
ity. (2) We may not want to lose customers and may prefer to assume that 
buffer capacity can be expanded as customers amve. (3) We may wish to use 
the model with infinite capacity buffers to gain information on the appropriate 
sizing of buffer capacity. 

The theoretical results developed in the text are general and apply to models 
with either finite or infinite capacity buffers. 

We are also interested in obtaining computational results, both for models 
with finite buffer capacities and for those with infinite capacities. In the lit- 
erature computational results have largely been confined to the case of finite 
capacity buffers. Here an approach called the approximating sequence method 
i s  &veloped that allows rigorous computation in the presence of infinite capac- 
ity buffers. The idea is to replace the infinite capacity model with a sequence of 
finite capacity models so that, as the capacities increase, the computations for 
these models are guaranteed to converge to the correct result for the original 
model. Nine computational examples are given in the book, and a program for 
each example i s  available on the companion web page. 

Various actions are available to the controller and the available actions may 
depend on the current state of the system. Take Example 1.1.1. Let us assume 
that the actions are the available service rates. Note that when the system is 
empty, the sewer is idle and has only the “idle” action available. 

There is a nonnegative cost associated with each state and available action 
in that state. The cost is associated with the state-action pair. The subject of 
stochastic dynamic programming has two major developmental strands. One 
can seek to minimize costs or to maximize rewards. We choose to deal with 
cost minimization because it is more congenial for the types of control problems 
we are most interested in treating. 

However, all is not lost for those who wish to maximize their rewards! A 
reward associated with a particular state-action pair can be incorporated into this 
framework as a negative cost (under some nonrestrictive conditions). Chapter 
5 treats an inventory model in which costs are imposed for holding and/or 
producing inventory and rewards are earned when inventory is sold. This model 
shows, in detail, how to work with rewards. 

In Example 1.1.1, where actions are service rate adjustments, we might 
assume a cost for storing a packet in the buffer (related to delay in being served) 
and a cost for serving a packet (faster service costing more). 

Now consider Example 1.1.4. An appropriate system state is the vector i = 
( i l ,  i2. . , . , i K )  of buffer contents, where ih is the number of packee in buffer 
k. The cost is then a function of the pair (i, k), where k is the action chosen 
(i,e., the server to which the customer is routed). This cost could consist of a 
holding cost reflecting the number of customers in the system and a cost of 
routing to server k. 

Suppose that the packets that arrived in slot t were routed to buffer I but 
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that at the beginning of slot t + I the controller wishes to route the newly amv- 
ing packets in the cumnt slot to buffer 2. Under this circumstance it might be 
assumed that a cost is incurred for switching the routing, namely for chang- 
ing the routing from one slot to the next. To handle this situation, we would 
enlarge the state description to be (i, l), where the current buffer content vector 
is augmented by the previous muting decision. The cost is then a function of 
the state-action pair [(i, l), 21. By means of this augmenting device, additional 
information can be built into the state description. 

In this same example, let us now assume that there is no cost for switching 
the routing and a cost of 1 unit for each slot of time a packet resides in one of 
the buffers. Notice that the total cost over a time interval of T slots is the same 
as the total amount of delay suffered by the packets in the system. 

The delay incurred by a communication system is an important measure of 
its performance. The minimization of delay may generally be modeled directly 
in our framework. Another important measure is system rhroughpur, a measure 
of the number of packets successfully served. The maximization of throughput 
may generally be modeled using the device for incorpordting rewards into our 
framework. 

Assume that the system is in a given state and that the controller has decided 
on an action. Then, as discussed above, there is a cost incurred. The state of the 
system at the beginning of the following slot is governed by a transition prub- 
ability distribution. This distribution will generally depend both on the current 
state and on the chosen action. A representation of the evolution of the sys- 
tem may be given by a sfate equation. The state equation, which is optional in 
specifying the system, can be helpful in picturing how the system evolves in 
time. 

Consider Example 1.1.1 with the actions being service rate adjustments. The 
state of the system at time t may be represented by a random variable X, (since 
it will be a random quantity rather than a deterministic quantity). Let the random 
variable U, represent the number of new packets arriving in slot r .  Let Z, be an 
indicator random variable that equals 0 if the buffer is empty or if a service is 
not completed in slot I ,  and equals 1 if there is a service completion. Then the 
evolution of the system is given by the state equation 

X,, I = X, + Y, -.. Z,,  t 2 0. (1.1) 

This follows since the buffer content at time t + 1 is determined by the number 
in the buffer at time t plus any new arrivals during that slot minus 1 if there is 
a service completion during that slot. Note that Xo is the initial buffer content. 

Let us assume that the distribution of Y, is independent of time. For example, 
suppose that P(no packets amve) = 0.5, P(a single packet arrives) A 0.3, and 
P(two packets arrive) = 0.2. The distribution of 2, depends on whether or not 
the buffer is empty and, if it is nonempty, on the service rate chosen by the 
controller. 
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Assume that the service rate adjustment takes place through a choice of the 
probability of a successful service. For purposes of this example, let us assume 
that the controller chooses the action of successfully serving a packet with prob- 
ability 0.9. Finally let us assume that X, - 5.  Then the probability distribution 
of X, + I is P(X,+ 1 = 4) = (0.5)(0.9) = 0.45, P(X,+ I = 5 )  :: (0.3X0.9) + (0.5X0.1) 

= 0.02. (Check these!) These calculations are valid under the assumption that 
the chosen service rate does not influence the anival process. 

This information can be imparted in another way, namely by specifying the 
transition probability distributions. This is the probability distribution of the 
next state, given that the current state XI : i, and is given by 

= 0.32, P(X,+ I = 6) = (0.3)(0.1) + (0.2)(0.9) L 0.21, and P(X,+ 1 7) - (0.2)(0.1) 

Po, = P( j amve), j - 0, I ,  2, 

Pi, = (O.l)P(O arrives) + (0.9)P( 1 arrives), 
Pi, - 1 = (0.9)P(O arrives), 

Pi,+ I = (O.I)P(I arrives) i (0.9)P(2 arrive), 

Pti+2 = (O.l)P(2 arrive), i 2 1. (1.2) 

The reader should realize that ( 1  -2) contains a complete specification of how the 
system probabilistically evolves. The state equation (1. t I is helpful but optional. 

We require the transition probability distributions to be independent of time 
(time homogeneous). This means that they cannot depend on the time slot num- 
ber, undoubtedly a limitation in modeling some actual systems that do exhibit 
time-varying transition behavior. However, one approach to overcome this lim- 
itation is to build time-varying behavior into the state space description, at the 
cost of increased complexity of the state space. Another approach is to argue 
that if the system is slowly time varying, then we can analyze the system piece- 
wise over those portions of time for which it is approximately time homoge- 
neous. Considering the piecewise analyses together yields valuable information 
about controlling the original system. 

Finally we come to the optimization criterion, our goal in controlling the 
system. The criteria are described here in general terms and more precisely in 
Chapter 2. 

We may be interested in optimizing system behavior over thejnite horizon. 
In this caw the behavior of the system is considered for slots t = 0 to t = K for 
a fixed positive integer K. 

Or, we may be interested in allowing the system to operate for an infinite 
number of slots t = 0, 1 ,  2, . . . . This is the injinite horizon and is appropriate if 
the system is to operate for a lengthy period and there is no a priori cutoff time. 
One approach for optimizing operation over the infinite horizon is to consider 
the total accumulation of costs where future costs have been discounted. Dis- 
counting reflects the economic principle that costs incurred in the future have 
a smaller present value. 
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Another approach to working with the infinite horizon is by means of averag- 
ing. We may look at the average cost incurred per slot over a fixed time horizon 
and then let the time horizon become ever longer. In this way we obtain a limit 
that reflects what happens on average far into the future. 

There are other popular optimization criteria. However, these three are 
arguably the most important and are the ones treated in the book. 

1.3 GOALS AND SUMMARY OF CHAPTERS 

The goals of the book are as follows: 

Goal 1. To develop the theory for optimization under the finite horizon, 
infinite horizon with discounting, and infinite horizon average cost cri- 
teria. 

Goal 2. To show how optimization may be performed computationally, both 
when buffers are finite and when they are infinite. 

Goal 3. To illustrate the theory and computational method with a rich set 
of examples drawn largely from the field of queueing control. 

This text is unique in its total integration of theoretical developrnenr and 
computational method. For each optimization criterion, the theoretical devel- 
opment yields conditions for the existence of a particularly desirable type of 
policy that is optimal for that criterion. The approach to computation, known 
as the approximating sequence method, is a flexible and rigorous method for the 
computation of optimal policies in the presence of models with infinite buffers 
(more generally, models with infinite state spaces). To cany out the method, 
the original problem is replaced with a sequence of finite state approximation 
problems for which the convergence to the true value in the original problem is 
guaranteed. One may then compute optimal policies for a few members of the 
sequence (usually 2 or 3 suffice) and be confident that a close approximation 
to the optimal policy for the original problem has been attained. 

The ability to compute optimal policies, while extremely valuable in itself, 
has two important corollaries. First, it allows us to examine sensitivity issues. 
This is done by varying the parameters of a problem to see whether the optimal 
policy is affected and, if so, to what degree. Second, it allows us to compare 
system performance under the optimal policy (which requires full infonna- 
tion about the system state) with system performance under various subopti- 
mal policies that do not require full state information. There is usually some 
cost involved in designing a system so that the controller has knowledge of the 
system state. If, for example, there exists a suboptimal policy with a perfor- 
mance within 5% of the optimal policy, this might be an acceptable level of 
performance. Having this type of knowledge is valuable when designing a sys- 
tem. 
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For the convenience of the interested reader, a brief summary of the chapter 
contents is given here. The Preface contains a discussion of chapter interde- 
pendencies and the reader is particularly advised to look at the flowchart given 
there. 

In Chapter 2 notation and definitions are given. In Chapter 3 optimization 
over the finite horizon is treated. The computational model is Example 1.1.1 
with control exercised through the acceptance or rejection of arriving packets. 

In Chapter 4 optimization over the infinite horizon with discounting is 
treated. Chapter 5 illustrates the computational method under this criterion with 
a detailed treatment of the inventory model Example 1.1.2, showing the com- 
putation of optimal production levels. 

In Chapter 6 optimization over the infinite horizon with averaging is treated 
for systems with finite state spaces. In Chapter 7 the theory of optimization 
over the infinite horizon with averaging is treated for systems with infinite state 
spaces. Chapter 8 develops the approximating sequence method for this crite- 
rion and illustrates it with two computational examples. The first is Example 
1. I. 1 with service rate control, and the second is Example 1. I A. 

In Chapter 9 we show how to treat the situation of control exercised only 
at selected epochs. This idea is illustrated with computations involving Exam- 
ple 1 . I  . I .  Here the service time of a customer follows a general discrete time 
probability distribution, and service may be adjusted only when one service is 
completed and a new service is ready to commence. 

Chapter 10 treats a class of continuous time systems. Three computational 
examples are given. The first is the service rate control of an M/M/I queue- 
ing system. This is the continuous time analog of Example 1.1.1. The second 
example assumes that there is a pool of servers available, and that servers can 
be turned on or off. The problem is to determine the policy for dynamically 
adjusting the number of servers turned on. The third example is a continuous 
time version of the polling system in Example 1.1.8. 

Our hope i s  that this material will be both interesting in its own right and 
an impetus to further development of the theoretical and computational aspects 
of stochaqtic dynamic programming. It is especially important to expand our 
knowledge (both theoretical and practical) concerning effective computational 
methods, and it is hoped that the work presented here will contribute to enthu- 
siastic efforts in this direction. 

BIBLIOGRAPHIC NOTES 

Bellman (1957) is credited with founding the subject of stochastic dynamic 
programming. A second important early researcher is Howard (1960). However, 
the historical roots of the subject go deeper than Bellman’s work. See Putman 
(1994, p. 16) for interesting historical background. 
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PROBLEMS 

1.1. Identify at least eight queueing situations that one might meet in everyday 
life. These systems have humans as the customers and/or the servers. For 
each situation. discuss the nature of the customers, the servers, and the 
queues. 

1.2. For each of your examples in Problem 1.1 discuss whether and how it is 
femible to control the system. 

1.3. Discuss the aspects of control as they might be applied to Examples 1.1.3 
and 1.1.5. 



C H A P T E R  2 

Optimization Criteria 

The mathematical structure we consider is known as a Markov decision chain. 
The Markov decision chain (also known as a discrete time Markov decision 
process or as a stochastic dynamic program) is a flexible construct for analyzing 
the control of discrete time systems involving random aspects. This chapter sets 
up the basic notation for a Markov decision chain and defines the important 
concepts. 

The efficiency of system operation is measured by a suitable optimization 
criterion. The optimization criteria treated in the book are defined. A policy 
is a rule for the operation of the Markov decision chain. The various types of 
policies are discussed. An optimal policy is the best rule of operation for the 
system under the chosen criterion. Our goal is to show that optimal policies exist 
and to compute them. To this end, the notation of an approximating sequence 
is introduced. The approximating sequence method is the approach employed 
to compute optimal policies when the state space of the system is infinite. 

2.1 BASIC! NOTATION 

Recall that time is divided into distinct equal portions, called slots or periods. 
A state represents the condition of the system at the beginning of a slot, and the 
state space S is the collection of all states. We assume that S is a countable set, 
which means that it is either a finite set or a denumerably infinite set. (A set is 
denumernbly infinite if its elements can be enumerated, i.e., put into one-to-one 
correspondence with the natural numbers 1,2, 3, . . . .) 

When the system is in state i E S, the controller has available various actions. 
These actions comprise a finite (and nonempty) set A,. For any system whose 
control is digitally implemented, the assumption of finite action sets will suffice. 
Besides being adequate for the majority of applications, this assumption also has 
the advantage of simplifying the theory. When modeling a system whose control 
is implemented by an analog device, one may desire the flexibility of allowing the 
action sets to be intervals of real numbers. We do not treaf this case. 
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Suppose that the system is currently in state i and that the action a E A, is 
selected by the controller. Then a nonnegative (finite) cost C(i, a) is incurred. 

Under some state-action pairs we may wish to assume, additionally, that a 
nonnegative reward is earned. Rewards can be incorporated into the structure 
under certain conditions. Suppose that a cost of C(i, a )  is incurred and a reward 
of R(i, a) is earned. Then the net cost is C(i, a) - R(i, a )  which may be negative. 
Assume that there exists a nonnegative number B such that the net costs are 
uniformly bounded below by -B, for all state-action pairs. Define a new cost 
structure by C*(i,a) = C(i,a) - R(i,a) + B 2 0. We can then determine the 
optima1 policy for system operation under the C' cost structure. Because OUT 

optimization criteria are not affected by the addition of a constant to all costs, 
the optimal ruie of operation just determined is also optimal for the system 
operating under the original net cost structure. For this reason, if rewards are 
present. then we can assume that they have been incorporated into the system as 
negative costs and that the resulting (net) costs are nonnegative. Certain models 
with unbounded rewards are not treatable within this framework. Chapter 5 
contains an inventory example that shows the treatment of rewards in detail. 

If the system is in state i and action a is chosen, then the state at the beginning 
of the next slot is j with probability P,,(a), where xjE ,y P,,(a) = 1. This means 
that the next state is determined according to a probability distribution that may 
depend on the current state-action pair. Since the transition probabilities sum 
to one, exit from S is not possible. In the future a summation overj  will be 
understood to mean all states j E S. It may also be helpful (but is optional) to 
indicate the evolution of the system by means of state equations. 

The structure introduced above comprises a Mrrrkov decision chain (ME) 
which is denoted by the symbol A Keep in mind that to define an MDC requires 
the specification of four things: countable state space, finite action sets, non- 
negative costs, and transition probability distributions. 

Now we show how to model some of the examples from Chapter I as 
Markov decision chains. 

Example 2.1.1. This is Example 1 - 1 . I  with arrival control. (See Fig. 2.1 .) 
The state of the system is the number of packets in the buffer at the beginning of 
a slot, and thus S = @ , I ,  2,. . .}. At the beginning of each slot a batch of packets 
arrives and pi = P(a batch containingj packets arrives), where x , r o p ,  = 1. In 
every state there are two actions available: a = accept the incoming batch, or r 
= reject the incoming batch. The action must be chosen before the size of the 
batch is observed. 

There is a nonnegative holding cost H ( i )  incurred when there are i packets 
in the buffer, and we assume that H ( 0 )  = 0. The holding cost may be regarded 
as a cost of delaying those packets. For example, if Mi) = i ,  then for every slot 
in which a packet resides in the buffer, a delay cost of 1 unit is charged for 
that packet. In addition there is a positive rejection cost R incurred whenever 
a batch is rejected. The cost structure is C(i,a) = H ( i )  and C(i, r )  = H ( i )  + R. 

Service occurs according to a geometric distribution with fixed rate p ,  where 
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t 
Packets arrive 

Figure 2.1 Example 2.1.1. 

0 < p c 1. This means that the probability of a successful service in any slot is 
p. If the service is unsuccessful, then another try is made in the next slot with 
the same probability of success, and this continues until the packet has been 
successfully served. If a batch arrives to an empty buffer and is accepted, then 
its packets m available for service at the beginning of the following slot. 

If X,, Y[, and 2, are as in (1. l) ,  then the state equation is 

X,, I = X, + f(a chosen)Y, - Z, ,  t 2 0. (2.1) 

The indicator random variable I is 1 if Q is chosen (and hence the new batch 
is admitted) and 0 if it is rejected. 

The transition probability distributions are given by 
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This specifies the states, actions, costs, and tmnsition probability distribu- 
0 tions, and hence this example has been modeled as an MDC. 

Example 2.1.2. This is Example 1.1.1 with service rate control. The state 
space is as in Example 2.1.1. In state 0 there is no control action available 
since there are no packets to serve. We may think of this as the availability of 
a single action, namely in this case “take no service action.” In any situation 
where there is a single action available in a given state (which just means that 
the controller has no choice), we refer to the single action as a null action. 
In the case of a null action we omit the notation u when specifying the costs 
and transition probabilities. In state i 2 I the actions consist of the allowable 
service rates QI < a2 < . . . < U M ,  where 0 < a! and U M  < 1. The conditions mean 
that the server must serve if the buffer is nonempty and that perfect service is 
unavailable. 

The holding cost is as in Example 2. I .  1. There is a nonnegative cost C(a) 
of‘ choosing to serve at rate a during a particular slot. The cost in state 0 is 
then 0, and for i 2 1 we have C(i,u) = H ( i )  + C(a). Notice that we have the 
opportunity to choose a new service rate at the beginning of each slot (if the 
buffer is nonempty). 

The state equation is given in (1.1). In state 0 the transition probabilities are 
PO, = p,. For service rate choice a, the transition probability distributions are 
given by 

0 

Example 2.1.3. This is similar to Example 2.1.1 except that the size of the 
incoming batch may be observed before making a decision to accept or reject 
it. At the beginning of a slot the state is (i, k) ,  where i denotes the number of 
packets in the buffer and k the number of packets in the incoming batch. The 
state space S = {(i,k)li = 0,1,2,. . . . k  = 0, 1.2,. . .} is a denumerable set. 

The holding cost is as in Example 2. I .  1 .  There is a positive rejection cost 
R(k)  incurred whenever a batch of size k 2 I is rejected. If a batch of size 
zero is observed, then there is no action taken and so C(i, 0) = H(i ) .  A holding 
cost is not incurred on newly accepted packets until the slot following their 
amval. Hence for k 2 1 the cost structure is C[(i,  k), a] = H ( i )  and C[(i ,  k), r )  = 
H ( i )  + R(k). 

The transition probabilities are somewhat more involved than when the batch 
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size is unobserved. If k denotes the size of the current batch andj the size of 
the next batch, then some of the transition probabilities are 

(Problem 2.1 asks you to develop all the transition probabilities for this exam- 
P W  

Erample 2.1.4. This is Example 1.1.4. Let us assume that the batch arrival 
process is as in Example 2. I. 1. The problem concerns the routing of an incom- 
ing batch to one of K parallel servers. Each server maintains its own queue, and 
server k serves its packets at geometric rate pk, where 0 c pk < 1. There may 
or may not be a cost associated with changing the routing to which the current 
batch is to be sent. Let us model the system under the supposition that there is 
a switching cost. We also assume that the routing decision i s  made before the 
size of the incoming batch is observed. An arriving batch is not "counted" in 
the buffer to which it is muted until the beginning of the following slot. 

The state space S for this example is discussed in Chapter 1 and consists of 
pairs (it u), where i is the vector of buffer levels and u E {I ,  2,.  . . , K }  is the 
previous routing decision. 

There is a nonnegative holding cost H k ( i k )  associated with the contents of 
buffer k. The total holding cost is H(i) 1 x k H k ( i k ) .  In addition there i s  a 
nonnegative cast C(u,k) for changing the routing from server u to server k, 
where C(k, k) = 0. The cost structure is C[(i, u), k] = H(i) + C(u, k).  

Some thoughtful notation can facilitate the writing of the transition proba- 
bilities. Let j(k) be a vector with j in the kth place and 0's elsewhere. Then 

Now let i be a state. vector with at least one nonzero component. Let F = F(i) 
be the set of nonzero coordinates of i, and let E = E(i )  be a (possibly empty) 
subset of F representing those servers who complete service during the current 
slot (recall they can only serve packets already in their buffer). The probability 
of this event is P(E) = Ilk, E p,II,, F- E (1 - PA). Finally let e(E)  be a vector 
with 1 in every coordinate k E E and 0's elsewhere. Then we claim that 

P(0. U ) ( j ( k ) .  k ) (k)  = PJ. 

(Problem 2.2 asks you to explain this.) 0 
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2.2 POLICIES 

Informally a policy is a rule for the operation of a Markov decision chain. Let 
r = 0 be the initial slot. The MDC may be operated in one of two modes. In 
the infinite horizon mode the system is operated for slots ? = 0, 1, 2, . . . . In 
the finite horizon mode a fixed integer n 2 1 is specified, and the system is 
operated for the n slots t = 0, 1, . . . , n - 1. 

We first define a policy for the infinite mode of operation. The beginning 
reader need not be overly concerned with the details, but it is important to 
grasp both the general idea of how a policy governs the operation of the MDC 
and the definition of a stationary policy. 

Assume that the initial state i of the system is known. Here is how the 
controller operates under a policy 8. The history at time r = 0 is given by 

= (i). The initial action is chosen from A, according to the distribution f?(u/i) 
= B(a1hU). This is a probability distribution on the actions a E A,. Assume that 
action au is selected. 

Then the state of the system at t = 1 is determined by the transition prob- 
ability distribution associated with i and q~. Suppose that this state is j. The 
history at time t = 1 is then given by 121 = (i,ao,j). The action at time t = 1 is 
chosen from A, according to the distribution f?iali, ao,j)  c 8(alhl).  

Once this action has been chosen (say it is a ! ) ,  then the state of the system 
at t = 2 is determined by the distribution associated with j and a1 . Suppose that 
this state is k. The history at time r = 2 is then given by hz = ( i ,  ao, j, a ! ,  k). The 
process continues in this fashion. 

Assume that the process has been operating for slots t = 0, 1, . . . , n - 1, 
and that the state at time ? 7 n has just been determined. A history at time n 
is a tuple 11, = ( i ,  a(), i t ,  a ! ,  . . . , i,* I ,  a, - I ,  i n )  of the past states and actions and 
the current state. Then the action at n is chosen according to the probability 
distribution f?(a\h,) on the action set associated with i,,. Once this action has 
been chosen, the state at t I n + 1 may be determined. The process continues 
in this way for infinitely many steps. 

We see that the controller’s actions under a policy can be based on the pre- 
vious states visited, the actions chosen in those states, and when those visits 
occurred. There are several important types of policies. These are classified by 
how much of the history may be utilized by the controller. We start with the 
most restrictive (and most important) type and work toward the less restrictive. 

A srationaty policy, denoted by ,f. operates as follows: Associated with each 
state i is a distinguished actionf(i) E A,. If at any time the controller finds 
the system in state i ,  then the controller always chooses the action f ( i ) .  Thus 
a stationary policy depends on the history of the process only through the cur- 
rent state. To implemenr a stationary policy, the controller need only know the 
current stare ofrhe system. Past states and actions are irrelevant. The advan- 
tages for implementation of a stationary policy are clear, since it necessitates 
the storage of less information than required to implement a general policy. The 
stationary policy is by far the most important type of policy. 
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A slightly less restrictive type of policy is the rundumized stationary policy, 
denoted by 6. Associated with each state i is a probability distribution 6( i )  on A,. 
If at any time the controller finds the system in state i, then the controller always 
chooses action a with probability 6(i)(a). As is the case for a stationary policy, a 
randomized stationary policy depends on the history of the process only through 
the current state. To implement it, the controller needs to know the current state 
of the system. Iff is a stationary policy, then it is a “degenerate” randomized 
stationary policy, since we may define the distribution associated with state i 
to be the degenerate distribution that chooses actionf(i) with probability 1. 

A deterministic Markov policy is a sequence 8 = (f 0, f I ,  f 2, . . .) of stationary 
policies. It operates as follows: If the process is in state i at time t = n, then the 
controller chooses actionfn(i). Thus a deterministic Markov policy depends on 
the history of the process only through the current state and the time index. To 
implement it, the controller needs to know the current state of the system and 
the time index. 

A randomized Markov policy is a sequence 8 = (&o, 6 1 ,  62, . . .) of randomized 
stationary policies. It operates as follows. If the process is in state i at time 
t = n, then the controller chooses action a E A, with probability 6,(i)(u). Thus 
a randomized Markov policy depends on the history of the process only through 
the current state and the time index. To implement it, the controller needs to 
know the current state of the system and the time index. 

The following example clarities the various types of policies: 

ExumpZe 2.2.1. This is Example 2.1.2 with M = 3 available service rates. If 
the process is operating under a given policy, then a history is a list of the pre- 
vious buffer levels and service rates employed up to the current time, together 
with the current buffer level. If the buffer is empty at time t ,  then a, is the null 
action. Now fix integers L < U with 1 S L, and let i be the cumnt state. 

The policy 8 operates as follows: Serve at rate a1 if I 5 i S L, serve at rate 
a2 if L c i 5 U, and serve at rate a3 if U < i. Then 0 is a stationary policy. To 
implement it only requires the controller to monitor the current buffer level. 

The policy $ operates just as the policy 8 except when i = U. In this case 
the server randomizes equally between rates a2 and a3. Then $ is a randomized 
stationary policy. To implement it requires the controller to monitor the current 
buffer level and to perform a randomization if the level is U. 

The policy x operates as follows: If the current time is less than 50 (and 
the buffer is nonempty), then serve at the lowest rate. If the current time i s  
50 or more (and the buffer is nonempty), then randomize equally between all 
three service rates. Here the controller needs to monitor the current buffer level 
(only to see that the buffer is nonempty) and the time index. If t 2 50, then a 
randomization must be performed. Hence x is a randomized Markov policy. 

The policy 4 operates as follows: Assume a given history at time n, and let 
w, be the average buffer level for slots t :- 0 to f = n. Note that the average level 
is a function of the history up to and including the current level. If w, 5 U, 
then serve at lowest rate, while if w, > U, then serve at highest rate. Because 
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w, requires knowledge of the history of the process, this is a general policy. 
However, it can be implemented in a more efficient way than through the his- 
tones. If the controller keeps track of the current buffer level i, the time index 
n, and the previous value w,- 1 ,  then w, may be computed recursively since 
w, = [i + rzw,- t]/(n + 1). n 

Now consider the meaning of a policy f3 for the process operating over the 
finite n horizon, namely over slots t == 0. 1, . . . , R - 1. (This policy may be 
denoted by 0-.)  The policy is defined exactly as above, except that when the 
history h, = ( lo,  ao, . . . , in- 1 ,  a,,- I ,  in) is observed, then the process stops. So 
the state at time t = n is determined, and then the process terminates. We often 
assume that a terminal cosf is incurred that is a function of the terminal state. 
Observe that under this situation exactly n choices of actions will be made by 
the controller. 

Because the histories include the time index, under a general policy it is 
always clear to the controller what the present time is, and hence how many 
slots are left before termination. Because of this, the action chosen under 8 at 
time r may also depend on the number n - t of slots until termination, the srrps 
to go. 

2.3 CONDITIONAL COST DISTRIBUTIONS 

The purpose of this section is to clarify conceptually the meaning of the expec- 
tation given in (2.6). These expectations are the building blocks of the opti- 
mization criteria to be introduced in Section 2.4. 

Assume that the initial state is i and that the process operates under an arbi- 
trary policy 6.  It is clear from the discussion in the previous section that the 
state of the process at time t depends on various probability distributions and 
hence typically is not a deterministic quantity. The state at time ? is a random 
variable, which we denote by X,. Similarly the action chosen at time r is a 
random variable, which we denote by A,. (Note that this notation is not to be 
confused with the action set associated with a particular state.) The joint prob- 
ability distribution of (X,, A,) is given by P@(x, = j ,  A, = alX0 = i), where 
clearly we must have a E A,. 

It is the case that this probability distribution is well-defined. We do not 
prove this but instead show how it may be calculated for t = 0, 1, 2. This will 
be suiEcient to indicate the operative ideas. Now &(Xo = i ,  An = aIXo = i )  = 
O(a1i). For t = 1 we have 

Here a term is the probability of originally choosing action b, then transitioning 
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toj, and then choosing action a; the terms are summed over the action b E A, .  
For f = 2 we have 

This calculates the probability of a selection of actions and states leading to the 
pair ( j ,  a) and sums over all such selections. 

Associated with the random pair ( X r ,  A,) is the cost C(X,,A,). This is the cost 
incurred at time t when the controller operates under 8. Because C(X,, A,) is also 
a random variable, one effective way to assess it is to employ its expectation. 
This is given by 

j U E  A, 

and represents the statistical average cost at time t. Because the costs are non- 
negative, it is the case that the expectation in (2.6) is well-defined. In some 
examples, it may have value +-. 

Let us consider the important situation when f? is a stationary policyf. In 
this case we employ some special notation. The cost associated with state i is 
denoted C( i , f ) ,  where this is understood to be C(i , f ( i ) ) .  Similarly the transition 
probabilities are denoted P b ( f  ), where this is understood to be P , ( f ( i ) ) .  

Then Pf(X,  =j, A, = alXo = i )  i s  zero unless a = f ( j ) ,  and we have 

=: P Y ( f  ). (2.7) 

Then (2.6) becomes 
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This is the expected cost at time t under the stationary pczlicy f. 
For most models it is impossible to obtain a closed form expression for the 

quantity in (2.6) (or even for the quantity in (2.8)). The reader can relax-we 
will not typically be calculating these quantities! What is crucial is a conceptual 
understanding of (2.6) and (2.8) rather than facility in calculation. 

2.4 OPTIMIZATION CRITERIA 

Four optimization criteria will be treated in the book: 

1. The finite horizon expected discounted cost criterion. 

2. The finite horizon expected cost criterion. 

3. The infinite horizon expected discounted cost criterion. 

4. The long-run expected average cost criterion. 

It will be seen shortly that each criterion is bawd on the fundamental build- 
ing block of the statistical average cost Ee[C(X,,A,)J at time f ,  as defined in 
(2.6). These basic building blocks are put together in different ways under each 
criterion. 

We first discuss the concept of discounted costs. A discount factor is a num- 
ber a! satisfying 0 < a! I 1 such that future costs are discounted at rate cr. What 
this means is that a cost of 3 units incurred at time 0 is considered to be a 
cost of 3ar when incurred at time 1, of 3ar’ when incurred at time 2, and in 
general, of 3a‘ when incurred at time t 2 0. This embodies the economic idea 
that a cost to be incurred in the future is discounted in today’s money. (It is 
certainly possible to have CY = 0, but this case is uninteresting.) Note that a! = 
1 corresponds to no discounting. 

To define the criterion in 1, assume that the process operates over the finite 
horizon n and that there is a nonnegative terminal cost F(k)  incurred whenever 
the process halts in state k. Let the initial state i ,  the horizon n, and the policy 
8 be given. The n horizon expected (total) discounted cost under 6 is denoted 
by ve, u. AQ. 

In defining this quantity, it is helpful to allow the possibility of n = 0. For n 
= 0 we assume that the initial state is observed and the terminal cost assessed, 
but that no action is taken. Hence ve,,,o(i) = F(i) .  For n 2 1 we define 
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The second line follows from the linearity of the expectation. The function 
Ug.a,n is well-defined but may be +w. 

The n horizon expected discounted value function is defined as 

where the infimum is taken over all policies for the n horizon. The quantity 
uu.n is the greatest lower bound on all the n horizon expected discounted costs 
and is the best result that could be desired. Here is the definition of an optimal 
policy under this criterion. 

Definition 2.4.1. Let B be a policy for the n horizon. Then 8 is optimal for 
the expected discounted cost criterion for the n horizon if ~ g , ~ ~ , , , ( i )  = ua,n(ij for 
i E  S.  U 

Remark 2.4.2. The quantities in (2.9-10) and others to be defined shortly 
in (2.11-16) may equal +w, and we denote +m by w. The approach of allow- 
ing these quantities to be infinite (unless stated otherwise) gives us the greatest 
degree of flexibility in our theoretical development, since we need not be con- 
cerned with imposing potentially complicated conditions to make these quan- 
tities finite. However, quantities introduced in a model such as a holding cost 
or cost for service are always assumed to be finite quantities. This convention 
is used without further mention. 0 

To define the criterion in 2, assume that the process operates as in I but that 
future costs are undiscounted. This corresponds to criterion 1, with (11 = 1. The 
n horizon expected cost under 8 is denoted by Ug., , ,  where ue,o(i) = F(i). From 
(2.9-10) we have 

and 
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u,,(i) = inf uR.,,(i), (2.12) 
R 

where the infimum is taken over all policies for the n horizon. Here is the 
definition of an optimal policy under this criterion. 

Defnirion 2.4.3. Let B be a policy for the n horizon. Then 8 is optimalfor 
n the expected cost criterion jbr the n horizon if ue.n(i) = un(i) for i E S. 

The remaining two criteria deal with the infinite horizon case. Now assume 
that 8 is a policy for the infinite horizon. To define the criterion in 3, assume 
that the discount factor a, initial state i ,  and policy 8 are given. Here we must 
have a < 1. The expected (total) discounted cost under d is denoted by Ve, ,  
and defined as 

(2.13) 

The expected discounted value function (discounted value function, for short) 
is defined as 

V, ( i )  = inf Ve,w(i) ,  (2.14) 
8 

where the infimum is taken over all policies for the infinite horizon. The quan- 
tity V ,  is the greatest lower bound on all the expected discounted costs, over 
the infinite horizon, and is the best result that could be desired. Here is the 
definition of an optimal policy under this criterion. 

Definition 2.4.4. Let 8 be a policy for the infinite horizon, Then 8 is upti- 
nial fur the expected discounted cost criterion if Ve,Ji) = V,(i) for i E S. 

0 

Analogously to the finite horizon case one is tempted to set 01 = 1 in (2.13) 
to obtain an undiscounted criterion for the infinite horizon. The problem with 
this approach is that for the systems we desire to model, the resulting expected 
total cost would be 00 for all policies. Instead, we employ the idea of averaging 
the expected (total) cost over n steps and then use a limiting procedure. 

Given initial state i ,  the long-run expected average cost under policy 8 is 
denoted by J e ( i )  and defined by 
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(2.15) ue,tAi) = lim sup -. ,,-- n 

The limit supremum concept is reviewed in Appendix A. The reader who is 
uncomfortable with the limit supremum should feel free to think of this as a 
limit until more experience with this concept is gained. There will be no loss 
of understanding. The limit supremum is taken since the limit sometimes fails 
to exist (see Example 6.2.1). The limit supremum is the largest limit point of 
the expected average costs, and hence is the worst case situation. 

We define the long-run expected average cost function (average cost, for 
short) by 

J( i )  : inf Je(i) ,  (2.16) 
e 

where the infimum is taken over all policies for the infinite horizon. The quan- 
tity J ( . )  is the greatest lower bound on the average costs, and is the best result 
that could be desired. Here is the definition of an optimal policy under this 
criterion. 

Definition 2.4.5. Let 8 be a policy for the infinite horizon. Then 8 is opti- 
0 ma1 for rhe average cost criterion if J e ( i )  = J ( i )  for i E S. 

We very occasionally need the average cost cnnce t but with the limit supre- 
mum replaced by the limit infimum. The quantity J d i )  is defined as in (2.15) 
but with the limit supremum replaced by the limit infimum. This is the smallest 
limit point of the expected average costs and hence is the best case situation. 
The quantity J*( i )  is defined analogously to (2.14). 

This completes the definition of the optimization criteria. The deeper mean- 
ing of each criterion will be revealed in subsequent chapters. 

E 

2.5 APPROXIMATING SEQUENCE METHOD 

The approximating sequence method is a general framework for the compu- 
tation of optimal policies when the state space is denumerably infinite. In this 
section we define an approximating sequence and discuss some important ways 
of constructing such sequences. 

Now assume that the Markov decision chain (MDC) A is given, and recall 
that it consists of four items: the state space S (assumed in this section to be 
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denumerdbly infinite), the action sets A,, the costs C(i, a), and the transition 
probabilities P,,(a). 

We define a sequence (AN) of MDCs that approximates A The state space 
of each AN is finite, and because of this the computation of an optimal policy 
may be carried out in AN. Then under certain conditions the results of these 
computations will converge to an optimal policy for A. It will generally be 
sufficient to compute for only two or three members of the sequence to get a 
good approximation to an optimal policy for A. 

De$nnition 2.5.1. Let NO be a nonnegative integer. The sequence (AN) ,V~:V~)  
is an upproximuling sequence (AS) for A if there exists an increasing sequence 
(SNjN.No of nonempty finite subsets of S such that US, -= S. Each AN is an 
MDC with state space S,V satisfying two conditions: 

(i) For i E SN the action set is A, and the cost at a is C(i ,a) .  

(ii) For each i E SN and u E A,, P , - ( a ; N j  is a probability distribution on 
S.V such that 

lim Pi,(a;N) = f;,(a), j E S. (2.17) 

0 
IV *-  

If we are dealing with the finite horizon case with a terminal cost F, then this 
same terminal cost applies to AN. The integer N is said to be the approximation 
level. 

At first glance this definition seems formidable, but in reality it is quite sim- 
ple. The MDC AN has as its state. space a finite subset of S. On this finite subset 
the action sets and costs for AN are exactly the same as for A Only the tran- 
sition probabilities are different. These form distributions on the finite subset 
that converge pointwise to the original distributions on A. The distributions in 
Definition 2.5. I (ii j are called approximating distributions. Keep in mind that 
only two items are required to specify an AS: the finite subsets and the approx- 
imating distributions. 

Example 2.5.2 Consider the state space S = { 0, 1.2, . . . }; there is one action 
in each state. We have  PO^ = (1/2)-’ + ’ for j 2 0, and f i i  - I = 1 for i 2 1. 

distribution for 0 is given by 
b t  No = 2 and S,y = (0, I ,  . . . , N ). Let Yii- I ( N )  = f j j -  I for I 5 i I; N .  The 

1 1  
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1 
2j.I PoJ(N) - 1 5 j S N -  1, 

(2.18) 

This satisfies (2.17) and hence is an approximating distribution. 

The most important way to define the approximating distributions is by 
means of an augmentation procedure. This procedure is useful when the state 
space is muitidimensional as well as when it is one-dimensional. Informally the 
idea is as follows: 

Suppose that the process is in state i E SN and action a is chosen. Forj  E 
SN the probability P,(a) is left unchanged. Now assume that Pir(a) > 0 for 
some r d SN. This means that under this probability the original process would 
transition to state r outside of S,. This is said to be excesspnlbabifity associated 
with ( i ,  a, r ,  N), and something must be done with this excess probability. It 
is redistributed (i.e., given or sent) to the states of SN according to a specified 
distribution. In full generality this distribution may depend on i, a, r, and N; it 
is called the augmentation distribution associated with (i, a, r, N). Moreover it 
is no loss of generality to require it to be defined even if P,,(a) = 0. The formal 
definition of an augmentation procedure is now given. 

DeJinhn 2.5.3. The approximating sequence (AN) is an augmentation 
type approximating sequence (ATAS) if the approximating distributions are 
defined a.. follows: Given i E S,V and a E Ai, for each r d SN there exists 
a probability distribution (q,(i. a, r, sN. called the augmentation distribu- 
tion associated with ( i ,  Q, r, N), such that 

Under an augmentation procedure the original probabilities on SN are never 
decreased, but they may be augmented by the addition of portions of excess 
probability (see Fig. 2.2). Note that Example 2.5.2 is not an ATAS. 

To help the reader become comfortable with the concept of an ATAS, we 
now give some terminology and examples. After these are completed, we prove 
that (2.19) does indeed define an approximating probability distribution. 

Here are some ATASs that arise frequently and the informal terminology 
used to describe them. Suppose that there exists a finite subset G of S such that 
it is always the case that q,(i, a, r, N )  = 1. This means that all excess 
probability is given, in some way, to the elements of G. We say that this ATAS 
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r 

Figure 2.2 Augnmlation type approxiniating sequence, 

sends excess probability to a jiiiire subset, or that it sends excess probability to 
G. If G : { x } ,  we say that it serds excess pruhbility To x. (In defining such 
an ATAS there is no loss in generality in assuming that No i s  so large that SN 
contains G.) 

If S = (0, I , .  . .}, S, = {0,1,. . . ,N}, and q,~( i ,a ,  r , N )  = 1, then we say that 
this ATAS sends excess probability to N. 

The following examples illustrate the idea of an ATAS: 

Example 2.5.4. The MDC A and SN are as in Example 2.5.2. There is 
excess probability associated only with 0. Hence for an ATAS we must have 
Pi, C:=N+, PO,. Here are four ways 
of defining the approximating distribution (P&V) jos, SN: 

( N )  = Pi, - I ,  for 1 5 i I N. Let Y ( N )  

1. Let PoJ(N) = P% for 1 5 j I N, and let P w ( N )  = Po0 + Y ( N ) .  This 
defines an ATAS that sends excess probability to 0. Formally we have 
qo(0, r, N) = 1 for r 2 N + 1. This ATAS is shown in Fig. 2.3. 

2. Let P&V) = PO, for 2 5 j 5 N. Let Pm(Nj = PU .e (0.5) Y ( N )  and 
Pol(N) = Pol + (0.5) Y ( N ) .  This defines an ATAS that sends excess prob- 
ability to (0,l). Formally we have qo(0, r ,  N )  = qI(0, r ,  N) = 0.5 for 
rlN+I. 

3. LetPoj(N)=Poj for21j~NN.LetPou(N)=P00+P01v+, andPol(N)= 
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Figure 2.3 Excess probability in state 0 Sent to 0. 

P ~ l + x " ~ +  PO,. This also &fines an ATAS that sends excess probability 
to (0, I} .  In this case we have qo(O,N+ 1,N) = 1 and q l ( O , r , N ) =  1 for 
r 2 N + 2 .  

4. Let P&V) = P", for 0 I j  I N .- 1, and let &(N) = PON + Y(N). This 
defines an ATAS that sends excess probability to N. We have qN(0, r,  N) = 

0 1 for r 1 N + 1. This ATAS is shown in Fig. 2.4. 

Exuinple 2.5.5. This is Example 2.1.4. Recall that this example concerns 
the routing of batches of packets to one of K parallel servers. The state space 
S consists of all pairs (i, u), where i is the vector of buffer levels and u is the 
server to which the previous batch was routed. 

kt S,V be the set of pairs (i,u), where i satisfies i k  5 N for 1 5 k I K. This 
means that in the approximating sequence no buffer is allowed to contain more 
than N packets. To simplify the definition of the ATAS, let us assume that K 
= 2. How to approach the general situation will be clear from this case. 

10. Assume that the cur- 
rent state is [($, 4). u], that action l is chosen, and that a batch of size 5 arrives. 
The following states outside of Slo may be reached on the next transition: [( 12, 
3), 11 ,  [(13, 3), 11, [(12,4), 11, [(13,4), 11. The first state corresponds to service 
completions at both buffers, the second state corresponds to a service comple- 
tion only at the second buffer, and so on. The probability associated with the 
states [(12, 3), I ]  and [(13, 3), I ]  is given to state [(lo, 3), 11 E S ~ O .  SimilarIy 
the probability associated with the states I(12, 41, 11 and [(i3, 4), I]  is given 
to state [(lo, 4), I]. 

Let K$ first discuss a numerical example with N 

Figure 2.4 Excess probability in state 0 Sent to N. 
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Let us now describe generally how this operates. Suppose that the system is 
in state [ ( i l ,  i z ) ,  u] E SN and that action 1 is chosen. Only the level of buffer 
1 may increase after this decision. The level of buffer 2 will either stay the 
same or decrease by 1 (if thert: is a service completion). We see that the excess 
probability associated with this state-action pair involves states of the form 
[(r, x), I], where r > N. Here x = i: if i 2  = 0 or if there is no service com- 
pletion at buffer 2. and x = i 2  - 1 if there is a service completion at buffer 2. 
The excess probability involving [(r,  x), I ]  is sent to [(N, x), I). Formally the 
augmentation distribution is given by 

The augmentation distribution, if decision 2 is made, is defined similarly. 0 

Finally we show that (2.19) does indeed define an approximating probability 
distribution. 

Proposition 2.5.6. Equation (2.19) defines an approximating probability 
distribution on S N .  

Pro08 To show that (2.19) defines a probability distribution, note that 

= c P,(a) 
j c  S 

= 1. (2.21) 

The interchange of the order of summation in the second line is valid since 
all terms are nonnegative. The third line follows since the probabilities in an 
augmentation distribution sum to 1. The remaining lines are clear. 

We now show that the distribution in (2.19) satisfies (2.17). First observe 
that 
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Since the finite sets S, increase to S, it is the case that the first term on the 
right of (2.22) approaches 1 as N --* -. Hence we have 

(2.23) 

Now f i x j  E S, and assume that N is SO large thatj  E S,. Since the terms 
in (2.19) are nonnegative and q, I I ,  it follows that 

We take the limit in (2.24) as N --, and the result follows from (2.23). 3 
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PROBLEMS 

2.1. Develop the transition probabilities for Example 2.1.3. 

2.2. Explain the transition probabilities in Example 2.1.4. 

2.3. Consider a single server queue with batch packet arrivals. There is a prob- 
ability pj that a batch of size j 2 0 will arrive at the beginning of any 
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slot. The state i 2 0 denotes the number of packets currently in the buffer. 
In state i 2 1 the action set is {0,1,. . . , i } ,  where action k E (0, 1,. . . , i }  
means that in the next slot a perfect (batch) service of k packets will occur. 
(If k = 0, then the server is idle during the next slot.) There are costs H ( i )  
and C(k) as usual. Model this as an MDC. 

2.4. Formulate Example 1.1.3 as an MDC. 

2.5. Formulate the priority queueing system in Example 1.1.5 as an MDC. 

2.6. Consider the MJX in Example 2.1.1. Let the current state of the system 
be i. For each policy specified below decide whether it is stationary, ran- 
domized stationary, deterministic Markov, randomized Markov, or general. 
Discuss what information is required to implement each policy. 
(a) If i 5 25, then accept incoming batches, while if i > 25, then reject 

incoming batches. If i = 25, then accept them with probability 0.25 
and reject them with probability 0.75. 

(b) At t = 0 accept the incoming batch with probability 0.5 and reject 
it with probability 0.5. At time f 2 1, if the previous decision was 
to accept, then reject the next batch, and vice versa if the previous 
decision was to reject. 

(c) If i < 100, then accept, while if i 2 100, then reject. 
(d) If the proportion of slots in which the batch was rejected does not 

exceed 0.2. then reject the incoming batch. Otherwise, accept it, 
(e) Assume that i 5 100. If the time t i s  even, then accept, while if it is 

odd, then reject. If i > 100, then reject. 

2.7. Consider an MDC with S = {0,1,2}. There is a single action in each 
state, and we have POI = Pi2 = P21 = P I O  = 1 (deterministic tran- 
sitions from 0 to 1 to 2 to 1 and back to 0). The costs are given by 
C(i) = i + 1. Calculate uld(0) (assume a terminal cost of zero), V,(O). J(O) ,  
and lim, -. I (1 - a)Va(0).  Compare the last two quantities. 

2.8. For the priority queueing system modeled in Problem 2.5, discuss three 
different ways to set up an ATAS for this MDC. 
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Finite Horizon Optimization 

In this chapter we derive an equation for the finite horizon expected discounted 
(or undiscounted) value functions. Necessary and sufficient conditions for a 
policy to be optimal for the finite horizon criteria are given. It is shown that an 
optimal deterministic Markov policy exists. 

The remainder of the chapter is devoted to the topic of computation of opti- 
mal policies when the state space is infinite. Conditions are given so that the 
finite horizon expected value functions in an approximating sequence converge 
to the analogous quantities in the original MDC and likewise for the optimal 
policies. These ideas are illustrated with the development of an approximating 
sequence for Example 2.1.1. A specific case of this is Programone. Computa- 
tional output is discussed for several scenarios. Suggestions for further explo- 
ration of this model are in the chapter problems. 

3.1 FINITE HORIZON OPTIMALITY EQUATION 

Let 8 be an arbitrary policy for the n horizon. Recall that the n horizon expected 
cost under 8 ,  defined in (2.11), may be obtained from the n horizon expected 
discounted cost, defined in (2.9), by setting a = 1. With 0 < cu I 1 we may 
develop the theory for the expected discounted and undiscounted cost criteria 
at the same time. We speak in general of the n horizon expected value function, 
Let it also be understood that a isfiwed, and this convention will hold throughout 
the chapter. 

The expected value function u ~ , ~  defined in (2.10) represents the smallest 
expected discounted cost that can possibly be achieved when the process is 
operated over the n horizon, namely over tz time slots. We may think of an n 
horizon as beginning from an arbitrary slot and continuing for n slots. The goals 
of this section are as follows: First, we want to provide an equation satisfied 
by the value function. This is thejnite horizon optimalit?, eyuation. Second, 
we want to give necessary and sufficient conditions for an n horizon policy 
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to be optimal. Third, we want to show that there exists an optlmal policy of 
deterministic Markov form. 

It is helpful to introduce the auxiliary function 

Let Bi(a ,n )  = { h  E Ajluasn(i ,b) = min,, A ,  {um,, ,( i ,a}}}.  These actions are said 
to achieve or realize the minimum. In most cases Bi(ol.n) is a singleton, but it 
is possible for it to contain more than one action. 

Remurk 3.1.2. Quantities similar to the minimization above occur fre- 
quently throughout the book. If the terms being minimized involve the state 
i, then the minimization is understood to be over actions a E A, unless other- 
wise specified. Subsequently these minimizations are denoted by min,. 0 

Recall that U@.,."(z) equals the terminal cost F(i).  This implies that u , , ~  = F. 
There are no actions to take for a horizon length of 0. Now assume that n 2 1, so 
that the process will be operated for at least one step and actions will be taken. 
We engage in some informal reasoning, both to gain insight and to suggest the 
statement of the major theorem. So suppose that the horizon n is given and that 
the process is initially in state i. It is desired to operate the system as close to 
optimality as possible. Some initial action must be taken (or a randomization 
ainong actions performed, on the basis of which one of them is chosen). Let 
us assume that the controller tentatively selects action a E A,. Then a cost of 
C(i, a) is incurred and the process transitions to statej with probability P,(n). It 
is clear that to obtain the best overall result, the controller should act optimally 
for the n - 1 horizon problem with initial state j .  But this means that the n 
horizon expected discounted cost is given by C(i,a) + aC,P,(a)u,.,- ~ ( j ) .  In 
reconsidering what to do initially, the controller sees that the action that realizes 
the minimum of these quantities should be chosen. This suggests that v,,,,(i) 
z mjn@{umqn(i,a)} and that, at time t = 0, an optimal policy for the n horizon 
problem should choose an action in Bj(a,n).  

This insight leads directly to the major theorem of this chapter. This result 
gives a recursive equation satisfied by the finite horizon value functions. Parts 
(i-ii) give necessary and sufficient conditions for an arbitrary policy to be opti- 
mal for the n horizon optimization criterion. 

The proof makes use of Proposition A . l . l  in Appendix A and the reader 
interested in this proof should examine this result before proceeding. 

Theorem 3.1.2. The finite horizon expected value function satisfies the 
finite horizon optimality equation 
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P,J(o)ua,,z [ ( j )  , i E S,n 2 1. (3.2) 

(i) A policy 8 is optimal for the 1 horizon if and only if given initial state i ,  
the distribution 8(u( i )  is concentrated on the set B,(ar. I)  (that is, equals 
zero outside this set). 

( I )  Given initial state i ,  the distribution 8(ali) is concentrated on the set 

(2) Given the process moves to state j at t L I ,  then 8 follows an n - 1 

(ii) A policy 8 is optimal for the n 2 2 horizon if and only if 

BAa, 4. 

horizon optimal policy with initial state j .  

Proofi The proof is accomplished by induction on the horizon. 
First assume that n = 1. In the one-period case the controller acts at t = 0, 

then observes the state at t = 1 and incurs the terminal cost. Let the initial state 
be i, and let 8 be an arbitrary policy for the 1 horizon. Then 

The first line follows from (2.9) by conditioning on the initial action chosen. 
The other lines foilow easily. 

Since (3.3) holds for all 6, it follows that info ue,,. ~ ( i )  2 min,{u,. l ( i ,u) } .  
Then fmm (2.10) it follows that 

Observe that the last expression in (3.4) is the right side of (3.2). 
Now let 8 be a policy with t9(ali) concentrated on &,(a, 1). Proposition A.l.l 

of Appendix A tells us that any such policy satisfies ue, I (i) = min, { u ~ ,  I ( 2 ,  a ) } .  
That means that the terms in (3.4) are all equal. This implies that (3.2) holds 
for n :: 1 and that 8 is optimal. 
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This proves the sufficiency of the condition in (i). To prove the necessity, 
let 8 be an arbitrary policy. It again follows from Proposition A. 1. I and (3.4) 
that B is optimal only if O(ali) is Concentrated on &(a, I). This completes the 
proof for n = 1. 

Now assume the truth of the statements for IZ - 1. The only assumption that 
will be used in carrying out the induction is the existence of an n - 1 horizon 
optimal policy 8*. Using this, we will show the tmth of the statemenb for n. 

Let the initial state be i, and let 8 be an arbitrary policy for the n horizon 
problem. If the initial action is a and the state at t = 1 is j, let $( i ,a , j )  be the 
policy rule for the n - 1 horizon under 8, starting at time t = 1. Then 

From (3.5) it follows that u ~ , ~ . ~ ( i )  2 uaqn(i) 2 m i & { ~ ~ . ~ ( i , u ) } ,  where the 
last term is the right side of (3.2). 
Now assume that B(a1i) is concentrated on B,(a,n) and then follows the 

policy 8*. From Proposition A. l . l  it follows that the last line in (3.5) is an 
equality. Since $(i,a,j) = 8*, it follows that the third line is an equality. Hence 
(3.2) holds for n. and there exists an optimal policy of the claimed form. This 
proves the sufficiency of (ii). 

It remains to show the necessity of (ii). First assume that B(ali) > 0. for some 
a 4 &(a, n). Then from Ptoposition A. 1.1 it follows that the last inequality in 
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(3.5) is strict, and hence B cannot be optimal. Now assume that 6(ali) is con- 
centrated on B,(a,n).  Assume that there exists b E B,(a,n) such that 8(bli) > 0 
and j such that P,,(b) > 0. Note that this means that state j may be reached at 
time t = 1 under the policy 8. Suppose that 8 does not act optimally for the n- 1 
horizon at j .  This implies that u+( , ,~ , ,  ),a,,, - I ( j )  > va," - I ( j ) .  But this means that 

0 the first inequality in (3.5) is strict, and hence 8 cannot be optimal. 

The form of an n horizon optimal policy embodies a famous result known 
as Bellmunk principle of optimaliry. The principle says that if a policy is to 
have a chance of being optimal and certain actions have been taken for periods 
0, . , . , t - 1, then the remaining actions must constitute an optimal policy for 
the n - t horizon. 

The implication of Theorem 3.1.2 is that both the finite horizon value func- 
tion and a finite horizon optimal policy can be built up inductively for TI = I ,  
then n = 2, and so on. The foIlowing example illustrates this procedure in a 
simple setting. The reader may find it useful to work through the calculations 
in detail. 

Exumpk 3.1.3. Consider an M I X  with S = (0, I } .  State 0 has actions a 
and a*, while state 1 has actions b and b*. We have C(0,a) = 1, C(O,a*) = 
0.75. C( 1, b) = 4, and C( 1, b*) = 3. The terminal costs are F(0) = 1 and F( 1) = 
2. The t r a n s p  probabilities are completely specified by the conditions PO&) 
= 0.5, PO& ) = 0.25, Pl,(b) = 0, and Ptf(b*) = 0.5. See Fig. 3.1. 

In this example let us assume that LY = 1. In this case the set defined following 
(3.1) is denoted by B,(n). Our aim is to construct an optimal policy for the n - 
2 horizon. Observe that 

UI (0) = min{C(O, a)  + 0.5 FCO) + 0.5 F( l), C(0, a*)  + 0.25 F(0) + 0.75 F( 1)) 

= min{2.5,2.5}. 

b 

b* 
Figure 3.1 Example 3.1.3. 
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Henceu1(0)= 2.5andBo(l)= {a,a"}.Similarly we find that u l ( l ) =  min{5,4.5} 
= 4.5 and & ( I )  = {b*}.  

For n -- 2 we have 

s ( O ) =  cn.in{C(O,a)+0.5 u1(0)+0.5 ul(l),C(O,a*)+0.25 ~ ~ ( 0 )  +Q.75 ul ( l ) }  
= niin{4.5,4.75}. 

Hence uz(0) = 4.5 and &(2) = {a}. Similarly we find that ~ ( 1 )  = min{6.5,6.5} 
- 6.5 and Bl(2) = {b, b*}.  

Let's build up an optimal policy for the 2 horizon. The policy will be of 
deterministic Markov form. Define the stationary policies f l  and fz by f t  (0) 
= a * , f l ( l )  = b * , f ~ ( O )  = a, and.fz(1) = b. According to Theorem 3.1.2 the 
deterministic Markov policy 0 A (f2,f l )  is optimal. 

To check this out, note that 

and indeed ue,l(O) ul(0). Similarly we can show that ue, r ( l )  = 4.5 = ul(1). 
Then Ue,z(O) = C(O,fz) + 0.5 ue, ,(0) + 0.5 Ue,t(l) = 4.5 uz(0). And finally 
ue,z(l) = C(1.f~) + Ue,i(O) = 6.5 = ~ ( 1 ) .  

Let us define a history dependent optimal policy $ under the assumption that 
the process is in state 1 at f ._ 0. The policy chooses action b with probability 
0.2 and action b* with probability 0.8. If the process is in state 1 at time t 7 

1, then it chooses b*. If the process is in state 0 at this time and action b was 
chosen at t = 0, then action n is chosen, whereas if action b was chosen at r = 
0, then action a* is chosen. It follows from Theorem 3.1.2 that 1c, is an optimal 
2 horizon policy for initial state 1. (Problem 3.1 asks you to verify this.) 3 

* 

Example 3.1.3 shows that there may be more than one optimal policy and 
that an optimal policy may be history dependent. However, the most important 
type o f  policy for the n horizon i s  a deterministic Markov policy. Theorem 3. I .2 
tells us how to define such a policy to ensure that it is optimal. At time t r 0 we 
choose and fix an action in B,(ar,n) for each i, and this defines the stationary 
policyf,*. At time t = 1 (since the policy from that point on must be optimal 
for the n - 1 horizon) we choose and fix an action in Bi(a,n - 1) for each i, 
and this defines the stationary policy fn - 1 .  We continue in this way until time 
f = n - 1 (the last time to make a decision). At this time we choose and fix an 
action in &(a, 1) for each i ,  and this defines the stationary policy f, . Then the 
policy 0 = ( f r t r f , ,  I ,  . . . , f l )  is optimal for the n horizon. The following result 
formalizes this argument: 

Corollary 3.1.4. Let the deterministic Markov policy 6 = ( f N , f l l  - I ,  . . . , f l )  
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be defined as foHows: The stationary policy fn -, satisfies fn - ,(i) E &(a, n - r )  
for 0 5 t I n -- 1. Then 8 is optimal for the n horizon. 

Prvmfi The notation is set up so that r represents the time period. So at 
time t = 0 we employ f ”, at time t = 1 we employ f , l  - 1, and so on. 

The result is proved by induction on n. First let n = 1. Then 8 = .fl, where 
f l ( i )  E Bi(a, I) .  By Theorem 3.1.2 this is optimal. 

Now assume that the result is true for n - 1. Let us prove it for n. Let 6 = 
(f,,. f$- 1 ,  . . . ,f,) be as above. Let 8 = ( f a  - . . . , f l ) ,  and observe that 8 = 
( f n ,  8 ). According to the definition of 8* and the induction hypothesis, 8” is 
optimal for the n - I horizon. But it then follows from Theorem 3.1.2 that 6 is 

D 

* 

optimal for the n horizon. 

Our goals for this section have been achieved. In particular, we may use (3.2) 
to recursively calculate uaP, and then Corollary 3.1.4 may be used to identify 
an optimal deterministic Markov policy. 

3.2 ASM FOR THE FINITE HORIZON 

The approximating sequence method (ASM) is used to calculate both the finite 
horizon expected value function and a finite horizon optimal policy for the case 
when the state space is denumerably infinite. At this point the reader may want 
to review Definition 2.5.1. 

Throughout this section let A be an MDC with a denumerable state space 
and terminal cost F, and let (AN) be an approximating sequence for A. Then 
( ~ & ( i ) ) ~ ~  sN is the expected value function in AN. (In general, quantities occur- 
ring in AN nre superscripted with N.) An optimal policy for the n horizon in 
AN is given by 8; = (4, e;- I t  . . . , e,:), where ey is a stationary policy that 
is optimal for time n - t .  

As we let N -+ m (with the horizon length n fixed), the questions of interest 
are as follows: 

4 

QUESTION 1. When does ut.,, -+ u ~ , ~  c -? 

QUESTION 2. When does 8; converge to an n horizon optimal policy in A? 

We want to ensure both the finiteness of the value function in A and the 
convergence. The next example shows that the desired convergence may not 
hold. 

Exumple 3.2.1. This is Example 2.52 with C(i) = i and zero terminal cost. 
We claim that v:(0) does not converge to uz(0). Observe that u l ( j )  = j .  Then 
~ ( 0 )  = z,Y7 I J/2’+ I = 1. (This follows by factoring out and applying (A.25).) 
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Now u y ( j )  = j  for 0 5 j  9 N, and hence 

As N ---c m the first term approaches 1 = u2(0) and the second term approaches 
0 0. Hence limN -. oo uT(0) = 2 > ~(0). 

The following result shows what can be proved without further assumptions. 
The reader may wish to review the concept of the limit infimum (supremum) 
of a sequence as discussed in Section A.l of Appendix A. Recall that the limit 
of a sequence exists if and only if the limit infimum of the sequence equals its 
limit supremum (and the limit is then this common quantity). 

Lemma 3.2.2. We. have IimN,, u : , ~  = u , , ~ .  For n 2 1 we have lim 
intv r m  u:,,~ 2 ua,n- 

Pror,f: This is proved by induction on n. Let n = 0 and i E S. There exists 
N* such that N 2 N* implies that i E SN. Then u:,,)(i) = F ( i )  = u,,o(i) for 
N 1 N", which proves the first statement. Observe that if the limit exists, then 
the limit infimum i s  equal to the limit. Hence the second statement is true for 
R = 0 and may be used to start the induction. 

Now assume that the result is true for n 1. We show that it holds for n. 
The n horizon optimality equation in AN is 

Take the limit infimum of both sides of (3.6) to obtain 
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(Notice that “ -- OQ” has been suppressed and is understood in the limit infi- 
mum. Recall our convention that “x,” indicates a summation overj e S.) Here 
the first line follows from Proposition A. 1.3(i), which says that a limit infimum 
can be “passed through” a minimization over a finite set. The second Iine fol- 
lows from the generalized Fatou’s lemma (Proposition A.2.5). Since the costs 
are nonnegative, it is the case that the value function is nonnegative. The third 
line follows from the induction hypothesis, and the fourth line follows from 
(3.2). This completes the induction. Hence the result holds for n L 0. 

The following finite horizon assumption, for fixed a and fixed n 2 I ,  is the 
key to answering the questions. 

iv Assumption FH(ar, n). For i c S we have lim sup,., - (xl ua,,,(i) =: ~ , ,~ ( i )  < 
0 00 and wa,,,(i) I r ~ ~ , , ~ ( i ) .  

The answer to Question 2 requires the concept of a stationary policy for A that 
is a limit point of a sequence of stationary policies in (AN). This is given in 
Definition B.4 in Appendix B, and the reader may wish to refer to this definition 
now. There is also some background information on sequences of stationary 
policies. 

Theorem 3.2.3. Let n 2 1 be fixed. The following are equivalent: 

(i) LimN_, u : . ~  = r ~ ~ . ~  < 00. 

(ii) Assumption FH(a, n) holds. 

Assume that either (then both) of these holds, and let e: be a stationary policy 
for AN that is optimal for the n horizon at time t = 0. Then any limit point of 
the sequence (e f )N2, , , ,  i s  optimal in A for the n horizon at I 1 0. 

Proofi If (i) holds, then lim sup,,, u;.,, - l i m ~  ut,,, = u = , ~  < 00, and then 
clearly (ii) holds. 

Now assume that (ii) holds. Then lim sup,,, u& 2 um,,, 5 lirn id,,, u:,,~, where 
the last inequality follows from Lemma 3.2.2. Moreover the first term is finite. 
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But this implies that all the terms are equal and finite, and thus (i) holds. This 
proves the equivalence of (i) and (ii). 

Now assume that (i) holds. By Proposition B.5 there exists a limit point 
e,t of the sequence (&,yrN,,, Recall from Definition B.4 that there exists a 
subsequence N, such that given i E S, we have t?yr(i) = e,(i) for N, sufficiently 
large (how large may depend on i). 

For a fixed state i and N, sufficiently large, (3.6) may be written 

This follows since e:!, is n horizon optimal at t = 0 and chooses the same action 
at i as en for N, sufficiently large. 

We now take the limit infimum of both sides of (3.8) as r -- 00 (i.e., take 
the smallest limit point relative to the subsequence determined by N,). This 
yields 

Here the first line follows from Proposition A.2.5. The second line follows since 
the limit infimum over N is the smallest limit point. The third line follows from 
Lemma 3.2.2. The fourth line is clear and the last line follows from (3.2). 

But by (i) we have lim inf, v!;,(i) = lim,y uf+,l(i)  - uu,,(i), and hence all the 
t e r n  of (3.9) are equal. This implies that t t , ( i )  realizes the minimum in (3.2). 
This argument may be carried out for each i ,  and hence by Theorem 3.1.2, e, 

0 is optimal for the n horizon at time t = 0. 
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3.3 WHEN DOES FH(a,n) HOLD? 

In this section we give some sufficient conditions for FH(cw, n )  to hold. The fust 
result states that if the costs are hounded in A, then FH(cu,n) holds. 

Proposition 3.3.1. Assume that there exists a (finite) constant B such that 
C(i, u)  I B and F(i )  S B, for all state-action pairs. Then FW(cr, n) holds for all 
a a n d n 2 1 .  

Pruuf First observe that U a , n  5 B(n + I) ,  and hence the value functions in 
A are finite. We show that Theorem 3.2.3(i) holds. The proof is by induction 
on n. It holds for n - 0 by Lemma 3.2.2. Now assume that it is true for n - 1. 
Observe that 0 I u& - I 5 Bn, and hence this is a bounded function in N for n 
fixed. 

Consider (3.6). For a fixed action we wish to apply CoroIIary A.2.7 to the 
summation using the bounding constant Bn. By the induction hypothesis it is 
the case that lim, u ! , ~ -  I ua.#- t .  It then follows Erom Corollary A.2.7 that 
lim, xjE sN P,(n;N)u: , ,_  , ( j )  = x, P,,(u)u,,,- l ( j ) .  Using this and Propo- 
sition A. 1.3(ii) yields 

This completes the induction, and hence Theorem 3.2.3(i) holds for n 2 0. 
n 

Proposition 3.3.1 provides a complete answer to Questions I and 2 in the 
case of bounded costs. The remainder of this section is of interest only when 
the costs in A are unbounded. We develop two situations in which FH(ar,n) 
holds. 

Proposition 33.2. Assume that u , , ~  < m, for n 2 1. Let (A,) be an ATAS 
that sends excess probability to a finite set. Then FHfcw, t2)  holds for all a and 
n 2  1. 

*Prm$ For n 2 I consider the statement Z(a, n): 

1. There exists a nonnegative function z&(i>, of i E S and N 2 NO, bounded 

2. u:Ji) 2 ua,,!(i) + z:$), for i E SN and N 2 No. 
3. LimN - - T:,,, = 0. 

above by a (finite) constant Za,n. 
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Suppose that we could prove that Z(a, n )  holds. Then from (2) and (3) it fol- 
lows that lim sup, u : , ~  5 < 00, where the finiteness follows by assumption. 
Thus FH(or,n) holds. So we will show that Z(a,n) holds. (Note that assertion 
I was not used, but it is needed later in the argument.) 

Let us obtain some preliminary results. kt f n  be a stationary policy that is 
optimal in A for the n horizon at t = 0. Then observe that 

= uaJi).  (3.11) 

Notice that on the left side we simply restrict the summation to states in S,  
and that the AS is not involved. The first line follows since the value function 
is nonnegative, The second line follows from (3.2) and the optimality of fn. 

Let 

(3.12) 

and note that limN Y ; ( f n )  = 0. 
Let G be the finite set to which the excess probability is sent. We may assume 

that SN contains G for N 2 No. It is now shown by induction on n 2 1, that 
Z(a.n) holds. For n = I we have 

(3.13) 

The first line foliows from (3.6). and the second line follows from the definition 
of the ATAS (Definition 2.5.3). The third line follows from (3.11-12) and the 
fact that q, I 1. 
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(3.14) 

and let Za, I : a & E  G' F( j). Then z(a, I )  clearly holds. 

ilar reasoning to that in (3.13) yields 
Now assume that Z(a, n - 1) holds; we should show that Z(a, n )  holds. Sim- 

Apply the induction hypothesis to the last two terms of (3.15). Some manipu- 
lation and the fact that qJ <- 1 yields 

where we have defined 

To complete the induction, it is necessary to verify assertions (1-3) for the 
function &. Clearly assertion 2 holds by (3.16). 

By the induction hypothesis we have &- I I 2 U . n -  I .  This implies that the 
term in parenthesis in (3.17) is bounded in N. Then (3.12) implies that the limit 
of the last term in (3.17) is 0. Now focus on the first term and apply Corollary 
A.2.4 with bounding function Z ,  ,,,- I .  Then 
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= 0, 

where the second line follows from the induction hypothesis. This shows that 
assertion 3 holds. 

Finally we verify assertion 1. It follows from (3.17) and the induction hy- 
pothesis that z:.n is nonnegative. From (3.17) we see that 

Here IGl is the cardinality of the finite set G. This completes the induction and 
the proof. El 

A special case of this result occurs when all the excess probability is sent 
to a fixed state z, known as a distinguished state. In this case the finite horizon 
optimality equation (3.6) has a simple and suggestive form. 

Corollary 3.33. Assume that ua.,, < 00, for n 2 1. Let (AN) be an ATAS 
that sends the excess probability to a distinguished state z. Then FH(a, n) holds 
for all a and n 2 1. If fz,n = u& - v:,,(z) (known as a relative value function), 
then the finite horizon optimality equation in AN is 

i E &,n 11. (3.19) 

Pro08 By Proposition 3.3.2 it is only necessary to show that (3.19) holds. 
Eqilation (3.6) and the definition of an ATAS that sends the excess probability 
to z yield 



3.3 WHEN DOES FH(a,n) HOLD? 49 

which is clearly equivalent to (3.19). 0 

Equation (3.19) is particularly well-suited for computation. The value func- 
tion increases with the horizon length. However, the relative value function is 
more manageable. The computation can keep track of the relative value func- 
tion together with the value function at z. The value function may be recovered 
by adding these quantities. 
Our next result is a structural condition on A involving the augmentation 

distributions. 

Proposition 33.4. Assume that uaqn c m for n L 1. Let (AN) be an ATAS 
such that the augmentation distributions satisfy 

i c  & , a €  A i , r E  S - S N , n 2 0 .  (3.20) 

Then u&(i) 5 ~ * . ~ ( i )  for i E SN, all a, and n 2 1. Hence W ( a ,  n) holds. 

(Notice what hypothesis (3.20) says. If we have excess probability P,,(a) 
and send it to the states of SN by means of an augmentation distribution, then 
the resulting weighted probability sum (called a convex combination) of values 
cannot exceed the value function at r.) 

P m j  The result is proved by induction on n. For n = 1 we have 
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Here the first line follows from (3.6). The second line follows from the defini- 
tion of an ATAS and the fact that u P n  = U,J = F on SN. The third line follows 
from (3.20), and the fourth line from (3.2). 

Now assume that the result holds for n- 1 .  Then similarly to (3.2 1 )  we obtain 

(3.22) 
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Here the first line follows from the induction hypothesis and the second line 
folows from (3.20). The third line follows from (3.2). This completes the induc- 
tion and the proof. 0 

The following corollary involves a commonly occurring situation in which 
Proposition 3.3.4 may be applied. (For S = (0, 1, 2, . . .} we say that a function 
f on S is increasing in i if i I j  implies thatf(i) If(j).) 

Corollary 335. Assume that S = (0, 1, 2, . . .} and that ua,,, is finite and 
increasing in i for n 2 0. Let (AN) be an ATAS with Sh = (0, 1, . . . , N 1 that 
sends the excess probability to N. Then FH(a,n) holds for all ry and n 2 1. 
Tf .c& : U : , ~ ~  - u : , ~ ( N )  is the relative value function, then the finite horizon 
optimality equation in AN is 

i E SN,n 2 1. (3.23) 

Pmt$ This proof is assigned as Problem 3.6. n 

The example in the next section illustrates a computation using this re- 
sult. 

3.4. A QUEUEING EXAMPLE 

In this section we treat Example 2.1.t. Let us set (Y = 1 and F = N. This is 
the undiscounted case, and the terminal cost is the cost of holding the number 
of packets left at the time the process stops. We first derive the finite horizon 
optimality equation in A. 

Lemma 3.4.1. Assume that H ( i )  is increasing in i. Then u , ~  is incwasing 
in i (and finite). For n 2 1 the finite horizon optimality equation i s  
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(3.24) 

Prm$ Equation (3.24) follows easily from (3.2) and the transition proba- 
bilities in Example 2.1. I .  The first term in the minimum corresponds to admit- 
ting the arriving batch, and the second term corresponds to rejecting it. 

Let us now show that the value functions are finite. Let 8 be the policy that 
always rejects the incoming batch. Then for a fixed n 2 1 we have u,(i) S u ~ . , ( i )  
I Rn + H(i)(n + 1) < -. 

It is shown by induction on it 2 0 that the value function is increasing in i for 
each fixed n. For n = 0 we have = H which is increasing by assumption. Now 
a m m e  that the result holds for n - 1. Observe that each term in the minimum 
for u,,(O) is bounded above by the corresponding term for un(l), and hence 
u,(O) I u,,(l). Now consider the right side of the second equation of (3.24). 
The H ( i )  term is increasing. Suppose that the optimal decision is to reject. By 
the induction hypothesis both u,, - I (i - 1) and un - 1 ( i )  are increasing in i. Hence 
R + pun - 1 ( i  - 1) + (1 -. 1)un - 1 ( i )  is increasing in i (prove it!). Now suppose 
that the optimal decision is to accept. For each fixed j we have u,- ( i  - 1 + 
j )  increasing in i. The term c j p , u n  - ~ ( i  - 1 + j )  is a convex combination of 
increasing functions and it is easy to see that it is increasing (prove it!). The 
other sum is also increasing and hence so is p cJ P J V n -  ~ ( i  - 1 + j )  + ( 1  - 
p ) ~ j p , u , , -  ~ ( i  + j ) .  Thus both terms in the minimum are increasing. Since the 
minimum of increasing functions is increasing (prove it!), this proves that u, 
is incrasing. 

Remark 3.4.2. It seems reasonable to hypothesize that the optimal n hori- 
zon policy is of critical nunzber form, namely that there exists 0 I i* 5 m 

such that it i s  optimal to accept when the buffer level is below i* but optimal 
to reject when the level is at or above i * .  (Note that i* = 0 means that it is 
optimal to aiways reject, and i = OQ means that it is optimal always to accept. 
Hence these two extreme policies are also of critical number form.) We will 
not attempt to prove that the optimal policy is of criticd number form. Even 
if this structural result were obtained, we would not have the optimal policy 
(since the cutoff i* would be unknown). Here we concentrate on numerically 

* 

calculating an optimal policy. n 
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Now let us define an AS for this model. Since u,, is increasing, this suggests 
that we employ Corollary 3.3.5, letting SN = (0, I ,  . . ., N )  and sending the 
excess probability to N. Recall that $(i) = uT(i)  - u:(N) for 0 5 i 5 N - 1. As 
an aid in deriving the optimality equation (3.23) for the AS, we introduce the 
auxiliary function 

(3.25) 

and note that (3.25) implies that i + j  5 N - 1. Then (3.23) becomes 

Consider (3.23) for i = N. Observe that 4- (N - 1) = PO#- (N - I), and hence 
p.wl:- l ( N  - 1) < R + p t -  ,(N - 1). Then (3.23) becomes 

~ ( N ) = u , N _ , ( N ) + H ( N ) + m i n { p w , N _ , ( N -  I ) , R + p s t _  I ) )  
= u:-,(N)+H(N)+pd-,(N- 11, (3.27) 

and it is always optimal to accept in N. (Can you explain intuitively why this 
is so?) 

We employ (3.26-27) to compute an optimal policy when H(i )  = Hi, for a 
positive constant H, and assuming that the batch size follows a Poisson distri- 
bution with mean X packets/batch. This is ProgramOne. The user is prompted 
for the values H, R, A, and p. The approximation level N and the horizon length 
are constants that may be changed in subsequent runs of the program. 

In the following discussion of the structure of the program the superscript N 
and subscript II are dropped for notational simplicity. The program cames along 
three arrays. One array is for the cumnt value of s and one is for the current 
value of w. (The third will be discussed shortly.) The arrays are initialized by 
so(i) = ~ ( i )  - m ( N )  = H(i - N) and wo(i) = He-' x;=;'-' Xj(i + j  -- N ) / j ! .  
The current value of HN), called u, and the next value, called uncw, are also 
maintained. These are constants. 

Here is how the updating occurs. Given the current values v, s, and w, the 
value u,, is obtained from (3.27). Then supdate is obtained by calculating the 
right side of (3.26) and subtracting uMw. FinaIIy wupdate is obtained from (3.25) 
using supdate. For each iteration the optimal decision in a given state is main- 
tained in the third array. At each iteration the optimal decision and current value 
of u and s are printed out. The value function can be obtained by adding the 
value of u to that of s. 
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Remark 3.4.3. Suppose that both H and R are multiplied by a positive 
constant U. Then in (3.26-27) the effect is to multiply the value function by 
U; an optimal policy remains the same. (You are asked to show this in Problem 
3.7.) Hence it is only the value of R relative to that of H that is important in 
the computation. For this reason there is no loss of generality in assuming that 
H = 1 and considering various vdues for R and the other parameters. In all 
the scenarios we set H = 1. (This effect also holds in the original optimality 
equation (3.24).) 0 

Let us also consider the effect of the mean batch size A. Recall that at most 
one packet can be served in any slot. If X > 1 ,  then, on average, more than 
one packet arrives in each slot. Hence the queue will rapidy build up, and we 
would expect an optimal policy to invoke the reject option at small horizons and 
for small buffer content levels. This is indeed what occurs. If X < 1. then, on 
average, less than one packet arrives to the server in each slot. The queue will 
not build up as rapidly, and we would expect an optimal policy to employ the 
reject option at larger horizons and for larger buffer content levels. (Intuitively 
the uncontrolled queue is stable if X < p.) Now consider the case X = 1. For 
n = R a special situation obtains. Hand calculations show that for n = R = I it 
is optimal either to accept or reject in all states. For n = R = 2 it is optimal to 
accept in states 0 or 1 and to accept or reject in the other states. In this special 
situation the solution is not unique, and the program gives an ambiguous result. 

Scenario 3.4.4. Let R = 10, X 7 3, and p = 0.7. The objective is to determine 
an optimal policy 8 lo.  Because this is o w  first scenario, we discuss the reasoning 
in detail. Table 3.1 gives the pertinent results in summary form. Runs were 
made for approximation levels N = 20, 30, and 50. The entries are the optimal 
policies e:. For example, the entry under N - 30 and n = 5 is ego, which is the 
optimal policy for horizon 5 in A30. This says that e?(i) r ,  for 0 5 i 5 22, 
and e:)(i) = a, for 23 I i 530. 

Remember that any limit point of ef( as N ---c m is an n horizon optimal 
policy for A. So we examine these policies to see if they are “settling down” 
to a policy en. With a high degree of confidence, it can then be asserted that e,, 
is n horizon optimal for A. 

For horizons 1, 2, and 3, it is always optimal to accept in the AS (only 
horizon 3 is shown in Table 3.1). So we may assert that el = ez = e i  z a. 

At horizon 4 a change is noted. For N = 20 it is optimal to accept in state 
0, to reject in states 1 through 11, and to accept in the rest of the states. For 
N : 30 and N = 50, it remains optimal to accept in 0, but the rejection region 
expands. It is plausible that an optimal policy for A is of critical number form, 
and this seems to be confirmed by the computations. Hence we assert that e4(0) 
= a and e&) = r for i 1 1. If we wish to gain a greater degree of confidence, 
we can take an even larger approximation level. The run time for this program 
is not a significant factor. 

Applying the same reasoning to horizons 5 through 10, we may assert that 
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Table 3.1 Results for Scenario 3.4.4 

n 

N 3 4 5 10 

20 [O, 201 a (0) a [O. 121 r lo, 141 r 
[ I ,  111 r [13, 201 a [15, 201 a 
[12.20] a 

[ l ,  211 r [23, 301 a [25, 301 n 
[22, 301 a 

[ I ,  411 r [43, 501 a [45, 503 a 
(42, 501 a 

30 to. 301 a (01 a [O, 221 r [O, 241 r 

50 [O, 503 a (0) a [O, 421 r [O. 441 r 

e,t = r, for 5 I n S 10. (The output for horizons 6 through 9 is not shown 
in Table 3.1.) We can even be quite confident that en H r for n 2 5. By this 
reasoning we see that the optimal finite horizon poIicy in A has been determined 
for all horizon lengths. 

As a sample of the calculation of a value, this pro ram output yields G(50) 
= 549.592 and &O) = -463.676. Hence ulo(0) = &(O) = 4:(0) + e(50) = 
112.92. n 

Remark 3.4.5. In subsequent scenarios for this program, the reasoning pro- 
cess discussed above is omitted. We give the values of N and n that are used 
in making the inference of an optimal policy. The convergence of an optimal 
n horizon policy for the AS to an optimal policy for A follows from Theorem 
3.2.3. It is desirable to have a rate of convergence result, but this issue is not 
discussed here. Although a rate of convergence result is of undeniable impor- 
tance, employing such a result might well have some drawbacks. First, it might 
greatly overestimate the approximation level necessary to have confidence in 
the results. Second, the bound itself might involve tedious calculations. In any 
case, the reader may note that the convergence is rigorously guaranteed by The- 
orem 3.2.3; it is only the rate of convergence that is uncertain. Inferences drawn 
from program output must be done with care and attention, and the determina- 
tion of an optimal policy requires a bit of art. But this being said, the reader 
can appreciate the power and elegance of this computational method. 

Scenarios 3.4.6. Additional output is given in Table 3.2. The detailed rea- 
soning is omiued. Each column represents a different scenario. The parameter 
values are in the first box. In the second box are the values (or value) of ( n , N )  
that were considered. The third box contains the optimal policy for A. Each 
optimal policy is of critical number form, As a shorthand it is denoted by a 
single interval representing the buffer content levels in which it is optimal to 
accept. At the other levels it is optimal to reject. For example, e :[O, -) means 
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that it is always optimal to accept, whereas e : 0 means that it is always optimal 
to reject. The policy e :[O. 31 means that it is optimal to accept when the buffer 
content level is 3 or less and to reject when the level is above 3. 

Scenario 1 has a mean batch size modestly greater than I .  In Scenario 2 this 
mean is slightly increased. The change in policy is modest and occurs only at 
horizons 6 and 7. By horizon 8 there is no longer a difference. Scenario 3 is 
as in the first scenario but with a service rate half as much. There is a change 
in the optimal policy in the conservative direction as would be expected. 

In Scenario 4 both the mean batch size and the rejection cost are large. The 
optimal policy is very conservative and rejects all batches for horizons of 4 or 
more, Scenario 5 is as in 4 but with the mean batch size cut in half. Note that 
for both of these scenarios there is an abmpt change from always accepting to 
rejecting almost always. 

In Scenario 6 we have p < X < 1. Note that po = e-0.75 = 0.47. This means 
that 47% of the time no batches arrive, and hence this is a fairly lightly loaded 
system. In this case the policy accepts all batches until horizon 34. At this point 
it gradually reduces the acceptance region until horizon 40. From that point on 
it accepts when there are three or less packets in the buffer. It is still the case 
that for a long horizon the policy acts quite conservatively. See Fig. 3.2. 

Admit 

A = 0.75 

0 1 -  - - 3 3 3 4 3 5 3 6 3 7 3 3 9 4 0 -  - - 
I 1 I I t t 1 1 1  Horizon 

- I l l  I Buffer content 
m 56 55 54 43 for admission 

Figure 3.2 Scenario 6 fsvm Table 3.2. 
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Scenario 7 examines the outcome if both the mean batch size and the rejec- 
tion cost are halved. We also have X < p. Note that po = e""".375 = 0.69. This 
means that 69% of the time no batches arrive to the controller, and hence this 
is a very lightly loaded system. It is quite interesting that the horizons at which 
changes occur ate similar to the previous scenario, but the acceptance levels 
are modestly expanded. 

Scenario 8 considers the case in which h = 1. Since R = 8, an ambiguous 
situation occurs at n = 8. 0 

BIBLIOGRAPHIC NOTES 

The material in Section 3.1 was developed primarily in Bellman (1957), Karlin 
(1953, Hinderer (1970). Derman ( 1970), and Schal (1973, with a theoretical 
emphasis in the latter. 

The material in Sections 3.2 through 3.4 is new. 

PROBLEMS 

3.1. In Example 3.1.3 verify the claim made about the policy +. 
3.2. Develop the finite horizon optimality equation (3.2) for Example 2.1.2. 

3.3. Develop the finite horizon optimality equation for Example 2.1.3. 

3.4. Develop the finite horizon optimality equation for Example 2.1.4. 

3.5. Develop the finite horizon optimality equation for the MDC in Problem 
2.4. Assume two stations. 

3.6. Prove Corollary 3.3.5. 

Problems 3.7-10 have to do with the model in Section 3.4. 

3.7. Consider the optimality equation for AN given in (3.26-27). Prove that if 
H is replaced by UH and R by UR, then the value function is multiplied 
by U and the optimal policy is unchanged. Him: Prove this by induction 
on n. Introduce some appropriate notation. 

WARNING! When running any of the programs, you should change only 
the constants at the top of the program. If you wish to modify the program 
itself, as called for in Problem 3.9, then copy the original program and give it 
a new name before making any modifications. 
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3.8. Run ProgramOne for the following scenarios: 
(a) H = O S , R = 5 , X =  l S , p = 0 . 8 .  
(b) H = I ,  R = 5,  X = 1, p = 0.9. 
(c) H = 1, R = 5, A = 0.8, p = 0.99. 
(d) H = 1, R = 5, X = 2, p = 0.45. 
(e) H = 1, R = IS, A = 0.5, p = 0.45. 

(There are three constants to be chosen: “ U B  = N, “ B  = N - 1, and 
“Horizon” = n. The program prompts you for the parameter values.) For 
each scenario determine an optimal policy and discuss your conclusions. 

3.9. In this problem you are asked to modify ProgramOne. Read the Warning 
above before proceeding. Examine the code. Decide what needs to be 
done to modify it for a holding cost of the form H ( i )  = H i 2 .  Carry out 
the modification. Make some runs for the same parameter values as in 
Section 3.4. Compare the results and discuss them. 

‘3.10. Suppose that the. distribution governing the batch sizes is bounded. For 
example, assume that p, = P(batch size = j )  > 0 for 0 S j I 5. In this case 
at most five packets can enter the system in any slot. Write a program to 
determine an optimal policy. 

3.11. Consider the model in Problem 3.2 with a terminal cost of zero. 
(a) If Hfi) is increasing, prove that the expected value function is increas- 

ing in i. 
(b) Develop an ATAS that sends the excess probability to N. Write the 

optimality equation for An. Consider the cases i = 0, 1 5 i I N - 1. 
and i = N. Employ (3.25). 

(c) Prove that the expected vahe function in AN is increasing in i. 

3.12. Consider an ATAS for Problem 3.5 that sends the excess probability to 
the zero state. Write the optimality equation for AN. 



C H A P T E R  4 

Infinite Horizon Discounted 
Cost Optimization 

In Section 4.1 we derive an equation for the infinite horizon expected discounted 
value function and prove that there exists an optimal stationary policy for the 
expected discounted cost criterion. In Section 4.2 it is shown that the solution 
to the optimality equation is not unique and various results relating to this are 
given. In Section 4.3 the relationship between the finite horizon and infinite 
horizon discounted value functions is treated. In Section 4.4 a characterization 
of optimal policies for the discounted cost criterion is given. In Section 4.5 we 
examine the behavior of the value function V,(i)  considered as a function of 
the discount factor oy with the initial state i fixed. 

Sections 4.6 and 4.7 consider the computation of an optimal policy when the 
state space is infinite. Conditions are given so that the value functions (respec- 
tively, optimal stationary policies) in an approximating sequence converge to 
the value function (respectively, optimal stationary policy) in the original MDC. 
These ideas are illustrated in an inventory model presented in Chapter 5.  

4.1 
EQUATION 

INFINlTE HORIZON DISCOUNTED COST OPTIMALITY 

With the exception of Section 4.5 the discount factor oy E (0,l) is considered 
to be fixed throughout this chapter, and this is understood in our results. Notice 
that we do not allow a = 1. ,The expected discounted value function V,, defined 
in (2.14), represen& the smallest expected discounted cost that can possibly be 
achieved when the process i s  operated over the infinite horizon. Recall that we 
refer to V ,  as the discounted value function. 

In this section we first derive an equation satisfied by V,. This is the discounr 
optimality equution. Second, we show that there exists an optimal stationary 
policy. These results form the centerpiece of the chapter. 

Let us develop some preliminary results. Let 6 be an arbitrary policy for the 
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infinite horizon. We may operate the system under 0 for n steps, with a terminal 
cost of zero. Under this condition 8 becomes a policy for the n horizon, and 
ue,a.n is its value function. The next result relates this quantity to the infinite 
horizon discounted value function under 8 ,  defined in (2.13). 

Lemma 4.1.1. The quantity ue,a,n is increasing in n and lim,, . - Ue.a,n = 
Ve.a. 

P m f i  This result follows immediately from (2.13). The sum of an infinite 
series is defined as the limit of the sequence of its partial sums, if that limit 
exists Since all costs are nonnegative, it i s  the case that the partial sums are 
increasing in n. Hence the partial sums form an increasing sequence. Such a 
sequence has a limit (it may be m). Hence it follows that 

= lim ve,,,,(i), i E S,  (4.1) 
n-09 

and this completes the proof. n 

Proposition 4.1.2. Let W be a nonnegative function and e a stationary pol- 
icy such that 

Then 

and W 2 VeVN. 

Prrwt If (4.3) can be shown, then from the nonnegativity of W, it follows 

Equation (4.3) may be formally proved by induction. Here is the idea behind 
that W 2 u ~ . ~ , ~ .  Hence from Lemma 4.1.1 it will follow that W 2 Ve,N.  

the proof. For n =. 1 we have 
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Iterating (4.2) once yields 

The second line follows by applying (4.2) to each tern of the summation in 
the first line. The third line follows from (2.9). 

It is clear that this argument can be continued to yield (4.3). (Problem 4.1 
0 asks you to give a formal induction proof.) 

Corollary 4.1.3. Let W be a nonnegative function satisfying 

Letf be a stationary policy that realizes the right side of (4.6); that is, for each 
state i ,  f ( i )  is an action that achieves the minimum. Then W 2 VJ, 2 V,. 

Pro08 From (4.6) it follows that 

w(i) L ~ ( i , f  ) + a C  PO(^ )w(j), i E S.  
i 

Then the result follows from Proposition 4.1.2 and (2.14). 

Let us introduce the auxillary function 

(4.7) 

n 

(4.8) 

Let B,(a)  = {b  E A,IU,(i,b) = minu{Ua(i,a))}. These actions achieve or 
realize the minimum. In most cases &(a) is a singleton, but it may contain 
more than one action. 

We are now ready to state the major theorem of the chapter. 
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Theorem 4.1.4. The discounted value function V ,  is the minimum non- 
negative solution of the discount optimality equation 

Any stationary policyf, that realizes the minimum in (4.9) is discount optimal. 

Proof: Let 6 be an arbitrary policy for the infinite horizon. Given history 
hl = (i,u,j)? let $I(i,a,j) be the policy followed by 6 fmm time I = 1 onward. 
This policy may itself be considered a policy for the infinite horizon. This 
involves reindexing time, so that t = 1 becomes t = 0, etc. Then using reasoning 
similar to that employed in (3.5) we have 

U 

2 min{ U,(i,u)). 
a 

(4.10) 

Since 6 is arbitrary it follows that V,( i )  2 mjna{U,(i,a)}. 
We now show that the reverse inequality holds. Fix e > 0. Define a policy 6* 

as foliows: For initial state i the policy selects an action in &(a). After having 
done this, suppose that the next state i s j .  By (2.14) there exists a policy $ ( j )  
such that V+t,l , , ( j)  I V , ( j )  + e. This follows since V , ( j )  is the infimum, and 
hence there must be a policy achieving within r of it. Let O *  be the infinite 
horizon policy that chooses b E &(a) and then follows the appropriate policy 
$I(j) depending on the next state. In a manner similar to (4.10) we have 
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(4.1 I )  

Thus V,( i )  5 min, l {U, ( i ,a ) )+~.  Since t > 0 is arbitmy, we must have V,(i)  I 
min, { U,(i, a)}, and hence (4.9) holds. 

Now let W be a nonnegative solution of (4.9). It follows from Corollary 
4.1.3 that V ,  5 W, and hence the discounted value function is the minimum 
nonnegative solution of the discount optimality equation. 

Now let the stationary policy fa realize the minimum in (4.9). Then from 
Corollary 4.1.3 (with W V,) it follows that V, 2 V,,,, 2 V, .  Hence V,(i)  = 
V f , J i )  for i E S. Thusf, is optimal for the infinite horizon discounted cost 
criterion. 0 

Corollary 4.1.5. If V,( i )  < - andf, i s  the optimal stationary policy real- 
izing (4.9), then 

Iim anEfafV,(Xn)lXo = i] = 0. 
n--- 

Proof- From Theorem 4.1.4 it follows that 

Iterating this yields (similarly to (4.3)) 

(4.12) 

(4.13) 

(4.14) 

From Lemma 4.1.1 and Theorem 4.1.4 it follows that the limit of the first term 
on the right of (4.14) exists and equals V,(i). Hence the limit of the second 
term must exist and equal zero. (The validity of this step requires the finiteness 
of the discounted value function.) 0 
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4.2 SOLUTIONS TO TfiE OPTIMALI'TY EQUATION 

The following example shows that the solution to (4.9) is not unique. 

Example 4.2.1. Let S = (0, 1.2,. . .} with one action in each state. The 
transitions are Pi, + I = 1, and the costs are C(i) e 1. The discount optimality 
equation is Va(i )  = 1 + arv,(i + 1). Clearly V,(i) = I + a + a2 + . . . = 1/(1 - a) 
is a constant that satisfies the optimality equation. Unfortunately, so do many 
other functions. 

To define a whole family of finite solutions, fix a number z > 1/(1-01). Then 
it can be shown that 

is also a solution of the optimality equation. For example, suppose that CY = 4 
so that V ,  E 2. If z = 3, then W ( i )  = 2 + 2'. Note that for every member of this 

0 family of solutions, it is the case that limi, =(W(i) - Va(i))  = OQ. 

It is desirable to have a condition under which a nonnegative solution to the 
discount optimality equation will equal V,. 

Proposition 4.2.2. Let W be a nonnegative solution of the discount opti- 
mality equation (4.9). Let f a  be an optimal stationary poiicy as in Theorem 
4.1.4. If 

lim inf a"E!, [ W(X,)lXu = i ]  = 0, i E S, (4.15) 
n - m  

then W -= V,. 

Pro08 Since W satisifies (4.9), it follows that 

(4.16) 

iterating (4.16) yields (similarly to (4.3)) 

By Lemma 4.1. l the limit of the first term on the right of (4.17) exists and equals 
Vfa,,(i). Sincef, is optimal, we have Vf,,, = V,. Take the limit infimum as 
n -+ 00 in (4.17). This yields 
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W(i) I V,(i)  + lim inf CY"E~,[W(X,~)/XO = i] 
n - m  

= V,(i). (4.18) 

Since V, is the minimum nonnegative solution of (4.9), it follows that W = V , .  
0 

Example 4.2.3. We see that the condition in (4.15) is not satisfied for 
Example 4.2.1. Observe that 

an - 1 

1-a 
a"E[ W(X,)lX, = 01 = - + 2, 

which approaches z - 1/(1 - a) > 0 as n -+ 00. 0 

Corollary 4.2.4. (i) Let W be a finite nonnegative solution of (4.9) that 
satisfies W 5 V ,  + B for some (finite) constant B. Then W = V,. (ii) If W is a 
nonnegative bounded solution of (4.9). then W = V,. 

Proc~fi To prove (i), note that we have W(Xn) I V,(X,) + B. Hence 

Taking the limit infimum of both sides of (4.19) as n -+ 00 and using (4.12) 
yields (4.15). Hence the resuit follows from Proposition 4.2.2. 

To prove (ii), assume that W is a nonnegative solution of (4.9) satisfying 
n W I B < 00 for some constant B. Then the result follows from (i). 

4.3 CONVERGENCE OF FINITE HORIZON VALUE FUNCTIONS 

Consider the finite horizon discounted value functions, defined in (2. lo), and 
let the terminal cost be zero. These are denoted by u,,,?. 

Proposition 43.1. The quantity ua," is increasing in n and limn-. - u,,~ = 
V,. Iffu., is a policy realizing the minimum in (3.2), then any limit point of 
the sequence ( f a . n ) n > ,  is discount optimal for the infinite horizon. 

P m f i  Because the costs are nonnegative, it is easy to see that u,,~ is 
increasing in n. Hence it forms a monotonically increasing sequence, and so 
lim, . - u , . ~ ~  =: W exists. 

Now letfe be an optimal stationary policy as given in Theorem 4.1.4. Then 
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from (2.10) and Lemma 4.1.1, it follows that ua,,, I ~ f ~ , ~ , ,  5 V,. This implies 
that W I, V,. 

Letf be a limit point of ( f , , ,Jnr  1 .  From Definition B.l in Appendix €3, it 
follows that there exists a sequence n, such that given i ,  we havef,,..(i) = f ( i }  
for n, sufficiently large. 

Now fix i. It follows from (3.2) that for n, sufficiently large, we have 

Take the limit infimum as r - 0 ~  of both sides of (4.20) and use the definition 
of W and Proposition A. 1.7 to obtain 

Since this argument may be repeated for every state, it follows that (4.2 I)  holds 
for all i. Then from Proposition 4.1.2 it follows that W 2 Vj,, 2 V,. Since 

0 W 5 V,, this proves that W = V, = Vf,,. 

4.4 CHARACTERIZATION OF OPTIMAL POLICIES 

In this section we give necessary and sufficient conditions for an arbitrary infi- 
nite horizon policy to be optimal for the expected discounted cost criterion. 

Proposition 4.4.1. A policy 8 for the infinite horizon is optimal for the 
infinite horizon expected a discounted cost criterion if and only if both of the 
following hold: 

(i) Given initial state i, the distribution O(ali) is concentrated on the set 

(ii) For n 2 1, if h, is a history under 8 with state i,, then the distribution 
Bi(a). 

O(alh,) is concentrated on the set Bi,,(a). 

(These conditions say that if the process finds itself in a state i at any time, 
then for optimdity the distribution governing the choice of  an action in that 
state must be concentrated on the set of actions realizing the minimum in (4.9). 

This is not quite the same as requiring that the distribution be concentrated 
on B,(cu) for all j .  The reason is that for a given initial state i ,  some state j 
may never be reached, and hence there is no necessity to restrict the choice of 
actions in that state. For such a statej we will never have i, = j .  This subtlety 
is illustrated in Example 4.4.2.) 
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Proof: Let us first prove the sufficiency of the conditions. Consider the 
statement: 

(*) Given any infinite horizon policy 8 satisfying W i ) ,  we have UU,,,~ 5 V ,  
for n 2 1. 

If this can be proved, it will then foIlow from Lemma 4.1.1 that Ve,, I V,, 
and hence 8 is optimal. Let B satisfy (i-ii). For n = 1 we have 

= min{ U,(i ,  a ) }  

= V&). 
U 

(4.22) 

The second line foliows since V, is nonnegative. The third line follows from 
(4.8). The fourth line follows from the definition of &(a) and Proposition A. 1 . I .  
The last line follows from (4.9). 

Now assume that (*) holds for n 1. Assume a history hi = ( i ,  a, j). Let )C.c,,u,,f 
be the policy followed, under 6 ,  from time r = I onward. If time is reindexed 
so that t = 1 becomes z = 0, and so on, then this policy is an infinite horizon 
policy with initial state j. Moreover it is the case that $( , ,c t , , )  also satisfies (i-ii). 
We then have 

:C min{Ua(i, a)} 

= V,(i). 

U 

(4.23) 
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The second line foIlows from the induction hypothesis, and the other lines foI- 
low as before. This completes the induction, and hence (*) holds. 

To prove the necessity, let 8 be an optimal policy. We must show that it 
satisfies (i-ii). Look at (4.10). Since the last term equals V&, for 8 to be 
optimal it must be the case that both inequalities are equalities. By Proposition 
A. l . l  the last inequality is an equality if and only if O(ali) is concentrated on 
&(a). Hence condition (i) holds. 

For the first inequality to be an equality, it must be the case that V + , , , , , , ( j )  = 
V , ( j )  for each history h, = (i ,u,j).  This means that #(,,a,,) must itself be an 
optimal policy for initial statej. But by the argument just given, this means 
that $cj,a.Jl(ab) must be concentrated on BJ(a). This proves that condition (ii) 
holds for n = 1. A repetition of this argument shows that (ii) holds for n 1 1 .  

0 We omit the formal argument. 

Example 4.4.2. The state space is S = { - 1, 0,1,2, , . . }- There is one action 
in states i 2 1 with Pir+!  - 1 and C(i) = I. We have A_,  - {a,a*} with 
P - ~ - l ( a )  5 P-lo(a*) = I, and costs identically equal to C > 1. We have 
Ao = {b,b } with Pol(6) = Po-!@*) = 1 and costs identically equal to 1. See 
Fig. 4.1. (You are asked to verify the calculations for this example in Problem 
4.7.) 

There are four stationary policies that may be specified by giving the action 
chosen in - 1  followect by the action chosen in 0. They arefl = (a,b), f 2  - 
(a*, b), f 3  - (a, b*), andfd (a*, b*). We find that 

n -0 0 
Flgum 4.1 Example 4.4.2, 
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It is easy to see that V,(O) = 1/(1 -. a) and V,(-1) = C + a/(l - a). The 
optimality equation yields 

V,(-l) = C +  amin{V,(-1), V,(O)}, 
V,(O) = I + a min{V,(O), V,(- 1)). 

The second equation follows since V,(1) = V,(O). Since V,(O) < V,(- l), we 
obtain B _ l ( a )  = (a"} and &)(a) = {b} .  We see that bothfl and f2 are optimal 
policies for initial state 0. However,fl is not concentrated on B- I (a). This does 
not affect its optimdity, since the process never enters -1 from initial state 0 
under f , . 

4 5  ANALYTIC PROPERTIES OF THE VALUE FUNCTION 

In this section we look at V,( i )  as a function of the discount factor a with 
the initial state i held fixed. Under this condition V J i ) :  (0,l) --* [O,  -1 is an 
extended real-valued function of a real variable. It is then possible to examine 
the analytic properties of ths function. These include limits, continuity, and 
differentiability. We also examine these properties for VB,&). 

Some of the material in this section is starred, and the reader need not be 
overly concerned with the details. However, one result, Proposition 4.5.3, is 
very important to the subsequent development. 

Let 0 be a policy for the infinite horizon, and fix the initial state i (which we 
suppress in this argument). Even though Ve, ,  has not been defined for a = 0, 
it is clear from (2.13) that we may set V0.o = Eo&C(X~,AO)]. Thus VB,,: [O, I )  
+ [O, -1. Let u, = Ee[C(X,,A,)]. Then from (2.13) it follows that 

n - 0  

which is a power wries in a. For completeness we allow a E [(I,-) in (4.24). 
Observe that ug = Ee[C(Xo,Ao)] < -, since the initial state i is given and A, is 
finite. 

The theory of power series is discussed briefly in Section A.3 of Appendix 
A, and the reader may review this material. As a corollary of the material on 
power series, we obtain the following result: 

Proposition 4.5.1. Let B be a policy. For each initial state i there exists a 
0, then radius of convergence Ri E [O,-]  for the power seriaq (4.24). If Ri 

Ve,,(i) is infinitely differentiable (and hence continuous) for a E (0, R,). 
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Figure 4.2 Example 4.5.2. 

Ercunple 4.5.2. Let S = {0,1,2,. . .}. There is one action in each state and 
Pri+ I = 1 for i 2 0. Fix 0 E (0, l), and let C(i)  2 p-'. Then V,(O) -: 1 + (alp) 
+ (a/P)* + . . . . Then Ro = 6, and the (geometric) power series converges to 
1/[1 - (ar/fl)J on [O, 8) by (A.24). We have V,(O) = - for a E [P, 1). See Fig. 
4.2. 17 

The next result is needed in Chapter 6. Recall that a function r(u) is rational 
if there exist polynomials Ha) and q(a) such that r = p / q .  

Proposition 4.5.3. Let S be finite, and let e be a stationary policy. Then for 
every initial state i, VC,,( i )  is a finite, continuous, rational function of a E (0,l). 

Pro08 It follows from (2.13) and (2.8) that 

(4.25) 

(A stationary policy induces a Markov chain on S. For the definition of the 
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transition matrix associated with the Markov chain, see Appendix C.) Let P be 
the (finite) transition matrix associated with c, C be a column vector of costs 
under e, and finally Ve,, be a column vector of values. Then 

V , . = [ X + a P + ( a r P ~ +  ...I c 
= [I - aP]-'c. (4.26) 

The first line is (4.25) expressed in matrix notation. The second line follows 
from a well-known result in matrix theory. From the formula for the inverse of 
a matrix, it is easily seen that each entry of [I - ~ P J - '  i s  a rational function of 
a. This implies that each entry of Ve,a is a rational function of a. 

Since the state space is finite, the costs are bounded, say by B, and so V, ,  I 
B/( 1 -a). Hence V ,  a is a finite function for a E (0,l). Since a rational function 
is continuous wherever it is defined (Apostol, 1974, p. 81), it follows that Veqa  
is continuous on a E (0,l). 

Since the rest of the material in the book does not require matrix theory, it 
is unfortunate that a matrix theoretic proof of Proposition 4.5.3 is required. We 
are not aware of a simple alternative proof for this result. 

We are now ready to prove some properties of the discounted value fknction 
in the general (countable state space) case. 

*Proposition 4.5.4. The discounted value function V, is increasing and left 
continuous for (Y E (0, I). 

Proof: Let 8 be an arbitrary policy. Since the costs are nonnegative, it is 
clear from (4.24) that Ve, ,  is increasing. This means that for 0 c a 5 p < 1 we 
have Ve,, 5 Ve,p. Taking the infimum over 8 of both sides of this inequality 
yields V, S Vg, and hence V ,  is increasing. 

Now fix 0 c /3 < 1. Since V ,  is increasing, it follows that lim, + - V ,  =: 
W exists and is bounded above by Vp. The proof will be completed if it can 
be shown that W 2 Vp. 

Let an be an increasing sequence of positive numbers converging to 0. Equa- 
tion (4.9) becomes 

Take the limit infimum of both sides of (4.27). Use the definition of W and 
Propositions A. 1.3(i) and A. 1.7 to obtain 
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Then from Corollary 4.1.3 it follows that Vp I W. n 

Corollary 4.5.5. If there exists a (finite) constant B such that C(i,a) I B 
for all state-action pairs, then V ,  is finite and continuous for a E (0, 1). 

*Pm@ By Proposition 4.5.4 it is sufficient to prove that V, is right con- 
tinuous. Fix 0 < fi  < 1. Since V, is increasing, it follows that fim,,B+V, =: 
W exists and W 2 V,. The proof will be completed if it can be shown that 

Let an be a decreasing sequence of positive numbers converging to f i .  We 
may assume that a,, 5 a* < 1. Let f,5 be an optimal stationary policy. Then 
from (4.9) i t  follows that 

w I vfl. 

We wish to apply Corollary A.2.4 to the right side of (4.29). Since W I V,, 5 
B/(l - a*), it foI1ows that for the bounding function we may take the constant 
B/(1 - a"). Taking the limit of both sides of (4.29) yields 

Iterating (4.30) yields 

Taking the limit as n -+ 00 and using the fact that W is bounded yields W 5 V,. 
0 

A much stronger result than the above is given in Problem 4.8. 

4.6 ASM FOR THE INFINITE HORIZON DISCOUNTED CASE 

The approximating sequence method is used to calculate both the discounted 
value function and an optimal stationary policy for the case when the state space 
is denumerably infinite. 

Throughout this section let A be an MDC with denumerable state space, 
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and let (A,) be an approximating sequence for A. Then (V!(i))i .  ,yN is the dis- 
counted value function in AN, andf; is a discount optimal stationary policy 
as given by Theorem 4.1.4. 

The two questions of interest are as follows: 

Question 1. When does VE - V ,  c oo? 

Question 2. When is a limit point of ( ~ : } N Z N ~  discount optimal for A? 

We want to ensure both the finiteness of the discount value function in A 
and the convergence. The next example shows that the desired convergence 
may not hold. 

Example 4.6.1. Let S = (0,1,2, , , .}. There is one action in each state with 
Pi0 = Pit+ 1 = 1 and C(i) = i2 .  Thus at each step the process is squally likely to 
return to 0 or to move to the next higher state. We assume that cr < i and that 
the initial state is 0 (this is suppressed in the notation). 

It is clear that the process eventually returns to 0. Let T be the time of a first 
passage back to 0. Then 

(4.32) 

Now P(T = n) = 2-" and so E [ a T ]  2 xyL ,(01/2)" = (0.5a)/(l - 0.501). We 
also have 

Then from (4.32) we find that 

(4.33) 

To define A,v, let SN = (0, l , . .  .,N} for N 2 3. Define the approximating 
distributions as follows: For 0 I i 5 N-2 let P,o(N)  = 0.5, Pir+ ,(N) = 0.5- 1/N, 
and P d N )  = 1/N. Let P N -  d N )  = 1 - 1/N and PN- I N W )  = 1/N. Let P"(N) 
= 1. 
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If the process starts in state 0, it will eventually reach N. Let U be the time of 
first reaching N. Observe that from any state 0 I i I N- 1, there is a probability 
I/N of next transitioning to N. Hence PtW = n) = ( 1  - l / N Y -  '/N and 

- 3 N -  1 1 - a(l -- - l") 1/N) 1 
a - - 

N(1 --a) +a * 

The last line foilows from some algebra. 
Since state N is absorbing, we have V t ( N )  = N 2 / ( 1  - a). Then 

- a N 2  
- 

(1  - a)"( 1 - a) + a] * 

(4.34) 

(4.35) 

The second line follows since the costs are nonnegative. The third line follows 
0 from (4.34). Since ~im,v, ?o v ~ ( o )  = =, the convergence fails, 

Example 4.6.1 shows that some assumption is necessary to have an affirma- 
tive answer to Questions 1 and 2. The theoretical development of the ASM for 
the infinite horizon discounted case completely parallels that for the finite hori- 
zon case given in Sections 3.2 and 3.3. The next result is the analog of Lemma 
3.2.2. 

Lemma 4.6.2. We have lim infN -. V t  2 Vat 
Prclof: The discount optimality equation for A,v is 

C(i,n) + a Pi,(a;N)V':(j) , i E. SN. (4.36) 
ic SN 

Taking the limit infimum of both sides of (4.36) yields 



76 INFlNlTE HORIZON DISCOUNTED COST OFTIMIZATION 

(4.37) 

The first line follows from Proposition A.1.3(i) and the second line from Propo- 
0 sition A . M .  The result then follows from Corollary 4.1.3. 

The following infinite horizon discowtted cost assumption for fixed cy enables 
us to answer Questions 1 and 2. 

Assumpiion DC(a). For i E S we have limsup,,, V z ( i )  =: W,(i)  < 00 

and W J i )  I VJi). a 

The next result is the analog of Theorem 3.2.3. 

Theorem 4.6.3. The following are equivalent: 

(i) LirnN, ,~:  = V, < -. 
(ii) Assumption DC((r) holds. 

Assume that either (then both) of these holds, and letf be an optimal station- 
ary policy for AN determined by (4.36). Then any limit point of the sequence 
( f z ) ~ ~ . ~ ~  is optimal for A 

Proof: If (i) holds, then lim Sup, Vcf = lim,v VE =: V, c =, and then clearly 
fii) holds. If (ii) holds, then limsup, Vt 5 V, I 1irninf.N Vz, where the last 
inequality follows from Lemma 4.6.2. Moreover the first term is finite. But this 
implies that all the terms are equal and finite, and thus (i) holds. This proves 
the equivalence of (i) and (ii). 
Now assume that (i) holds. By Proposition B.5 there exists a limit point f 

of the sequence ( f f l ) ~ ~ ~ ~ .  Hence there exists a subsequence N,. such that given 
i E S, we havef:'(i) = f ( i )  for N, sufficiently large. 
Now fix a state i .  For N, sufficiently large, (4.36) may be written as 
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This follows sincef;' realizes the minimum in (4.36). NOW take the limit infi- 
mum as r - OQ of both sides of (4.38). Employing (i) and Proposition A.1.8 
yields 

(4.39) 

Since this argument may be carried out for every state, it follows that (4.39) 
holds for all i. Proposition 4.1.2 implies that V, 2 Vf , , ,  and hence V, = V f , m  
and f is opbmal. 

4.7 WHEN DOES DC((r) HOLD? 

En this section we give various sufficient conditions for DC(a) to hold. The 
development parallels the results for the finite horizon in Section 3.3. 

Proposition 4.7.1. Assume that there exists a (finite) constant B such that 
C(i, a) I B, for all state action pairs. Then DC(ar) holds for CY E (0, 1). 

Proofi We verify that Theorem 4.6.3(i) holds. Observe that VE 5; B/( 1 -- a). 
Fix a subsequence N,. It then follows from Proposition B.6 that there exist a 
subsubsequence N, and a nonnegative function W, bounded above by B/( I - a), 
such that lim,+ V?(z) = U ( i )  for i E S. 

Take the limit of both sides of the optimality equation (4.36) through val- 
ues of the subsequence N,. We apply Corollary A.2.7 (with bounding function 
B/( 1 - a)) and Proposition A. 1.3(ii) to obtain 

- 1  i f 
It then follows from Corollary 4.2.4(ii) that U = V,, Because every subsequence 
of VE has a subsequence converging to V,, it follows that Theorem 4.6.3(i) 
holds. R 

Proposition 4.7.1. provides a complete answer to Questions 1 and 2 in the 
case of bounded costs. The remainder of this section is of interest only when 
the costs in A are unbounded. We develop two situations for which convergence 
holds. The first shows that if (A,) is an ATAS that sends excess probability to a 
finite set, then JX(cr) holds. This development i s  starred. If the reader wishes, 
the statements of the preliminary lemmas and the proof of Proposition 4.7.4 
may be omitted. 
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To set up some notation, let e be a stationary policy for A, and fix states i 
and j in S. The notation N&j'(e) denotes the taboo probability of transitioning 
from i to j in t steps, while avoiding the set S ..- S,V during the intermediate 
steps, that is, while remaining within SN (except possibly at the beginning and 
end). 

*Lemma 4.7.2. Let e be a stationary policy for A Then 

Proofi We prove (4.41) by induction on t .  Reference to the policy e is 
suppressed in the proof. We have N.P,, =. P,,, and hence the result holds for 
t =  1. 

Now assume that (4.41) holds for t .  We prove that it holds for t + 1. Note 
. It is thus sufficient that ,V*P(~ - ,I , and hence lim SUPN ,v* Pi, 

to show that lim incv N & ; + ' )  2 Plj 

( t +  I )  p+ 1 )  
I, 

( I +  1 )  < p ~ f C I l  

( t +  1 )  . 
Now 

Taking the limit infimum of both sides of (4.42) yields 

lim inf ,vt Plj  ('+ 1 )  2 c PikP;; 
N 

k 

(4.42) 

(4.43) 

The first line follows from Proposition A. 1.8 and the induction hypothesis. The 
3 second line follows from Section C.1 of Appendix C. 

*Lemma 4.73. Let i E S.  Assume that N is so large that i E S,V, and 
operate under the stationary policy e until the set S - SN is reached. Let T, (N)  
be the number of steps in this first passage. Then 

Prac$ Reference to e is suppressed in the proof. Observe that 
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m 

E[&"'] = c a"P(T#V) = n) + OP(Ti(N) = -). (4.45) 
n =  1 

Let E > 0, and choose K so large that aK/( l  - a) 5, c .  Since probabilities are 
bounded above by 1, we have 

K -  I oa 

n =  I n = K  

I 2 (r"P(T,(N) = n) + e. 
n -  1 

(4.46) 

Suppose that 

lim P(Ti(N) = n) = 0. (4.47) n 

Then taking the limit supremum of both sides of (4.46) yields lim sup,,, E [ C ~ ~ I ~ ~ ) ]  
I E. Since the expectation is nonnegative and c > 0 is arbitrary, this proves 
(4.44). 

So it remains to prove (4.47). Since P(T,(N) = n) I; P(Ti(N) 2 n) = I - 
P(Ti(N) > n>, it is sufficient to prove that 

lim P(Tj (N)  > n) = 1. (4.48) 
N - m  

Now 

(4.49) 

Take the limit infimum of both sides of (4.49) to obtain 

This follows from Proposition A.1.8 and Lemma 4.7.2. Since probabilities are 
0 bounded above by 1, this implies that (4.48) holds. 

Proposition 4.7.4. Assume that V ,  < m, and let (A,) be an ATAS that 
sends excess probability to a finite set. Then DC((u) holds. 



80 INFINlTE HORI%ON DISCOIJKED COST OPIlMIZATION 

*Pro& Let G be the finite set to which the excess probability is sent. Let 
i E SN be the initial state. Consider a policy for AN which operates under f a  

until S - SN is reached, and then it operates underf:. It follows that 

where we have defined Z ( N )  =: cjf V t ( j ) .  Recall that S, is finite and hence 
Z(N) c 00. Equation (4.51) embodies some important observations. As long as 
the process has not reached S - SN. then A and AN operate exactly the same 
way underf,. The first term on the right of the first line is the expected dis- 
counted cost of a first passage to S - S,. and this is bounded above by the 
total expected discounted cost Va(i). Once the process reaches S - S,, it goes 
back to G according to some distribution, and Z(N) is an upper bound for the 
remaining terms. 

V, ( j )  =: Z < 00. Let us add the equations in (4.51), for initial 
states in G, and then solve for Z(N). T h i s  yields 

Let xjE 

(4.52) 

By Lemma 4.7.3 we have limsupNZ(N) 5 2, and hence Z(N) is bounded. 
Taking the limit supremum of both sides of (4.51) and again using Lemma 
4.7.3 yields limsup, VE(i) I V,(i) ,  and hence W ( a )  holds. 

In the case that all the excess probability is sent to a distinguished state z, 
the optimality equation (4.36) has a simple and suggestive form. 

Corollary 4.75. Assume that V ,  c m, and let (AN) be an ATAS that sends 
the excess probability to a distinguished state z. Then DC(a) holds. If RE = 
V t  - V!(z) is the relative value function, then the discount optimality equation 
for AN is 
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i E  S N .  (4.53) 

P m f i  You are asked to prove this in Problem 4.9. n 

This result is utilized in the inventory model presented in Chapter 5. The 
final result involves Proposition 3.3.4. 

Proposition 4.7.6. Assume that V, < -, and let (AN) be an ATAS such that 
the augmentation distributions satisfy (3.20). Then V t ( i )  5 V,(i) for i E SN, 
and hence K ( a )  holds. 

ProoJ From Proposition 4.3.1 it follows that ua.,, < OQ for n 2 1. Propo- 
sition 3.3.4 implies that u:,,, I u,.,,. Taking the limit of both sides as PI - m, 

it follows from Proposition 4.3.1 and the hypothesis that V! 5 V ,  < m. Hence 
DC(a) hold$. il 

BIBLIOGRAPHIC NOTES 

Sections 4.1 through 4.4 contain mostly classical results. Most of the results 
in Section 4.5 can he found in the literature but are not presented in the form 
given here. 
Many of the important works have already been referenced. Here we add 

Stidham (1981) and Lippman (1975). 
The material on the approximating sequence method in Sections 4.6 and 4.7 

is new. Recall that Langen (1991) mentioned earlier is a related treatment. 
Other methods for calculation have been proposed. Fox (1971) proposed a 

truncation scheme that is generalized by White (1 980a, b, 1982) and Hemandez- 
Lerma (1986). This scheme requires the rewards to be bounded. It is general- 
ized by Cavazos-Cadena (1986) and Whitt (1978, 1979a, b). Puterman (1994) 
presents an approach based on these works. 

The philosophy behind these methods differs from the ASM approach, and 
no direct comparison appears possible. In general terms, the ASM creates a 
sequence of finite state MDCs and these can be studied in their own right. The 
other schemes pass directly to a method of calculation. 

PROBLEMS 

4.1. Give an induction proof of (4.3). 

4.2. Consider an MDC with S = { 0, 1 ,2, . . . 1. There is one action in each state 
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i 2 1 such that P,i- I = 1 and C(i) = 1. We have A" = {a, 6 ) .  Action a is 
associated with distribution (pJ)Jz 1 such that P&z) = p,. Under action b 
we have a similar distribution (q, jir I .  Finally C(0, a) = C(0, b) = 0. 
(a) Let f be the stationary policy that chooses a. Find a formula for 

VJ,JO) .  This will involve the generating fiuzcrion G,,(a) = Cp,aj. 
Do a similar calculation for the stationary policy e that chooses b. 

(b) Determine a condition under which f is discount optimal. 
(c) Assuming thatf is optimal, determine V,( i )  for i 2 0. 
(a) What is the discount optimality equation (4.9)? Verify that the values 

you found in (c) satisfy (4.9). 

43. Develop the discount optimality equation (4.9) for Example 2.1.2. 

4.4. Develop the discount optimality equation (4.9) for Example 2.1.3. 

4.5. Let A be an h4DC with S = (0, I ,  2,. . .}. Assume that there exists a non- 
negative integer k such that for all i and a we have P&) = 0. j > i + k. 
That is, the process cannot move up more than k units in any transition. 
Let W be a nonnegative soIution of (4.9) satisfying W(i )  I Di' for some 
finite constant D and positive integer r. Use Proposition 4.2.2 to show 
that W = V,. 

4.6. Show that the conclusions of Proposition 4.3.1 hold if the value functions 
ua," are defined for a nonnegative bounded terminal function. 

4.7. Verify the calculations in Example 4.4.2. 

*4.8. Fix the initial state i (and suppress it). Assume that V,, c OQ for all 
stationary policies e and a E (0, I). Prove that V, is a continuous function 
of a E (0, 1). Note that Corollary 4.5.5 follows from this more general 
result. 

4.9. Prove Corollary 4.7.5. 

4.10. Let A be as in Problem 4.5. Define (AN) by S,V = { O , l , . . - ,  N}, and 
assume that P&; N j = 0 for j > i + k. That is, the approximating distri- 
butions satisfy the same condition as the original distributions. Assume 
that there exist a finite constant D and a positive integer r such that 
C(i, a) I Di' for all state-action pairs. Show that DC(a) holds. 

Hint: Show that V t ( i )  5 Fi' for some constant F. Use this to obtain 
an appropriate solution W of (4.9). Then apply the result in Problem 4.5. 



C H A P T E R  5 

An Inventory Model 

In this chapter an inventory model is treated. In Section 5.1 the setup is 
discussed, and the model is formulated as an MDC. In Section 5.2 the dis- 
counted finite horizon and infinite horimmn optimality equations for the model 
are obtained. In Section 5.3 an approximating sequence for the MDC i s  formed, 
and computational issues for the infinite horizon discounted cost criterion are 
discussed. In Section 5.4 some numerical results for a specific case of the model 
are presented. These utilize ProgramTwo. The chapter problems contain sug- 
gestions for additional exploration. 

5.1 FORMULATION OF THE MDC 

An inventory model was introduced in Example 1.1.2 and is further developed 
in this chapter. Our model takes into account both holding/penalty costs and 
actual earned revenues. Let us now discuss the particulars of the model. At the 
end of this section, a summary list of the operating assumptions is given for 
the convenience of the reader. 

The time slots are referred to as periods. They may be thought of as weeks, 
months, quiuters, or some other convenient unit. Consider the operation of the 
system during a single time period. At the beginning of the period there is a 
known inventory level x. Since unfilled orders are allowed (known as backiog- 
ging), we have x E Z, where 2 is the set of integers (. . . -2, - 1, 0, 1, 2, . . .}. 
In actuality, of course, the inventory level cannot be unbounded. However, it 
is a uselul modeling device to place no a priori restrictions on the level. For 
example, it can be assumed that additional warehouses may be built to con- 
tain increasing inventory. Similarly it can be assumed that no orders are turned 
away, and thus the level of backlogging has no a priori bound. 

At the beginning of the period an order for k items is placed by the inven- 
tory manager. This is the chosen action, and since action sets must be finite. 
we assume that k is an element of a finite nonempty set A of nonnegative inte- 
gers. The order may be thought of as being filled by an outside agency or a3 a 

83 

Stochastic Dynamic Programming and the Control ojQueueing Systems 
Linn I. Sennott 

Cowriqht 0 1999 bv John Wilev & Sons. Inc 



84 AN INVENTORY MODEL 

production level at a plant. We will speak of the action throughout as the pro- 
duction level, with the understanding that this should be broadly interpreted. 
Since there is an upper bound on the number of items produced in one period, 
this is called a cqwcituted system. It is assumed that the items in the order are 
produced (or arrive from outside) during the period. (When during the period 
they are assumed to actually arrive can affect the cost structure, as is discussed 
below.) Once the production level is set. it cannot be changed during the period. 
To avoid trivialities, let us assume that the largest element in A is a positive 
number K so that it is possible to produce some items. For example, we might 
have A 2 { 100,200, 300,400). so items may only be produced in lots of 100 
with K = 400. It may or may not be an option to produce no items. 

In each period there is a demand for the items that is stochastic in nature. 
The number y of items demanded in one period lies in a finite nonempty set D 
of nonnegative integers, and dL > 0 is the probability that y items are demanded, 
where & d), = 1, It will be clear later why the demand is assumed to be 
bounded. The demand is revealed over the course of the period so that at the 
end of the period the value of y for that period is known. At the end of  the 
period, just before the beginning of the next period, the demand is filled as 
much as possible. The total demand is given by y together with the backlogged 
inventory if x < 0. To avoid trivialities, let us make the following assumption: 
The largest element in D is a positive number Y and D f { Y }. This means 
that there is a positive probability that some items are demanded and that the 
demand is not constant. 

In any realistic situation the demand distribution will change over time. Our 
assumption that the demand distribution is unchanging may be viewed as an 
approximation. The manager may use sales data to estimate the distribution gov- 
erning demand. The optimal policy may then be computed under the assumption 
that demand remains constant. This gives a benchmark for setting production 
levels until conditions change. 

We now discuss how to form an MDC for this model. The state of the system 
at time t is the triple (x* ,  k*, y*), where x* is the inventory level at the begin- 
ning of period t - 1, k* is the production level set at that time, and y* is the 
demand occurring over period t - I .  The slate of the system ut a given period is 
what transpired during the previous period. All of these quantities are known 
to the manager. The state space S = Z x A x D. 

It is helpful to fix firmly in mind that the current state is the triple of condi- 
tions that prevailed during the previous period. Figure 5.1 shows the process. 

Here is how this formulation is initialized. The state at period 0 may be any 
triple (x* ,  k*, y*)  with the interpretation that x* was the inventory level at time 
t = - 1, k* the production level at that time, and y* the demand revealed during 
that period. 

For the purposes of determinin the transition probabilities and costs, let us 
assume that the state at time r is (x , k*, y*).  Then the current inventory level is 
x* + k* - y*.  A couple of examples will clarify this. If the state is (4,5,6), then 
at time t - 1 there were 4 items on hand and a decision to produce 5 items was 

5 
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, (x*, K*, y') = State at t Production 
of k" 
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1 + 1  
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I I - Time 

\z* = inventory level \ Demand y' filled 
A" = productlon level 
yo = number demanded 

Figure 5.1 inventory model. 

made. This gave 9 items at the end of t - 1 and 6 were demanded, leaving 3 as 
the current inventory level. If the state is (-4,5,6), then at time t - 1 there were 4 
items backordered, and a decision to produce 5 items was made. This gave 1 item 
left over after the backorders were filled and 6 were demanded, leaving - 5 as the 
current inventory level. For a given state (x* ,  k*, y* )  it is to be understood that x 
is the current inventory level for that state, and thus 

(5.1) 
* * *  current inventory level n = x + k -- y . 

The transition probabilities are now easy to determine. Assume that a produc- 
tion level of k is set for period t. The state at time t + 1 is the triple that prevailed 
during period t, which is (x  k, y) with probability dv. Formally we have 

P(x*.k*.v*)(x.l,y)(k) = 4, Y E D. (5.2) 

We now determine the number s = s(x*, k*, y* )  of items that were sold at 
the end of period I - 1. We claim that 

(X* + k*) A '*, x* 2 0, 
(5.3) * * 

k* < X* < 0. 
s =  { k*, x I - k ,  

-X* + [ (X*  + k*) A y*], 

To .see this observe that if x* 2 0, then there are no backlogged orders, and the 
number sold is the minimum of the number y,* demanded and the number x* + 
k" available to meet that demand. If X *  I - k then the total production goes to 
fill backlogged orders. If -k* c x* < 0. then the backlog is eliminated, resulting 
in -x* items sold, and there are x* + k* items left over to fill the demand. (The 
reader may construct a few numerical examples to illustrate (5.3).) 

A single expression can be given for the terms in (5.3). Let u = 0 for x* 2 0, 
and let u = -x* for x* < 0. Then 

(5.4) 

works in all cases. (Check it out!) When reference to s is made for a state (x*,  
&*, y*), we are referring to s as defined in (5.4). 

s = u + [(x" .+ k*) 4 3  
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The cost function has several components. For a current inventory level of x ,  
there is a nonnegative inventory cost /(x). For x 2 0 this is interpreted as a cost 
of holding x items in inventory. For x < 0 this is interpreted as a penalty cost for 
having x items backordered. As an example we might have /(x) 7 0.5 x for x 2 0 
and I (x )  = -0.1~' for x < 0. This is a mild penalty for a small backlog but even- 
tually becomes much more severe. In addition there is a nonnegative cost C(k) of 
producing k items. We could also assume a cost of changing the production level, 
but for simplicity we will not incorporate such a cost into the model. 

It is assumed that a revenue of R is earned for each item sold so that the 
total revenue generated from the sale of s items is Rs. Recall from Section 2.1 
that rewards may be accommodated into our model as negative costs. S: as a 
first attempt to write the cost function, we associate with the state (x*, k , y*) 
and decision k the cost /(x) + C(k) - Rs. 

Note that the inventory cost is charged on the inventory level at time t. The 
cost C(k) is charged at time t on the production level for period t. If the items 
are purchased, it is assumed that the cost is incurred at that time. If the items 
are produced, then C(k)  may include labor costs and may also include a cost 
for holding produced items in the system during period t until the demand is 
cleared at the end of the period. The revenue from the items sold at the end of 
period t - 1 is accrued at time c.  

Recall that in the specification of an MDC the costs must be nonnegative. 
As discussed in Section 2.1, rewards can be accommodated in the model as 
negative costs, and then a constant added to the costs to make them nonnegative. 
We thus require / ( x )  + C(k) - Rs 2 -Rs 2 -B for some (finite) nonnegative 
constant B. This holds if Rs I B, that is. if the one period revenue is bounded 
above. Consider the cases in (5.3). Under the first case, 5 y*, 5 Y. Under the 
second case, s -= k* 5 K,  and under the third case, s I. -x + x + k 7 k 5 K.  
Hence we may set B = R ( Y v K ) .  This leads to the cost function C[(x*, k*, y*), k ]  
= I (x)  + C ( k )  - Rs + B. Letting U(s)  = B - Rs, we have formally 

* *  

where x = x* + k* . y* and s is given in (5.4). Note that each of the constituent 
functions is nonnegative. 

The specification of the cost function illustrates why it is necessary to aqsume 
that the demand distribution is over a finite set. If arbitrarily large numbers of 
items could be demanded in one period, then the potential revenue would be 
unbounded, and the MDC formulation in Chapter 2 cannot handle this situation. 
In the Bibliographic Notes is discussed an approach for treating this case. 

This completes the specification of an MDC A for the model. Here is a sum- 
mary of the conditions that have been assumed: 

1. The production level is k E A, a finite set of nonnegative integers. The 

2, The demand is y E D (a finite set of nonnegative integers) with probability 
maximum number that may be produced is K > 0. 
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d, > 0. The maximum number that may be demanded is Y > 0 and 

3. The state at period t is (x*, k*, y*), where x* is the inventoly level at 
t - I, k* is the production level for period f - 1. and y* is the number of 
items demanded during that period. 

D # {Y). 

4. The transition probabilities for A are given by (5.2). 
5. I (x)  is the inventory function, C(k) the production cost, and V(s) a func- 

tion incorporating the revenue earned from the sale of s items. These are 
nonnegative functions (finite by Remark 2.4.2). 

6. The cost function for A is given by (5.5). 

5.2 OPTiMALITY EQUATIONS 

In this section we develop the finite and infinite horizon expected discounted 
cost optimdity equations for A. The discount factor cx E (0,l) is assumed fixed 
throughout the chapter. 

To develop the finite horizon optimaIity equation, assume that the terminal 
cost is zero. Then u , ~  5 0 and for n 2 1 (3.2) becomes 

Similarly the infinite horizon optimality equation (4.9) becomes 

The next result gives two situations in which V ,  is finite. These require some 
mild additional assumptions on the model. 

Proposition 5.2.1. Let 

F(x) = $ d l ( x  + nK), x > 0, 
n - O  

m 

F * ( X )  = c a"l(x -. n Y), x c 0. 
n = 0 

Then V, is finite under either of the following conditions: 
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(i) Y I K and for x > 0, I is increasing and F is finite. 

(ii) 0 E A and for x c 0, I is decreasing and F* is finite. 

Proof: There exists a finite upper bound W for the term V(s)  .e C(k). For 
any policy 8 let We be the infinite horizon expected discounted inventory cost 
under 8. Then clearly V ,  I We + W / (  1 - a), and it is sufficient to find a policy 
for which We < =. 

Let us assume that ( i )  holds, and let f be the stationary popy that always 
orders K. Assume that the process starts in a state (x*, k", y ) such that the 
current inventory level x I 0. The maximum number Y that can be demanded 
is always less than or equal to the number ordered. Moreover by condition 2 
(Section S.1) sometimes less than Y will be demanded. It is clear that in a finite 
expected amount of time, the process will reach a state with positive current 
inventory level. During this first passage the penalty cost will not exceed the 
maximum of the numbers { I @ ) ,  I(x + I),  . . . , Z(0)). 

By this reasoning it is sufficient to assume that the process starts in (x*, k*, 
y*)  such that x > 0. There is an initial holding cost of I(%), and during each 
subsequent period the process will either stay in the same state or will move 
to a greater inventory level. Because I is increasing on positive inventory, it 
is clear that an upper bound is obtained by assuming that there is never any 
demand. Thus 

cc 

(5.9) 
* * *  

W / ( x  , k , y ) S f(x) + d I ( x  + nK). 
tl -. 1 

The right side of (5.9) is F(x)  which is finite by assumption. 
Now assume that (ii) holds, and let e be the stationary policy that never 

orders. The argument is the mirror of that above and is given as Problem 5.1. 
r3 

Problems 5.2-3 show that if I is composed of appropriate polynomials (so 
that it is nonnegative), then the functions in (5.8) are finite. Problem 5.4 looks 
at the possibility that I may have an exponential form. If Y > K and (ii) fails, 
then the situation is more complicated. We do not treat this me.  

5.3 AN APPROXIMATING SEQUENCE 

In this section we develop an approximating sequence for A and discuss issues 
surrounding the computation of V,. In developing the AS, we make some fur- 
ther simplifying assumptions. In addition to conditions l through 6 given in 
Section 5.1, assume that 
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7. We have 0 E D, and thus it is possible to have no items demanded. 
8. Proposition $.Z.t(ii) holds. 
9. C(k) is increasing in k and C(0) = 0. 

It then follows from Proposition 5.2.1 that V ,  < -. 
Here is how we define the ATAS for this model. Let GN = { - N ,  . . . , -1, 

0, 1, , . . , N 1 and $,+I = G,v x A x D. Let the distinguished state z = (0, 0, 0). 
Define the ATAS by sending the excess probability to z. 

There are two ways to look at the calculation of V,. The first way involves 
approximating V, by u ~ , ~ .  Then ua.,, may be approximated by u : . ~ .  Under this 
method the discounted value function in A is approximated by the finite horizon 
value function in A. This in turn is approximated by the finite horizon value 
function in AN. 

The second way involves approximating V, by V:. Then VE may be approx- 
imated by ~ 2 , ~ .  Under this method the discounted value function in A is approx- 
imated by the discounted value function in AN. This in turn is approximated by 
the finite horizon value function in AN. Both ways end up in precisely the same 
place. 

We elaborate on the first way. For a fixed finite set of states in S, and for n 
and N sufficiently large, we have 

v, = uu.n = u& and fa =Jfn,n =f,".,. (5.10) 

The first approximations (for the functions and policies) follow from Proposi- 
tion 4.3.1. The second approximations follow from Corollary 3.3.3 and Theo- 
rem 3.2.3. Note that we need u,,, c -, which follows from Propositions 4.3.1 
and 5.2.1. (If we followed the second way, we would first appeal to Corollary 
4.7.5 and Theorem 4.6.3, and then to Proposition 4.3.1 applied to AN.) 

In summary, our method of calculation is to compute in AN the finite hori- 
zon discounted value function and corresponding optimal policy for large N and 
horizon. We now develop the optimality equation (3.19). We have u:,$= 0. 

Let (x*, k*, y*)  be a state in SN such that x e GN. (Recall that x is the 
inventory level a! the beginning of the previous period, and x from (5.1) is 
the current inventory level, which figures in the state at the beginning of 
the subsequent period.) In this case it follows from (5.2) that all transitions 
from state (x*, &*, y*)  end up outside of S,y. This means that the summation 
on the right side of (3.19) vanishes. By condition 9 the minimization reduces 
to mink { C ( k ) }  = C(0) = 0. This yields 

(5.11) * * *  
U t , , , ( X  , k , y ) = Cyu:.,, - I(Z) + ifx) 4. W), x 4 G f f ,  

and the optimal decision is to not produce. 

sitions remain within S N ,  and hence (3.19) becomes 

* * *  Now consider states (x , k , y ) for which x E G,v. For these states all tran- 
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X E  GN. (5.12) 

Equations (5.1 1-12) are the equations used to compute the desired approxima- 
tions. 

Our work is not quite done because our interest i s  not in V ,  but in a related 
quantity. Recall that the cost structure given in (5.5) involves the addition of the 
constant B to all costs to make them nonnegative. To obtain the true minimum 
expected discounted cost, we must subtract B/(1 - a) from V,. The resulting 
quantity then involves the incurred costs minus the earned revenues. The neg- 
ative of this quantity will involve the earned revenues minus the incurred costs 
and thus is the maximum expected discounted pmjit P,. So what we wish to 
approximate is the quantity 

Now V, = u ! , ~  = c,, + u,",(z), and hence 

(5.13) 

When the calculations in (5.11-12) have been carried out up to the specified 
horizon length, then the optimal policy and the quantity in (5.14) are printed 
out. These tell the manager approximately how much profit may be expected 
and what an optimal production policy is. 

Keep in mind that the quantity in (5.14) is the maximum expected dis- 
counted profit, namely the maximum expected discounted revenue minus 
inventorylproduction cost over the infinite horizon. This is under the assump- 
tion, of course, that demand and monetary conditions (which might affect the 
value of the discount factor) remain constant. 

5.4 NUMERICAL RESULTS 

In this section we discuss ProgramTwo. This program carries out the calculation 
discussed in Section 5.3 under the special case that A = (0, 1, . . . , K} and D 
= {O, 1, . . . , U}, where Y I K. The inventory costs are given by 
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Hx,  x 2 0, 
-Px, x < 0, 

91 

(5.15) 

where H and P are positive constants. The cost of production is given by 

C(k) = Ci + Czk, I 6 k 5 K, (5.16) 

where CI is the setup cost (the fixed cost that is incurred whenever some items 
are produced) and Cz is the marginal cost of producing one item. These are 
nonnegative numbers. 

The user is prompted for the values of R, H, P ,  CI, Cz, a, and the values 
of d,. The values of N, K, Y, and the horizon length are constants that may 
be changed in subsequent runs of the program. The program operates much as 
Programone, and we will not repeat that discussion here. 

RentarR5.4.Q.I. Suppose that H, P, R, CI , and C2 are each multiplied by a pos- 
itive constant Q. "he effect is to multiply u:.,, by Q. (You are asked to show this 
in Problem 5.5.) Since R = RK,  the effect is to multiply P,  by Q. This means that 
the values of P, R, Ci , and C2 may be scaled relative to the value of H. In all sce- 
narios (other than those specifically for checking the operation of the program) 
we assume, without loss of generality, that H = 0.1. Thus the assumption is of a 
holding cost of 10 cents per item per period. This value keeps the other numbers 

0 within a smaller range. In all scenarios we set a = 0.95. 

It is important to find some special cases in which the value of Pa may be 
determined. These cases are useful in confirming that the program is operating 
correctly. 

Checking Scenario 5.4.2. Assume that H = P = CI = C2 = 0 and R > 0. In 
this situation there are no inventory or ordering costs. Since Y 2 K, it is clear 
that the demand can always be taken care of in one period. Let h = Cyd, ,  be 
the average demand. 

Assume that the process starts in state (x*, k*, y*), where x 2 0. In this 
case it is clear that all future demands can be met without cost, and we have 
Pu(x*, k*, y*) - R[s+(aX)/(I-a)]. This can be reasoned as follows: The revenue 
earned immediately is Rs, where s from (5.4) is the amount sold at the end of 
the previous period. In each future period the average revenue i s  RA, and this 
amount i s  discounted by a because the revenue from the number sold in the 
current period i s  not earned until the following period. 

ProgramTwo wa% run for Y = 3, K = 4, R = 10, N = 25, and n = 100. The 
demand distribution is given by do = 0.2, dl = 0.3, d2 = 0.1, and dj = 0.4, which 
gives A = 1.7. Note that P,(x*,k*,y*) = 10s + 323. For example, P,(7, ., 0) 
= 323, while the program gives 325.72. Moreover P,(7, ., 1) = 333, while the 
program gives 335.72. 
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Now assume that the process starts in state (x", k*, y * )  with x < 0. In this 
case it would pay, at least for a while, to reduce the backlog as fast as possible. 
For example, we have P,x(- 12,0,0) = (a + a' + a' + a* + as) (4R) + ar6(2.2R) 
.+ a7( XI?)/( 1 - a) = 425.53, while the program gives 427.65. The reasoning for 
this is as follows: In the first period, 4 will be ordered and sold, and the new 
inventory level will be, on average, -8 - 1.7 = -9.7. The process is repeated, 
giving average inventory levels of -7.4, -5.1, -2.8, and ---0.5. In this last state, 
on average, 0.5 + 1.7 = 2.2 will be sold. From then on, the reasoning is as in 

n the case of a nonnegative inventory level. 

Checking Scenario 5.4.3. We let H = 1, P = R = 0, C1 = C, = 5 ,  and dl = 1. 
In this case there are no revenues to be earned, and it is optimal to never order. 
Assume that the process starts in state (x*, k*, y * )  such that x > 0. Then exactly 
one item is demanded every period, and we have f,(x*,k*,y*} = - [ x + a ( x  ;. I )  
+ a2(x  - 2) + . . . + d-']. This program was run with K = 4, Y = 1. N = 25, 
and tz = 50, For example, we have P,(4, 3, 0) = -25.36817, which agrees with 
the program output. We also have P&, 0, 1 )  = -9.51238, which agrees with 
the program output. n 

The checking scenarios give us confidence that the program is working prop- 
erly. Let us now discuss some more typical scenarios. 

Scenarios 5.4.4. Recall that for each scenario we have H - 0.1 and a = 
0.95. The results are summarized in Table 5.1. 

Consider Scenario 1. The first box gives thc values of the parameters, and 
we see that Y = 3. The second box gives the demand probabilities in increasing 
order of y ,  with do = 0.1, and so on. The fourth box gives the values of N and 
the horizon length n. 

The first run is for N r 25 and tz = 50. A cursory look at the output does 
not yield the form of the optimal policy. However, a closer examination reveals 
two interesting facts. First and perhaps not too surprisingly, the optimal policy 
depends only on the current inventory level x. Second, the optimal policy is 
bang-bang. That is, if the current inventory level is no more than 1, then the 
manager should produce the maximum number 4 of items during that period. 
However, if the current inventory level is at least 2, then the manager should 
not produce at all. This is indicated in the third box by the notation B-B and 
by giving the inventory level for full production. (Once this observation was 
made, the program output instructions were modified to also print out the cur- 
rent inventory level.) 

Another run was made for n = 60 (not shown), and it is confirmed that the 
policy is unchanging. It is suspected that the optimal policy is actually deter- 
mined for substantially smaller values of R, but this was not tested. 

However, the convergence of the value function is considerably slower. The 
value for the distinguished state z = (0, 0, 0) is given. We see that the conver- 
gence is pulling in by n = 125. Here we have P&) = 109.1,  which implies that 
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the maximum expected discounted profit that can be made under these condi- 
tions is about $109. 

Scenarios 2,3, and 4 explore changing one parameter in Scenario 1. Scenario 
2 is as in Scenario 1 with the exception that the penalty cost is 5 times as much. 
This is an important calculation, since all the parameters except P can be accu- 
rately estimated. The penalty for backlogged orders is, in essence, a guess, and it is 
important to see how sensitive the optimal policy is to achange in this guess. Here 
the optimal policy is slightly more aggressive, producing the maximum number 
when the current inventory is no greater than 2. Note that P&) is just slightly less 
than in Scenario I .  This indicates that by adopting a more aggressive production 
policy, the expected profit does not decrease by much. 

Scenario 3 is as in Scenario I with the exception that the revenue per item 
i s  doubled. The optimal policy remains the same. Here we have P&) = 303.1. 
The reader may feel that this number should be roughly double the value in 
Scenario I .  But this is not the case. ProbIem 5.6 asks you to explore this. 

Scenario 4 is as in Scenario I with the exception that the maximum produc- 
tion level is raised to 6. The optimal policy is still bang-bang, with maximum 
production called for when the inventory level is no more than 0. The maxi- 
mum expected discounted profit in z is greater than in Scenario 1. This indicates 
that an increased profit can be obtained by increasing the production capacity. 
The manager could continue to explore this option, choosing greater production 
capacities to determine the one that gives the maximum value of Pa(=). 

Scenario 5 explores a situation in which K is substantially greater than Y. 
The optimal policy is still bang-bang. However, this does not always hold. as 
we see in Scenario 6. Here the optimal policy has the so-called s-S form. This 
is a stanhrd name for this type of policy and should not he confused with our 
notation. In this type of policy, if the inventory level is no more than s, then the 
optimal decision is to produce enough to bring the level up to (but no greater 
than) S, or as close as possible to this goal. If the inventory level exceeds s, 
then no items should be produced. In Scenario 6 the optimal poIicy is 1-2. 

In Scenario 7 we have K = Y, and the demand is concentrated on y = 3 or 
4. The optimal poIicy goes into full production whenever the inventory level 
is no more than 3. Note the aggressive policy, which holds since the demand 
is, on average, almost 3 items every period. Again the manager can explore 

3 increasing the value of K to see if an increased profit results. 

Remark 5.4.5. Because of results in the literature (see the Bibliographic 
Notes), one suspects that as K --t M the optimal policy is of s-S form. This is 
dependent on the parameter values in (5.15-16) and might not hold for other 
choices. As discussed earlier, we have chosen to focus on computational issues 
rather than attempting to prove that optimal policies have certain structures. c] 

Remark 5.4.6. The array sizes required in ProgramTwo are of obvious con- 
cern. Besides simply increasing memory, there are two simple strategies that 
may help in smaller dimensional problems. 
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Suppose that a computation for a relatively small value of N indicates that 
the optimal policy is bang-bang, and suppose that one desires a great deal of 
accuracy in the expected profits. The program can be rewritten to eliminate all 
production choices except (0, K }. 

Another possibility is to allow the maximum inventory level and maximum 
backlog to be different. Suppose that M ( N )  i s  a sequence in N such that limN - 
M ( N )  = =. For example, N might be a multiple of 10 and M ( N )  = N/10. Then 
GN = { - - M ( N ) ,  , . . , .. 1,0, 1, . . . , N} will also work in the AS. In this way a 

0 more computationally efficient choice for SN can be made. 

BIBLIOGRAPHIC NOTES 

Various versions of this model have been extensively treated, usually from 
a theoretical framework. Seminal work is contained in Scarf (1960), Veinott 
(1966), and Schal (1976). 

Bertsekas ( 1  987, 1995a) treats a version in which the revenue to be gained 
from the sale of items is ignored. Models in Denardo (1982) and Puterman 
(1994) incorporate revenue. However, it is incttrporated as an expectatian of 
revenue to be gained in a single period rather than as actual revenue gained. 
So when the optimization is performed, it involves finding the expected dis- 
counted value function of an expected revenue. Puterman (1994) allows a time- 
dependent demand process. If one wishes to give a treatment in which rewards 
may be unbounded, then Puterman (1994, Sec. 6.10) may be applied. Feder- 
gruen and Ziplun (1986a. b) are further references. 

The major emphasis of the literature has been on theoretically deriving the 
form of an optimal ordering policy. In contrast, our focus is on showing how 
an optimal policy may be computed. 

PROBLEMS 

5.1. Prove Proposition 5.2-ltii). 

5.2. Assume that Y I K and I (x)  = HX for x > 0, where H is a positive 
constant and r is a positive integer, Show that the condition in Proposition 
5.2. Ifi) holds. 

5.3. Assume that 0 E A and I (x)  = PIX'[ for x < 0, where P is a positive 
constant and r is a positive integer. Show that the condition in Proposition 
5.2.1 (ii) holds. 

5.4. Assume that Y I K. Let B > 1 and Qx) = fl" for x > 0. Determine when 
the conditions in Proposition 5.2. I( i )  hold. 
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5.5. Verify the claim made in Remark 5.4.1. 

5.6. It is desired to explain the difference between the value of Pa for Scenario 
3 and Its value for Scenario 1. Note that the optimal policy is the same. 
Let P, denote the value for Scenario I and P z  the value for Scenario 
3. Using 9 interpretation of the quantity in (5.14), develop an expres- 
sion for P, - P,. Note: An interesting inference concerning the average 
number of items sold each period can be drawn from this. Do you see 
what it is? 

5.7. Develop the appropriate counterparts to the equations in this chapter when 
a cost for changing production levels is present. 

5.8. Run ProyramTWo under the following scenarios and discuss the output: 
(a) a = 0.9, H = 0.1. P = I .O, C, = 5.0, Cz = 0.5, R = 3.5. Y = 2, and K 

(b) As in (a) but with K = 10. 
(c) As in (a) but with K -: 15. 

= 4. Assume that do = 0.5, dl = 0.3, and 4 0.2. 

5.9. Run PmgramTwo under some interesting scenarios of your own construc- 
tion. 

5.10. Let us develop an inventory model similar to the one presented in this 
chapter but for which backlogging is not allowed. Let the state space be 
(x* ,  k*, y*)  such that x* 2 0. If the demand during period t - I is not 
met, then there is a fixed penalty cost of P > 0 assessed at the beginning 
of period r .  
(a) What is the current inventory level x? Assume a nonnegative holding 

cost H ( x )  assessed on current inventory. The other costs and revenues 
are as in Section 5.1. 

(b) Develop an MIX for this model. 
(c) Give the optimality equations, as in Section 5.2, for this model. 
(d) Prove that if 0 E A, then V, < m. 

(e) Assume that 0 E D. Develop an appropriate ATAS for this model by 
sending the excess probability to z. Give the optimality equations for 
the AS under condition 9. 

'5.11. Suppose that we wish to treat the model in Section 5.4 with the exception 
that Z(x) = Px2  for x c 0. Make a copy of Programlbo and rename 
the copy. Examine the code to see what should be modified to handle a 
quadratic penalty cost. Make the appropriate modifications and run the 
program for some scenarios of your construction. What conclusions can 
be drawn'? 
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Average Cost Optimization for 
Finite State Spaces 

This chapter treats the average cost criterion when the MDC has a finite state 
space S. In contrast to the finite horizon and infinite horizon discounted cost 
optimization criteria, we will not treat the finite and denumerahly infinite state 
space cases together. Very special results hold when S is finite, and these results 
are developed in this chapter. 

Section 6.1 presents a fundamental relationship linking the discounted cost 
and average cost under a fixed policy. This relationship holds for arbitrary 
countable state spaces. In the remainder of the chapter, it is assumed that the 
state space is finite. In Section 6.2 we prove that there always exists an optimal 
stationary policyf for the average cost criterion. In Section 6.3 an average cost 
optimality equation (ACOE) satisfied by f is developed. 

In Section 6.4 we obtain a strengthening of the ACOE under the assumption 
that the minimum average cost is a constant J .  We also give various conditions 
for the minimum average cost J ( i )  to be constant. In Section 6.5 we examine 
what can be proved if one can find some solution to the ACOE. Can we then be 
assured that the minimum average cost and an optimal policy have been found? 

In Section 6.6 we develop a computational method, based on finite horizon 
value iteration, for finding a solution to the average cost optimality equation 
and an average cost optimal stationary policy. T h i s  development applies to any 
MDC with a finite state space arui constant minimum average cost. Section 
6.7 illustrates the value iteration method using a simple example for which the 
calculations may be carried out by hand. 

6.1 A FUNDAMENTAL RELATIONSHIP FOR S COUNTABLE 

In this section we have an MDC A with a countable state space S. The policy 
6 denotes an arbitrary infinite horizon policy. Let i be the initial state. At this 
time the reader may wish to reiew the definitions of the average cost J&). the 
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minimum average cost J( i ) ,  an average cost optimal policy, and J&i) and J *(z). 
These definitions are in Section 2.4. 

We now present a fundamental relationship that will be seen shortly to pro- 
vide a crucial link between the infinite horizon discounted cost and the average 
cost optimization criteria. 

Proposition 6.1.1. For any policy 8 and initial state i, we have 

The following are equivalent: 

(i) All the terms in (6.1) are equal and finite. 
(ii) J;(i)  = J e ( i )  c 00, and hence the quantity in (2.15) is obtained as a limit. 

(iii) Lima . I - (1  - a)Ve, , ( i )  exists and is finite. 

Proof- We have discussed in Section 4.5 how the value function Ve.,(i) 
may be expressed as a power series. Recall from (4.24) that if u,, = 
Ee[C(X,,,A,,)[Xu = i], then V,g,,(i) becomes the power series U ( a )  given in 
(A.20). 

Similarly J e ( i )  (respectively, J:(i)) is the rightmost (respectively, leftmost) 
term in (A.28). Then the statements in Proposition 6.1.1 follow immediately 
from Theorem A.4.2. n 

6.2 AN OPTIMAL STATIONARY POLICY EXISTS 

Throughout the rest of Chapter 6, we assume that A is an MDC with afinite 
state space S. For complete clarity this assumption is repeated in the hypotheses 
of each result. 

Here is an example showing that we may have JB* it J e .  

Example 6.2.1. The Mac has S = (0, I} ,  with A0 = {u,a*} and A,  - 
{b. b*}. All transitions are deterministic and are shown in Fig. 6.1. The costs 
depend only on the states and satisfy C(0) = I and C(1) = 0. 

Assume that the initial state is 0. The policy 6 i s  constructed to realize the 
sequence of values in Example A.5.1. This may be done as follows: Choose 
a ql - 1 times, then choose a* (giving a transition to state I ) ,  then choose b 
41 - 1 times, then choose b* (giving a transition to state 0), and so on. Then the 
deterministic sequence of generated costs is precisely the sequence in Exam- 
ple A.5.1. Under Choice One in that example, we have J;(O) = 4 and J e ( 0 )  = f .  

a 
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4 - @ i  0 3 6  

u h' 

C(0) = 1 C(1) = 0 

Figure 6.1 Example 6.2. I .  

The next result shows that this behavior cannot occur when the policy is 
stationary. 

Proposition 6.2.2. Let e be a stationary policy in an MDC with a finite 
state space S. Then 

J , ( i )  = lim ( I  - a ) V e J i )  a - 1- 

Proo$ Since the state space is finite, there exists a (finite) upper bound B 
on all the costs. This readily implies that (1 - a)Vc,a( i )  5 B and J , ( i )  I B (show 
it!). 

Now fix the initial state i and suppress it in the rest of the proof. From 
Proposition 4.5.3 it follows that Vp,,. is a finite continuous rational function of 
(Y E (0,l). Hence (1 - a ) V , ,  has the same properties. A rational function can 
have at most a finite number of critical points and inflection points. (You are 
asked to show this in Problem 6.1 1. This means that a rational function cannot 
oscillate an infinite number of times, and hence that left (or right) limits must 
exist, although they may be infinite. Because (1 - a)V,,. is bounded, the limit 
as a 4 1 - exists and is finite. Then (6.2) follows immediately from Proposition 
6.1.1. 0 

Here is the major result of this section, showing the existence of an average 
cost optimal stationary policy of a very special type. 

Proposition 6.2.3. Let A be an MDC with a finite state space S. Then the 
following hold: 

(i) There exist (YO E (0,l) and a stationary policyf such thatf is  (Y discount 

(ii) The policy f is average cost optimal. 
(iii) We have 

optimal for a E ( (YO,  1). 
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J ( i )  = lim ( 1  - a)Va(i) 
a- I -  

Proof; Since S and each action set are finite, it is the case that there are 
only a finite number of stationary policies for h (Problem 6.2 aqks you to 
given an expression for the nutnber of stationary policies.) Associated with each 
a E (0,l) is an a discount optimal stationary policy. Because the number of 
stationary policies is finite, there must exist a sequence an -+ 1 and a stationary 
policyf such thatf is a, optimal for all n. 

We claim that (i) holds forf. This is proved by contmdiction. Suppose that 
it fails. Then there exists a sequence @,t ---) 1- such that f is not 8, optimal, 
Because the state space is finite, this implies that there exist io E S and a 
subsequence of or* (call it 6, for convenience) such that V&,,(io) < Vf,a,,(io), for 
all n. 

By the same argument used to obtainf, we obtain a subsequence of 6, (call 
if -jn for convenience) and a stationary policy e such that e is Y,, optimal for 
all n. 

We have the following situation. There are sequences of discount factors a, 
and 7, converging to 1, and stationary policies f and e such that 

This requires the function Ve,a(io} to dip below the function Vf,&) for 
infinitely many values but to be equal to or grcater than it for infinitely many 
values. It follows from Proposition 4.5.3 that both Vf.a( io)  and V f , a ( i o )  are 
(finite) continuous rational functions of a E (0,l). Such functions cannot 
exhibit the behavior in (6.4). (To see this, it helps to draw a picture of this 
behavior.) Thus (i) must hold for the policyf. 

We now show that f is average cost optimal. Let i be an arbitrary initial 
state. It follows from (i) that ( I  - a)Vf,&) -1. ( I  - a)V,( i )  for a E (ao, 1). By 
Proposition 6.2.2 the limit of the quantity on the left exists and equals Jt( i ) ,  
and hence so does the limit of the quantity on the right. 

New let f? be an arbitrary policy. From Proposition 6.1.1 and this argument, 
it follows that 

Jf( i>  = lim (1 - a)V,(ij 5 limsup (1 - c r ) V ~ , ~ ( i )  5 Je(i). (6.5) 
a- 1 a- I 

This proves that J( i )  = Jf(i). Equation (6.3) follows from (6.2). 
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The conclusion of this section is the existence of a stationary policy that is 
discount optimal on an interval (ao, I )  and also average cost optimal. (Such a 
policy is said to be Blackwell optimul.) In Example 6.2.1 the stationary policy 
f with f(0) = a* and f( I )  = h is average cost optimd with J,. = 0. 

6.3 AN AVERAGE COST OPTIMALITY EQUATION 

In this section we construct an average cost optimality equation (ACOE) for 
the optimal policy found in Section 6.2. 

Let f and a0 be as in Proposition 6.2.3. The stationary policy f induces a 
Markov chain with costs. The cost at i is C ( i , f )  = C(i , f ( i ) )  and the probability 
of transitioning from i to j  is P , , ( f )  - Pc, ( f ( i ) ) .  

The structure of the Markov chain induced by f IS discussed in Section C.3 
of Appendix C. In the general case, with S finite, this Markov chain may have 
multiple positive recurrent classes R I ,  R?, . . . , RK as well as a set U of transient 
states. From each i E U a positive recurrent class is reached in finite expected 
time and with finite expected cost. Let p4(i) be the probability that class Rk is 
reached (first), where x k p k ( i )  = 1. 

It is the case that the average cost underf is constant on Rk, and we denote 
it by Jh. Moreover we have J(i) = xnpi(irJk for i E S.  

For I 5 k I K select a distinguished state zg  E Rk, and let Z = U(zk}  be the 
set of distinguished states. If the process starts in transient state i and reaches 
dass Rk. then it will reach z k  in finite expected time (denoted m,(g(f))  and 
with finite expected cost (denoted c,ln(f)). Keep in mind that these quantities 
are conditioned on the class reached. The quantity xkpg(i)[c, ik( f ) - J ~ i n , l k ( f ) ]  

= c , ~ (  f )  - Ck J k p k ( i ) r n , l k ( f )  is fundamental to the development. Notice that if 
i E R k ,  then it equals c , , ( f )  - J k ~ , ; ~ ( f )  (why'?). 

We emphasize that all of these concepts relate to the Markov chain induced 
by the average cost optimal stationary policyf from Section 6.2. For details on 
these ideas, the reader may review Appendix C .  

Now let W,(i)  =: Ckpg( i )Va(zk )  for i E S. Note that if i E Rg, then W,(i)  = 
V&). Lastly define w,(i) =: V,( i )  - WJi). This relative value function is 
central to the development of the ACOE. 

Here is what may be proved concerning the ACOE in the general case in 
which the Markov chain induced by f may have multiple positive recurrent 
classes, with unequal values of Jn.  

Theorem 6.3.1. Let the state space S be finite, and let W, and w, be as 
defined above. Then for all i E S,  the following hold: 
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(iv) The average cost optimality equation is 

, i E S. (6.6) 

(v) If e i s  a stationary policy realizing the minimum in (6.6) and the Markov 
chain induced by e is positive recurrent at i, then (6.6) is an equality at 
i and J , ( i )  = J(i). 

Proofi (We have not starred this proof because some of the techniques are 
used later. However, the interested reader need not be overly concened with all 
the details.) 

The proof of (i) is given as Problem 6.3. We now prove (ii). First assume 
that i = t k .  Then w,(i) I 0, and hence w(i) = 0. The expression in (ii) becomes 
c z k C k ( f )  - J ~ m , ~ ~ ~ ( f ) ,  and this equals 0 by Proposition C.2.l(ii). This proves 
(ii) for the states in 2. 

Now assume that i d Z. For a > (YO we know that f is discount optimal. 
Moreover the system operating under f reaches 2 in finite expected time and 
with finite expected cost. Let T be the time to reach 2. Suppressing the initial 
state Xo 5 i, we have 

Subtract W,(i)  from both sides, and observe that the result may be expressed as 

Now let a --+ 1 . The limit of the first term on the right of (6.8) exists and equals 
c i z ( f ) .  In the second term the limit of the summand in square brackets equals 
J k .  Hence the proof will be completed if it can be shown that the summand in 
round brackets approaches pk( i)milk (f ). 

We have 
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where the convergence folIows from Corollary A.2.4. This completes the proof 
of (ii). 

We now prove (iv). By conditioning on the first state visited, we see that 
pk(i) 7 C j P , j ( f ) p k ( j ) .  This holds even if i is in a positive recurrent class. 
Multiplying both sides of this by V&) and summing yield$ 

(6.10) 

For a > a~g the discount optimality equation (4.9) may be written as 

This follows since f is discount optimal. It is obtained from (4.9) by adding 
and subtracting W,(i) from the left side, and by subtracting aWa( i )  from both 
sides and using (6.10). 
Now take the limit of both sides of (6.11) as ar -+ 1 -. Since S is finite, the 

limit may be passed through the summation on the right. Using (i-ii) yields 
(6.6), and this proves (iv). 

To prove (iii), we let the process operate underf and first show that 

E,[J(X,)JXo = i] = J( i ) ,  i E S ,  t 2 0. (6.1 2) 
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This i s  clearly true for t = 0. Now assume that r 2 1. Recall that pk(i) = xi Pij(f)pk(j). Iterating this, we see that pk(i) = x j P : ) ( f ) p k ( j ) .  Using this 
and the fact that J ( j )  = Ckpk(J)Jkr it follows that 

k 

= J ( i ) .  (6.13) 

Suppressing the initial state X O  = i ,  it follows from (6.6) that 

Taking the expectation of both sides of (6.14), then using a property of expec- 
tation (namely E[E[  YIX] ]  = E [  V]) together with (6.12), yields 

These expectations are all finite (why?). Move the last term of (6.15) to the 
left of the equality, add the terms, for t = 0 to t = n - 1, and divide by n to 
obtain 

Then (iii) follows from (6.3). 

assumption we may write 
To prove (v), let e be a stationary policy realizing the minimum in (6.6). By 

J( i )  + w(i) = C(i, e )  + @(i) + I: P,(e)wI( j ) ,  i E S, (6.17) 
J 

where 0 i s  a nonnegative discrepancy function; that is, its value is what must 
be added to the minimum in (6.6) to obtain equality. 

Let R be a positive recurrent class in the Markov chain induced by e, and let 
Fi(e) be the steady state probability associated with i E R. Multiply both sides 
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of (6.17) by r t ( e ) ,  and sum over i E R. From Proposition C.2.1(i) it follows 
that 

where JR(c)  is the constant average cost on R. Using Proposition Ca1.2(i), we 
see that the terms involving w~ on each side of (6.18) are equal (and finite), and 
hence they cancel. Moreover we know that J ( i )  I J,(i) = JH(e). This together 
with the nonnegativity of the discrepancy function yields 

Hence these terms are all equal and the discrepancy function is 0. This proves 
that (6.6) is an equality OR R. 

To complete the proof, note that Cr,(e) (JRte)  - J ( i ) )  = 0. Since each sum- 
mand is nonnegative, it follows that J ( i )  I J&) and e is average cost optimal 
on R. 0 

The following example shows why it is difficult to strengthen the statement 
of Theorem 6.3.1 in the general case. 

Exumple 6.3.2. Consider the MDC A whose transition structure is shown 
in Fig. 6.2, There are single actions in the states I, 2, and 3, with C(1) = 0, 
C(2) = 2, and C(3) = 1. In state 0 there are three actions with 

0 F h  
00 
W 

Figure 6.2 Example 6.3.2. 
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Problem 6.4 asks you to confirm the result we give here. It is clear that 
VJ1) = 0, and we see that V,(2)  = f2+a)/(l -a2) and V,(3) = (2a+1)/(1- a2). 

It can be shown thatf is discount optimal and that V,(O) .= 42a+ 1)/2( 1 -a*). 
The chain induced by f has two positive recurrent classes. Let us choose zt = 1 
and 22 = 2. Then it can be shown that w ( l )  = w(2) = 0, w(3) = -4, and 
w(0) = -1. 

It is the case that J(1) = 0, J(2) = A 3 )  = 3/2,  and J(0) = 3/4. For state 0, f 
and g are average cost optimal but e is not. Moreover (6.6) becomes 

where the numbers in the minimum are associated with actions a, h, and c 
respectively. The minimum is -5/16, associated with nonoptimal policy e. The 
optimal policy g is associated with 3/4. 

This example shows that the inequality in (6.6) may be strict. Moreover a 
stationary policy realizing the minimum may not be optimal, and an optimal 

0 stationary policy may not realize the minimum. 

The foIlowing important result is crucial to the development in the next sec- 
tion: 

Proposition 6.3.3. Assume that the hypotheses of Theorem 6.3.1 hold. Let 
w*( i )  = w(i) - Cn p&) (C,, Kk r>( f )w(s ) ) .  Then for i E S and a E (0, I), it 
follows that 

+ W * ( i )  + €&), 
J(0 
1-a 

V&) - 

where e,(i)  is a function that approaches 0 as cy - 1- 

(6.21) 

*Proof Observe that c,, Rk ?r,(f)w(s) is the average value of w on Rk. 

Subtracting x k p k ( i )  (ZsE Kk T ~ ( . ~ ) w ( s ) )  from both sides of (6.6) and using 
Hence we may regard w* as a nornialized version of w. 

the fact that p d i )  = P, ( f )pk (  j), we see that 
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i €  s. (6.22) 

The same argument used to derive (6.15) may be applied to (6.22), yielding 

Now multiply both sides of (6.23) by at and sum over t .  Sincef is discount 
optimal for a E (a@, l ) ,  this yields 

For a E (0,aoJ the function c a ( i )  may be defined to realize an equality in 
(6.21). For a E (ao, 1) it is defined as the last term in (6.24). In  this case it 
may be expressed as 

(6.25) 
(1 - a)w*( i )  

e , ( i )  = 
t = n  

a 

The first term of (6.25) approaches 0 as a - I - .  Focus on the second term, 
and ignore the a in the denominator. What remains is (1 - a) times the expected 
discounted w* cost over the infinite horizy, for initial state i and under policy 
f .  Consider for a moment the average w cost. Using results from Appendix 
C, this is obtained as a limit and equals xkpk( i )  (Eve Rk ~.~(f)w*(s)) .  Using 
the definition of w*, this is easily seen to be 0 (check it out!). 

The desired result then foIlows from (A.28) in Appendix A. Note: This 
result was proved for nonnegative terns and the function w* may be nega- 
tive. However, it is bounded below, say by L, and we may apply the theorem 

u to w* + L 2 0, yielding the desired result. 

6.4 ACOE FOR CONSTANT MINIMUM AVERAGE COST 

The situation illustrated in Example 6.3.2 is rather abnormal. The more typical 
and important situation is that in which the minimum average cost is constant. 
When J ( i )  ZE I, it follows that the average cost is independent of the initial 
state, a property hat holds in many models, The next result presents conditions 
for this to hold. Recall from Section C.3 of Appendix C that a Markov chain 
with a finite state space is unichain if it has a single positive recurrent class. 
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Proposition 6.4.1. Let the hypotheses be as in Theorem 6.3.1. Consider 
the following statements: 

(i) Every stationary policy induces a unichain Markov chain. 
(ii) The optimal stationary pOIicyf induces a unichain Markov chain. 

(iii) There exist z E S and a (finite) constant L such that 1 V,( i )  V,(z)J I L 

(iv) Given x E S, there exists a (finite) constant L such that I V&)- V&)I I 

(v) Given states i f j ,  there exists a stationary policy e( i , j )  such that i 

for i E S and a E (0, 1). 

L for i E S and a E (0, 1). 

leads t o j  in the Markov chain induced by e(i , j ) .  

(*) We have J ( i )  I J for i E S. 

Then 

(6.26) 

Proofi We will first show that (i) ( i i )  =j (*) d (iv) =s (iii} + (*). It is 
clear that (i) implies (ii). I f f  induces a chain with a single positive recurrent 
class R then the minimum averdge cost is constant, and hence (*) holds. 

We now show that (*) implies (iv). Fix x E S. It follows from (6.21) and (") 
that IV,(i)- V,(x)( S Iw*(i)(  + Iw*(x)l+ le,(i)l + Iea(x)I .  Since S is finite there 
exists a bound Q on the absolute values of w*.  

Fix a state i .  For a E (0, ao] it is easy to see from (6.2 1)  that c , ( i )  is bounded. 
For a E (ao, 1) it may be seen from (6.25) that it is bounded. Since S is finite, 
there exists a (finite) constant E such that Ie,(i)( 5 E for i E S and a E (0,l). 
It fdlows that 2 (Q + E) will serve as the desired bound, and hence (iv) holds. 

Clearly (iv) implies (iii). We now show that (iii) implies (*). Observe that 
(1-a) V , ( i ) =  (1-a) (Va( i ) -  V,fz)) + ( l - -a)V&).  FromProposition6.2.3(iii) 
it follows that the left side approaches J ( i ) ,  and the last term approaches Jtz). 
From (iii) it follows that the second term approaches 0. Hence J ( i )  1 f ( z )  for 
every i, and hence (*) holds. 

It remains to prove that (v) implies (r). Recall that J I  is the average cost on 
the positive recurrent class Rk under the average cost optimal stationary policy 
f, where 1 5 k 5 K. Let J,,, be the smallest value and J,,, the largest value. 
We know that any J ( i )  is a convex combination of the values of J i .  If it can 
be shown that J,,, = JmaX, then (*) will hold. 

Choose and fix an element i* of the positive recurrent class associated with 
J,,, and an elementf of the positive recurrent class associated with J,,,. Let 
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e denote the stationary policy e(i* , j*)  given in (v). By assumption. there exists 
n 2 1 such that P$(e) > 0. 

It follows from (4.9) that 

Iterating (6.27) n - 1 times yields 

(6.27) 

(6.28) 

We now let i = i* and multiply both sides of (6.28) by 1 - a. This yields 

Now let a ---c 1 . The term on the left of (6.29) approaches JmU, and the first 
term on the right approaches 0. It follows from (6.3) that lim, - 1 (1 -a )Va( . )  = 
J ( . )  I J,,,. This yields 

Since the coefficient of Jmin is positive, this leads to a contradiction unless 
Jmtn = Jm,, .  This proves that (*) holds. n 

Observe that (v) is a particularly useful condition that holds in many models 
and is easily checked. 

Proposition 6.4.1 has given us conditions under which J ( i )  D J .  Under the 
single assumption that J( i )  = J ,  the following result derives a strengthened form 
of the average cost optimality equation (ACOE) for A. 

Theorem 6.4.2. Assume that J ( i )  = J ,  Fix a distinguished state z. let h,(i) 
=: V,(i) - V&), and let L be a bound for lh,l as in Proposition 6.4.1. 

* * (i) For i E S we have limo- 1 h,(i) =: h(i)  = w (i) - w (z). 
(ii) The average cost optimality equation is 
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and the optimal stationary policyf realizes the minimum. 
(iii) If e is a stationary policy realizing the minimum in (6.31), then e is 

average cost optimal. Moreover lim, - - E,[h(X,)IXo = i ] / n  = 0. 
(iv) Define d,(i) 2:  h(i) + nJ - u,(i) for i E S and n 2 0. (Recall that u, is 

the minimum n horizon expected cost for a terminal cost of 0.) Then 
Idn[ 5 L. 

(v) For i E S we have limn -r u,fi)/n = J. 
(vi) Iff is unichain and z is the distinguished state in Rf from Section 6.3, 

then h(i) = w(i) = c,;(f) - Jnzi , ( f )  for i E S. 

Pro08 It follows from the assumption of constant minimum average cost 
and (6.21) that h,(i) = w*( i )  + ~ , ( i )  - w*(z) - E ~ ( z ) .  Then (i) follows from 
Proposition 6.3.3. Note that lhl I L. 

To prove (ii), observe that the discount optimality equation (4.9) may be 
written as 

i E s, (6.32) 

wheref realizes the minimum for a > ao. Equation (6.32) follows from (4.9) 
by adding and subtracting V&) from the left side and subtracting aV&) from 
both sides. 

We may then let 01- I in (.6.32). Using (i), (6.31, and the assumption of 
constant minimum average cost, and finally Proposition A. 1.3(ii) and the fact 
that the summation is over a finite set, we obtain (6.31), and this proves (ii). 
Now let c realize the minimum in (6.31). In a manner similar to the derivation 

of (6.16), we obtain 

(6.33) 

Using (6.2), we may take the limit of both side.s of the inequality in (6.33) to 
obtain J , ( i )  I J. But this implies that J , ( i )  = J ,  and hence e is average cost 
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optimal. Taking the limit of the equality in (6.33) and using the optimality of 
e yields the second claim in (iii). 

Let d,, be as in (iv), and observe that the bound holds for n = 0. Now assume 
that n 2 1. We have u,, 5 ue,,, where e is as in (6.33). Using this and multiplying 
the inequality in (6.33) through by n proves that d,, 2 --L. 

We now obtain the upper bound. Let en be the n horizon optimal policy. 
We may operate the process under 8, for n steps and then switch to a discount 
optimal policy. Suppressing the initial state XO = i ,  this yields 

The second line follows since an expected discounted n horizon cost under a 
policy is bounded above by the expected n horizon cost under the same policy, 
and this policy is n horizon optimal. We now subtract V&) from both sides of 
(6.34) and add and subtrdct a"Va(z) to the right side to obtain 

Now let a -+ 1 - . It follows from (i), the assumption of constant minimum 
average cost and (6.3), that h(i) I u,(i) + L - nJ. This yields d,, 5 L and proves 
(iv). 
Now write - L I d,  I L, then divide through by n, and pass to the limit to 

obtain d, /n - 0. Using this and the definition of d, yields (v). 
It follows from the assumptions in (vi) and Theorem 6.3.1($ that w(i)  = 

c i i ( f )  - Jm,,(f) .  It was also shown in the proof of that result that w(z) = 0. 
From the definition in Proposition 6.3.3, it follows that w*(i) = w(i) - u, where 
u = c,, R, X . ~ ( ~ ) W ( S ) .  It then follows from (i) that h(i) = w(i)  - u - ( ~ ( z )  - u)  = 

0 w(i), and this completes the proof of (vi). 

6.5 SOLUTIONS TO THE ACOE 

In this section we start with an MDC A with a finite state space but with no 
additional restrictions. We address the following question: Suppose that we have 
been able to find some constant and some function satisfying the ACOE, then 
are we assured of having found the minimum average cost and an optimal sta- 
tionary policy'? The answer is in the next result. 
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Proposition 6.5.1. Let A be an MIX with a finite state space S.  

(i) Assume that we have a (finite) constant F and a (finite) function r such 
that 

If e is a stationary policy realizing the minimum in (6.36). then J J i )  5 F 
for i E S. Hence, if F is a lower bound on the average costs, then 
the minimum average cost equals the constant F, and e is average cost 
optimd. 

(ii) Assume that we have a (finite) constant F and a (finite) function r such 
that 

Then the minimum average cost equals the constant F, and any station- 
ary policy realizing the minimum in (6.37) is average cost optimal. If h 
is as in Theorem 6.4.2, then r(i)  - k( i )+rkk}  h(za) for i E Rk. (Recall 
that this is a positive recurrent class underf with distinguished state 
zb.) For i transient underf we have r(i) S Mi)+ x,pk( i ) [ r (zk)  - h ( z ~ ) ] .  

(iii) Assume that (6.37) holds, and let e be a stationary policy realizing the 
minimum. Assume that both e andf are unichain with common positive 
recurrent state x. If x is the distinguished state in Theorem 6.4.2 and in 
Section 6.3 and if r(x)  z- 0, then r ( i )  = h(i) = c,,(e) Jm,,(e) for all i .  

Proofi To prove (i), assume that (6.36) holds, and let e be a stationary 
policy realizing the minimum. Using reasoning similar to that in (6.14-16), we 
obtain for initial state i that 

(6.38) 

where -M i s  a lower bound for r.  Taking the limit of both sides yields that 
J , ( n  5 F. If F is a lower bound on the average costs, then J ( i )  I J, ( i )  I F I 
J( i ) .  Hence we have J ( i )  = J , ( i )  = F. This completes the proof of (i). 
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If (6.37) holds, then it folIows that 

Using similar reasoning as above, we obtain 

r(i) - M 
2 F +  

n 

113 

(6.39) 

where M i s  an upper bound for r. Taking the limit of both sides and using the 
optimality of f  yields F 5 J ( i ) .  Hence the first statement in (ii) follows fiom 
the second statement in (i). 

We now have for all i that 

where the second equation follows from Theorem 6.4.2(ii), and F - J is the 
minimum average cost. Let b = r - h. Subtracting the second equation from the 
first in (6.41) yields 

Iterating (6.42), then adding the terms and dividing by n, we see that 

We know from Section C.1 of Appendix C that the limit of the quantity in 
round brackets exists. If j is transient, then the limit is 0, whereas if j E Rk, 
then the limit is pk(i)x,(f) .  

First assume that i E Rk, and let n OQ in (6.43) to obtain 
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This says that every value of the function is less than or equal to a convex 
combination of the values. This is possible if and only if the function b is a 
constant Bk. This implies that Bh -= b ( Z k )  - ~ ( z I )  - h(zk). Hence r(i) = h(i)+ Bk = 
h(i)  + r (zd  - h h ) .  

Now assume that i is transient underf. Let n - 03 in (6.43), and use the fact 
that b = Bk on Kh to obtain 

(6.45) 

From (6.45) it is easy to see that the last statement holds, This completes the 
proof of (ii). 

Assume that the hypotheses in (iii) hold. Note that h(x) = r(x) = 0 by 
assumption. so we may assume that i # x. It follows from (ii) that r(i) S 
h(i) + r (x)  - h(x)  = h(i). 

It follows from (6.31) that J + h(i)  I C(i, e )  + x, P,(e)h(j)  for all i. Using 
reasoning similar to that in (6.14-16), we obtain for Xo 7 i, 

- J k  1 hti) - Ee[h(X~)J. (6.46) 

If T is the first passage time from i to x under e, then rn,,(e) = C kP,(T = k) < m 

by assumption. Let us multiply each term of (6.46) by P,(T = k) and sum over 
k 2 1. This yields 

c,,(e) - Jrn,,(e) 2 h(i) - h(x)  = h(i). (6.47) 

From (6.37) it follows that J+r(i)  = C(i, e ) + x ,  P,,(e)r(j) for all i .  Repeating 
the above argument on this equation yields 

c,,(e) - Jrn,,fe) = r(i) - r(x)  = r(i). (6.48) 

The result now follows from (6.47-48) and the fact that r S 11. This completes 
the proof of (iii). n 
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6.6 METHOD OF CALCULATION 

Sections 6.2 through 6.5 give us a good theoretical understanding of the nature 
of solutions to the ACOE. In this section we discuss how a solution may be 
computed. 

To compute a solution to (6.37), it is easier to work with finite horizon value 
iteration than with the infinite horizon discounted value function. For this reason 
we seek to construct a solution based on the finite horizon value function u, 
rather than on the function ha from Theorem 6.4.2. 

Before proving any results, we discuss the plan of action. Let x be a dis- 
tinguished state of S (to be specified later), and let us define the finite horizon 
relative value function r,(i) =: un(i)- U , ~ ( X ) ,  where the terminal cost of the finite 
horizon value iteration is 0. The finite horizon optirnality equation (3.3) may 
be written. 

n 2 I , i  E s. (6.49) 

This is obtained by subtracting u,, - I (x) from both sides of (3.2) and adding and 
subtracting u,,(x) from the left side. 

Suppose that it could be shown that the term in brackets approached a num- 
ber F. Suppose in addition that we knew that r,, converged to some function r .  
Then taking the limit of both sides of (6.49) would yield a solution to (6.37) 
and hence J and an average optimal policy. 

Carrying out this plan will require an additional assumption. To see why, 
consider the following example: 

Example 6.6.1. Let S = (0.1) with a single action in each state. Let C(0) 
= 0, C(1) = 1, and Pol = P l o  = 1. Let x = 1. 

One can easily show that v,tl)  equals 0.5n for n even and equals 0.5 (n  + 
I)  for n odd. Then u,,(l) - u , ~ -  ~ ( 1 )  equals 0 for n even, and equals I for n odd. 
Hence the first term in (6.49) has no limit, and the program cannot be carried 
out. 0 

Example 6.6.1 is a positive recurrent Markov chain with period 2. If the 
chain begins in state 0, then it can only return to state 0 at 2 - 2,4, 6, . . . . The 
concept of an aperiodic positive recurrent class, introduced in Section C.1 of 
Appendix C, rules out this behavior. Here is a lemma related to this notion. 

Lemma 6.6.2. Assume that the minimum average cost is a constant J ,  and 
let d,, be as in Theorem 6.4.2(iv). Assume that e is an optimal stationary policy 
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inducing an MC with an aperiodic positive recurrent class R. Then there exists 
a (finite) constant D such that lim, “I d,(i) = D for i E R. 

*Proof: We first show that 

(6.50) 

From (3.2) it follows that u,(i) I C(i, e )  + c, P,,(e)u,, - ~ ( j ) .  It follows from 
(6.3 I )  that J + h(i) I C(i, e )  + cj Pi,(e)h(j). Since e is optimal, it is easy to 
see that we must have equality at i E R (a proof similar to that in Theorem 
6.3.1(v) will work). Hence we have J + h(i )  = C(i, e) + cj Pi,(e)h(j) for i E R. 
Subtracting the above inequality from this yields 

Then adding (n - 1)J to both sides of (6.51) yields (6.50). 
Let us omit notational reference to the policy e in the remainder of the proof. 

It follows from Theorem 6.4.2(iv) that d,, i s  bounded. From Proposition B.6 it 
follows that there exist a subsequence nk and a function d, with -L 5: d I L, 
such that d,, + d .  

We fix n and iterate (6.50) M times to obtain 

Now hold n fixed, and let M --c 00 through vdues such that n+m are members 
of the sequence nk. Using the aperiodicity of R yields 

(6.53) 

Now let n = nk -.. m in (6.53). This yields 

J 6  x 

By the same argument given regarding (6.44), it follows that d(i )  = D for i E R. 
Suppose that we had another subsequence n,, giving rise to a function g, 

equal to a constant G on R. Letting n = n, - w in (6.53) yields 
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(6.55) 
j e  R 

Because this argument could have been reversed. we must have G = D. This 
0 proves that lim, --c d,(i) = D for i E R. 

Here is the aqsumption that will allow the plan to be carried out. 

Assumption OPA. Let e be an optimal stationary policy. Then every pos- 
0 itive recurrent class in the MC induced by e is aperiodic. 

Note that OPA stands for Optimal Policies are Aperiodic, and it is used 
here to remind us that under this assumption every optimal stationary policy can 
have only aperiodic positive recurrent classes. The next result shows that under 
Assumption OPA the program may be carried out. Proposition 6.6.6 shows how 
to carry out the program when Assumption OPA fails. 

Proposition 6.63. Assume that the minimum average cost is a constant J 
and that Assuniption OPA holds. Let x be any distinguished state in S. Then 
lim,, Ju,,(x) u,, I (x)) = J and limn -. oo r,(i) -: r(i) exists. Hence (6.49) may 
be used to compute a solution to the ACOE (6.37). Any limit point of the finite 
horizon optimal stationary policiesf, realizes the minimum in (6.37) and hence 
is average cost optimal. 

Proot Letf be the optimd stationary policy from Section 6.2. It must have 
at least one positive recurrent class. Let R be one of the classes, and assume 
first that x E R. At the end of the proof, we will argue that x may be chosen 
arbitrarily. 

The relationships 

enable us to translate results about d, into results about the quantities in (6.49). 
It follows from Lemma 6.6.2 and the fact that x E R that there exists a 

constant D such that &(x) - D. The second equation in (6.56) then yields 
u,,(x) - u,- I(X1 - J .  

Recall from Theorem 6.4.2(iv) that d,  is bounded. It then follows from (6.56) 
that r,, is bounded. Let r* (respectively, r*) be the limit infimum (respectively, 
limit supremum) of r,,. 

Take the limit infimum of both sides of (6.49) to obtain 
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Let e be a stationary poIicy realizing the minimum in (6.57). It follows from 
Proposition 6.5. I(i) that e is optimal. 

Returning to (6,49), we see that 

[un(x) - u, - I ( x ) ]  + r,(i)  5 C(i, e) + P,,(e)r,- I ( j ) ,  i E S. (6.58) 
i 

Taking the limit supremum of both sides of (6.58) yields 

(6.59) 

Using (6.59) and the fact that r realizes the minimum in (6.57) yields 

* 
Let s = r - r*, and note that s 2 0. It follows from (6.60) that 

Let UI, U2, . . . , U,W be the positive r e c m n t  classes under e, and let q,Ji) be 
the probability of reaching Urn from state i under e. As in (6.42-44) we obtain 

We claim that the right side of (6.62) is 0. Recall that d,(x) -+ D. Fix atten- 
tion on some U,. It follows from Lemma 6.6.2 and Assumption OPA that there 
exists a constant E such that d, t ( j )  - E for j E U , .  Then from (6.56) it fol- 
lows that r , ( j )  - h ( j )  - h(x )  - E + D. Since the limit exists, it follows that 
s ( j )  = 0. This proves that the right side of (6.62) is 0. Since s 2 0, it follows 
that s I 0. This means that r(i) =: lim,,-mr,(i) exists for i E S. This com- 
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pletes the proof of the first statement when the distinguished state is chosen in 
a positive recurrent class under f. 

Now suppose that the distinguished state is chosen to be some arbitrary state 
y. In this case Un( y) - u, - I ( y) = r,( y) + [un(x) - u , ~  - I (x)] .- r, - 1 ( y) .  Using what 
has been proved above shows that lim, -. Jun( y)-u,, - 1 ( y ) ]  = r( y)+J-r(  y )  = J .  
Similarly u,(i) - un( y) = r,(i) r- r,( y), and hence lim,, -. =(uR(i) - un( y ) )  = r(i)  -- 
r( y ) .  It remains to prove the last statement. Let e be a limit point of 5". Then 
there exists a subsequence nk such thatf,, -+ e. For a fixed i and nk sufficiently 
large, we have 

(6.63) 

and e realiises the minimum in (6.49) for i. Passing to the limit and using what 
has been proved, we see that e realizes the minimum in (6.37) for the fixed i .  
Since this argument may be carried out for each i ,  it follows that e realizes the 
minimum in (6.37). By Proposition 6.5.1(ii) it follows that e is average cost 
optimal. n 

One may wonder how Assumption OPA can be verified without already 
knowing the optimal stationary policies. In practice it will be shown that 
Assumption OPA holds for all stationary policies. In certain cases it might be 
possible to argue that the optimal stationary policies fall within a class of sta- 
tionary policies each member of which satisfies Assumption OPA. If there is 
any doubt that Assumption OPA holds, then the method to be presented in 
Proposition 6.6.6 should be used. 

The above development allows us to give the following vcifue iteration atgo- 
rithrn (VIA) for obtaining a solution to (6.37). 

Value Iteration Algorithm 6.6.4. Let A be an MDC with a finite state 
space. Assume that the minimum average cost is constant and that Assumption 
OPA holds. Let x be a distinguished state and E a small positive number. 

VIA Version 1: 

1 .  
2. 
3. 

4. 

5. 
6. 

Set n = 0 and 
Set w,(i) = min,{C(i,a) + x, P;,(a)un(j)}. 

If n = 0, set 6 = 1. If n 2 1, then set 6 = Iw,,(.x) - w,,- ! @ ) I .  If 6 c c,  go 
to 6. 
Set u,+ ~ ( i )  = w,(i) - wn(x). 
Go to 2, and replace n by n + I. 
Print w,(x) and a stationary policy realizing min,{C(i,a)+x, Pi , (U)U, ( j ) } -  

H 0. 
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VIA Version 2: 

Follow Version I ,  but set 6 z maxi, s Iwn(i) - w,, l ( i ) (  in Step 3. 

Jusfijication: One can show, by induction on n, that Un = r,, and w, = 
r,, + I + u,, + I ( x )  - u&) for n 2 0. Hence w,(x) = u, + I  ( x )  - un(x). (You are asked 
to verify these claims in Problem 6.5.) The validity of the VIA then follows 
from Proposition 6.6.3. 0 

Since we know that w,(x) -J, it will be a good approximation to J for 
n large. We know that u,, converges to some function r. A stationary policy 
realizing the minimum in Step 6 is optimal for the n + I horizon problem at 
time 0. We have seen that any limit point of this sequence of policies is average 
cost optimal. Hence this policy will be close to optimal for large n. 

Note that there are two versions of the VIA. The more stringent Version 
2 is suitable when the state space of the model is naturally finite and one is 
applying the VIA a single time to compute an optimal policy. In Chapter 8 an 
approximating sequence method is developed for the computation of an optimal 
stationary policy when the state space is &numerable. This method uses the 
VIA for a sequence of finite state MDCs with increasing state spaces. In this 
case it is our opinion that Version I works well. The reason is that the VIA will 
be executed several times for increasing state spaces in order to be confident 
that a good approximation to an optimal policy for the original MDC with a 
denumerably infinite state space has k e n  obtained. For a particular finite state 
space approximation, it is therefore less important to be sure that we are very 
close to the minimum average cost for that single approximation. Of course 
Version 2 could also be applied in this case; however, it would increase the 
computation time. 

We now discuss an approach to take when Assumption OPA fails lor we 
suspect it may fail). This involves a transformation of the MDC which causes 
Assumption OPA to be satisfied for the transformed MDC. (In fact in the 
transformed MDC every stationary p o k y  has only aperiodic positive recurrent 
classes.) 

Quantities in the transformed MDC will be superscripted with an asterisk. 
First fix a number T with 0 c 7 < 1. The state sface and action sets of A* arc: 
the same as those of A The costs are given by C (t,a) = ~C( i ,a ) .  The transition 
probabilities are given by 

A stationary policy induces an MC in both A and A*, and the next result 
relates properties of these two Markov chains. 
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Lemma 6.6.5. For a fixed stationary policy, the following properties hold 
for the Markov chains induced by the policy: 

(i) The communicating classes are identical in A and A*, and hence the 

(ii) Every positive recurrent class in A* is aperiodic. 

(iii) For a positive recurrent class R we have .;*= rj for j  E R, and J R  = 7 5 ~ .  

positive recurrent classes are identical. 

* 

Prof.$ Let MC denote th5Markov chain (with costs} induced in A, and let 
MC' be the one induced in A . 

It is clear that i leads to j in MC if and only if i leads to j in MC', and 
thus the communicating classes are identical. If a class R is positive recurrent 
in MC and transient in Me*, then this readily leads to a contradiction (why?). 
Hence this (or the reverse situation) cannot happen. This proves (i). 

Now let R be a positive recurrent class. From (6.64) it follows that PIT > 0 
for i E R, and hence R is aperiodic in MC'. This proves (ii). 

For positive recurrent class R it is easy to see that (r,),, R satisfies the steady 
state equation in Proposition C. 1.2(i) for MC*. Hence r;"= r, for j E R. More- 

0 over the second statement is clear, and this proves (iii). 

Here is how the transformed MDC may be used to compute a solution to 
(6.37). 

Proposition 6.6.6. Assume that the minimum average cost in A is a con- 
stant and that A has been transformed to yield A*. Then the minimum average 
cost in A* is a constant, and Assumption*OPA holds. Hence the results of Propo- 
sition 6.6.3 are valid for A* and yieid J and a function r*. The pair ( J  */7, r*) 
satisfies (6.37) and hence produces an optimal stationary policy for A 

(The essence of this result i s  the following: The VLA may fail for A if 
Assumption OPA fails to hold. By means of the transformation we are still 
abte to construct a solution to (6.37) based on value iteration. However, the 
value iteration takes place not in A but in the transformed A*.) 

Proof From Lemma 6.6.5 and previous results, it foJlows that the mini- 
mum average cost in A* equals TJ and hence is constant. (You are asked to 
prove this in Problem 6.8.) Since Lemma 6.6.5 yields that Assumption OPA 
holds, we may apply Proposition 6.6.3 to produce J *  = 7J and a function r* 
satisfying the ACOE for A*. This yields 
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i e  S. (6.65) 

From (6.65) we immediately obtain that ( J*/T,  I* )  is a solution of the ACOE 
(6.37). n 

6.7 ANEXAMPLE 

In this section we present a simple example to illustrate the VLA. 

Example 6.7.1. Single-Server Queue with Finite Waiting Room. There is a 
single server and the actions are the (geometric) service rates ul and n2, where 
0 c ul c a? < I .  There is a probability p of a new customer arriving in any 
slot, where 0 c p c 1 .  The waiting mom can hold at most two customers, 
one in service and one waiting for service. If a customer arrives to find a fuil 
waiting room, it i s  turned away. If a customer arrives to an empty systcm, then 
it may enter service immediately. Note that this is different from our typical 
assumption. 

The state space is S +. {0,1,2}, where i E S denotes the number in the sys- 
tem. There i s  a holding cost of Hi, where H is a positive constant. The service 
costs are C(u), for a = at ,  u2. In this model the action set A = (ulru2} is avail- 
able in every state. In state 0 the server chooses a service rate in anticipation 
of an arriving customer (if any). In each slot there is the opportunity to choose 
anew a service rate. 

It is clear that every stationary policy induces an irreducible aperiodic MC 
on S, and hence the assumptions of VIA 6.6.4 hold. The VIA equations are 
seen to be 

For example, we have Pm(u) = 1 - p + up, since the system will remain in 0 
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if there is no arrival, or if there is an arrival (which goes into service immedi- 
ately) and a service completion. The other transition probabilities are obtained 
similarly. 

The specific calculation given here has H = 1, p = 0.5, al  = 0.4, a? I 0.7, 
C(a1) = 1, and C(a2) 2. Note that for distinguished state x = 0, it follows 
from Step 4 of the VIA that u,(O) t 0. Using this and the specific values, it 
can be Seen that (6.66) becomes 

w,(W = 1 + min(0.3url(l), 1 + 0.15ufi(1)}, 

w,,( I)  = 2 + O.5un( 1) + min{0.3~,(2), 1 + 0.15&(2)}, 
w,(2) = 3 + min{0.2un(1) + O.8un(2), 1 + 0.35ufi(l)  + O.65un(2)}. (6.67) 

Performing the VIA by hand is typically not feasible. However, for this sim- 
ple example it is possible to perform a number of iterations. The calculations 
given in Table 6.1 were done by hand and confirmed on an Excel spreadsheet. 

We employ Version 2. The entries under un and w, are the values for states 
0, I ,  and 2 with u,(O) omitted. The fourth column keeps track of the policy 
realizing the minimum in Step 2. Only two policies arise. Policy el always 
chooses al,  whereas policy e2 chooses a1 in states {0,2} and a2 in state I .  It is 
seen that J zs 2.15 and ez is the optimal average cost policy. Continuing to 25 
iterations yields J = 2.20 accurate to two decimal places, with ez as the optimal 
policy. Note that in state 1 it is optimal to serve at the faster rate in order to 
attempt to prevent the system from transitioning to state 2 and incurring a larger 
holding cost. However, in state 2 the capacity constraint on the waiting room 
limits new customers from entering. and in this case it is optimal to drop to the 
slower rate. This type of behavior will not generally arise when the buffer has 
infinite capacity. n 

BIBLIOGRAPHIC NOTES 

The treatment given in this chapter owes most fo Derman (1970), Bertsekas 
(1987, 1995, vol. 21, and Puterman (1994). 

Proposition 6.3.3 is from Derman (1970). The argument for the optimality 
off in Proposition 6.2.3 comes from Bertsekas (1987). The latter approach has 
been expanded in Bertsekas (1995, vol. 2). A large part of this development 
utilizes matrix methods. We have not favored this approach because it does 
not generalize to the denumerable state space case. Rather we have favored 
probabilistic methods, as in Derman (1970), because they do suggest the proper 
generalizations, which will be seen to be extremely fruitful in Chapter 7. 

Puterman (1994) has an extensive treatment. It begins with results for the 
average cost determined by an MC and continues to various classes of finite 
state MDCs. An MDC is unichain if every stationary policy induces an MC 
with a single positive recurrent class. An ACOE is developed under the unichain 
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Table 6.1 Results for Example 6.7.1 

n Un wn f n  6 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0 
0 

1 
2 

I .8 
3.5 

2.4 1 
4.62 

2.868 
5.455 

3.2101 
6.0772 

3.465in 
6.54075 

3.655261 
6.886082 

3.763965 
7.14334 

3.824294 
7.338275 

3.8656 
7.488 I9 1 

1 
2 
3 
1.3 
3.1 
4.8 
1.54 
3.95 
6.16 
1.723 
4.591 
7.178 

5.0705 
7.9376 
1.96303 
5,4282 1 
8.50378 
2.039554 
5.6948 15 

2.096578 
5.860543 
9.23Y918 
2. I291 89 
5.953483 
9.467465 
2.147288 
6.012888 
9.635479 
2.15968 
6.056029 
9.763673 

I .ntm 

n.925636 

1 

I .8 

1.36 

I .018 

0.760 

0.566 

0.422 

0.314 

0.228 

0.168 

0.128 

assumption. The Laurent series expansion treated in Putrrman (1994) general- 
izes Proposition 6.3.3. 

Extensive further results for the multichain case are given in Puterman 
(1  994). The crucial Proposition 6.6.3 was suggested by Theorem 9.4.4 of Put- 
ennan (1994). This result (in a much more general form) is originally due to 
Schweitzer and Federgruen (1978). 

The value iteration algorithm developed in Section 6.6 is also developed 
in Puteman (1994) and Bertsekas (1995, vol. 2) under the unichain assump- 
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tion. Other important references for Section 6.6 include D. White (1963), Odoni 
(1969), and Federgruen and Schweitzer 11980). 

The apenodicity transformation is taken from Puterman (1 994, p. 37 1) and 
is due to Schweitzer (1971). 

PROBLEMS 

6.1. Show that a rational function has at most a finite number of critical points 
and inflection points. 

6.2. k t  A be an MDC with a finite state space. Give an expression for the total 
number of stationary policies for A and show that there are a finite number 
of them. (Hint: A stationary policy may be considered as a point in what 
product space?) 

63. Prove Theorem 6.3.1 (i). 

6.4. Confirm the results given in Example 6.3.2. 

6.5. Verify the statements made in the justification of VIA 6.6.4. 

6.6. Consider a service system with a total of K servers. At the beginning of 
each time slot, there is a probability p that a new customer arrives to the 
system, where 0 < p < 1. At this time, if there is a free server, then the 
new customer is assigned to one of the free servers. Its service may not 
start until the beginning of the following slot. If all of the servers are busy 
when a new customer arrives, then that customer is turned away. 

In this system there is no queueing. The state space S = (0, I , .  . . , K), 
where i E S denotes the number of busy servers. In state 1 5 i 5 K - 1 
the decision maker has actions A, = (0, a t , .  . . , a ~  }, where 0 c ul c a2 < 
. . . < abf c 1 .  Action 0 means that the servers are idle during that slot. If 
action a is chosen, then all of the busy servers will serve at geometric rate a 
during the next sfot. This means that the probability that any server finishes 
service during that slot equals a. We assume that AK = (al , . I . , a,&f } so that 
service must be rendered when the system is full. (This assumption is not 
necessary to make the theory work, but it is evident that one would want 
to make it.) The services are independent and independent of the amval 
process. At the beginning of the next slot, a new action may be chosen, 

There is a cost C(a) of choosing to serve at rate a and a cost H ( i )  of 
having i customers in the system. It is reasonable to assume that C(a) is 
increasing in the service rate with C(0) = 0 and that H ( i )  is increasing in 
i with H ( 0 )  = 0. 
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(a) Set this model up as an MIX. Develop the trimsition probabilities. 
(b) Prove that any stationary policy induces an irreducible aperiodic MC 

(c) Give the ACOE (6.31) with z -, 0. 
on S. 

6.7. This is a service system with a single server and buffers for high-priority 
(HP) customers and low-priority (LP) customers. The state space S con- 
sists of ordered pairs (x, y) where x i s  the number of HP customers and y 
is the number of LP customers present at the beginning of a slot. If one of 
the buffers is empty but the other is not, then the server serves a customer 
from the nonempty buffer in one slot (perfect service). If both buffers con- 
tain customers, then the server m a y  make decision u to (perfectly) serve 
a HP customer or decision b to (perfectly) serve a LP customer. There is 
a holding (delay) cost of H ( . )  imposed on the HP customers and of H*(.) 
imposed on the LP customers. Reasonable assumptions on these costs are 
that they are increasing in the number of customers, are 0 when no cus- 
tomers are present, and that H ( x )  > H"(x); that is to say, it costs more to 
delay HP customers. 

The arrival pmcess of new HP customers is Bernoulli (p) and the arrival 
process of new LP customers is Bernoulli (q), where we have 0 < p ,  q c 
1. The arrivat processes are independent and independent of the services 
provided. There is a capacity K on the buffer of HP customers and the 
same capacity K on the buffer of LP customers. If, say, there are K HP 
customers present at the beginning of a slot, then a new arrival is turned 
away. This happens before service (if any) is provided to that buffer. 
(a) Set this up as an MDC and develop the transition probabilities. There 

fb) Verify that Proposition 6.4.l(v) holds and hence that the minimum 

(c) Prove that Assumption OPA holds. Hint: Show that given any station- 

are a number of cases to consider. 

average cost is a constant J .  

ary policy e and state (x, y ) ,  we have Ptr,,)ct,t)(e) > 0. 

6.8. CompIete the proof of Proposition 6.6.6. 

6.9. Confirm the validity of (6.66-67), and verify the entries in Table 6.1. 



C H A P T E R  7 

Average Cost Optimization Theory 
for Countable State Spaces 

Chapter 6 dealt with the average cost optimization criterion for an MDC with 
a finite state space S.  it was possible in the finite state space case to prove 
very special results. In this chapter we present the general existence theory of 
average cost optimization for countable state spaces. The results are primarily 
of interest when S is denumerably infinite, but the theory is general and also 
applies when S is finite. 

In Chapter 8 we develop a method for the computation of optimal aver- 
age cost stationary policies. This method is based on approximating sequences 
and relies primarily on the results proved in Chapter 6, although occasionally 
selected results from this chapter are called upon. The reader whose primary 
interest is in computation may prefer to skip this chapter entirely. When certain 
results from this chapter are called upon later, they can be read at that time. 
The reader who wishes to obtain a complete picture of both the existence and 
computation of optimal average cost stationary policies should read this chap- 
ter. 

We saw in Chapter 6 that an average cost optimal stationary policy always 
exists when S is finite. The examples in Section 7.1 show that this is no longer 
the case when S is denumerably infinite and that, indeed, an optimal policy 
of any sort may not exist. These examples illustrate that some assumptions are 
necessary to obtain the existence of an optimal stationary policy in the countable 
state space case. 

In addition to guaranteeing the existence of an optimal stationary policy, it 
is also useful to require the minimum average cost to be constant. In Section 
7.2 we present a set (SEN) of assumptions under which both goals are met. 
The accompanying existence theorem obtains an inequality for the average cost 
criterion, known as the average cost optimality inequality (ACOI). The (SEN) 
assumptions are the centerpiece of Chapter 7, and the remainder of the chapter 
is an exploration of various ramifications of these assumptions. 

Section 7.3 presents a technical example showing that under the (SEN) 

1 27 

Stochastic Dynamic Programming and the Control ojQueueing Systems 
Linn I. Sennott 

Cowriqht 0 1999 bv John Wilev & Sons. Inc 
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assumptions an optimal stationary policy may induce a null recurrent MC. This 
example may be omitted on first reading. 

In Section 7,4 we present various results pertaining to the ACOI. Under quite 
weak assumptions it is shown that the ACOI is an equality and hence the aver- 
age cost optimality equation (ACOE) holds. 

One way to verify the existence of an optimal stationary policy is to show 
that the (SEN) assumptions hold. In Section 7.5 useful sufficient conditions are 
given for (SEN) to hold. These include the (BOR) and (CAV) sets of assump- 
tions which are usually easier to verify than (SEN) itself, An important result 
in this section shows that under the (BOR) assumptions strong inferences con- 
cerning the behavior of the MC induced by an optimal stationary policy may 
be made. 

In Section 7.6 we present three examples illustrating how the existence of 
an average cost optimal stationary policy may be efficiently verified. 

Section 7.7 contains a set (H) of assumptions that is weaker than (SEN). 
Although normally more difficult to verify than (SEN), the (H) set is useful in 
certain models. An example is given for which the (H) assumptions are valid 
but for which one of the (SEN) assumptions fails to hold. 

7.1 COUNTEREXAMPLES 

In this section we have an MDC with a denumerably infinite state space S.  We 
present examples showing that the nice results obtained in Chapter 6 for finite 
state spaces need no longer hold. Indeed, as we will see, quite pathological 
situations may be created. 

We first prove a result giving a basic property of the average cost. Namely, 
in most cases, the costs accumulated over any fixed finite number of transitions 
do not affect the average cost. This result is useful to keep in mind when we 
present the counterexamples. In this chapter finite horizon value functions will 
assume a terminal cost of 0. 

Proposition 7.1.1. Let K be a positive integer. Let i be an initial state and 
8 a policy such that ue.K(i)  < -. Then 

1 
n -  I 1 

t t - K  
J& 1 limsup ~ Ee C(X,,A,)IXn = i . (7.1) 

Proof: For n > K and initial state Xo = i. we have 
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- - - 
Figure 7.1 Example 7. I .2. 

The limit of the first term on the right of (7.2) equals 0. Taking the limit supre- 
mum of both sides of (7.2), we see that (7.1) follows. 

The right side of (7.1) is the expected average cott from time K onward. A 
similar result to that in Proposition 7.1 .I  holds for Je .  The next example shows 
that (7.1) may be invalid if some of the expected costs are infinite. 

Example 7.1.2. The structure of A is shown in Fig. 7.1. There is a null 
action in each state. Here (p,) is a probability distribution on i 2 1 .  The costs 
are C(0) = C(O*) = 0, and C(i) chosen to satisfy xi C(i)p, = m for i 2 1. 

There i s  a single policy, and it hau the property that E[C(XI)~X~ =. 01 = 00. 
This means that J(0)  = 00. However, we see that E[C(X,)IXo = 01 = 0 for t 2 2. 

IJ Hence, if K 2 2, then the right side of (7.1) equals 0. 

We are now ready to present the counterexamples. The first example shows 
that an average cost optimal policy may not exist. 

Fxample 7.2.3. The state space is shown in Fig. 7.2. For each i* there is 
a null action, and we have Pi*,* 1 1 and C(i*) = I/i. For each i there are two 
actions, and we have Pi,, ~ ( a )  = 1 and Pii*(b) = 1. Finally C(i)  = 1, for i 2 I .  

Once the process reaches the lower leve1, it remains there. On the upper level 
the controller may choose at any time to enter the Iower level, or to advance 
to one higher state on the upper level. 
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Figure 7.2 Example 7.1.3. 

L e t f K ,  K 2 I, be the stationary policy that chooses a in states 1 I i I K-- 1, 
then chooses b in state K. It follows from Proposition 7.1 . I  that JfK(l) = 1/K. 
It is clear that J(1) = 0 and that no policy achieves this value. However, given 

5 E > 0, there exists a stationary policy f~ for which Jr,( I)  < E. 

The next example shows that even if an average cost optimal poIicy exists, 
it may be other than stationary. 

Example 7.1.4. We have S = { 1, 2, 3, . . .]. There are two actions in each 
state with PI,+ (u)  = PJb) - 1, C(i, a) I 1 ,  and C(i. h) = l / i .  At any time we 
may advance to the next state and pay 1 unit or choose to stay where we are 
and pay l/i units. 

Let fx be the stationary policy that chooses a in states 1 I i S K - 1 and 
chooses b in state K. Then it follows from Proposition 7.1.1 that Jf,(1) = 1 / K .  

Let 0 operate as follows: When the process enters state i, choose b i times, 
then choose a. For Xo = 1 the sequence of costs generated under 6 is 

Problem 7.1 asks you to show that Je(1) = 0. 0 

In both of the above examples it i s  the case that there exists a stationary 
policy that is within E of J( 1). If this were always the case, we would probably 
be satisfied to know that we could produce a stationary poky with any desired 
degree of closeness to the optimal value. However, the next example shows 
that that hope i s  illusory. 
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Exumple 7.2.5. The state space is given in Fig. 7.3. For states i* on the lower 
level, there is a null action with transitions PI*(, I )* = P I  * I = I and costs identically 
0. State 0 satisfies Poo = 1. For states i 2 1 there are two actions. For action a we 
have Pli+ ~ ( a )  - 1. For action b we have P,,+(b) = p ,  < I and P,&) = I - p , .  The 
probabilities p ,  will be specified shortly, All costs in i 2 0 equal 1. 

Notice how this MDC operates. It is desirable for the process to be in the * 
states because in those states there is no cost. However, if an attempt is made 
to reach those states from some i 2 1, then there is a probability of ending up 
in the absorbing state 0. and hence of incurring a cost of 1 per unit time from 
then on. 

Let the initial state be 1, and letf be a stationary policy. Iff always chooses 
a, then Jf(1) = 1. Suppose that f chooses b for the first time in state K. Then 
every time the process enters state K there is a positive probability 1 - p ~  that it 
will end up in state 0. Because this "trial" is repeated over and over, eventually 
the process will end up in state 0. Then it follows from Proposition 7.1.1 that 

The key to this example is that there exist a choice ofp, and a policy 8 for 
which Je(l) < 1. Let 8 operate as follows: It first chooses b. If it succeeds in 
reaching I again, it then chooses a, moves to 2, and chooses b. If it succeeds 
in reaching I again, it then chooses a twice, moves to 3, chooses b, and SO on. 
On every successive return to 1 ,  the process moves to one higher state before 
attempting to reach the * states. 

Let S,, be the proportion of time spent in * states during [0, n - 11. Let En 
be the event that state 0 is not entered during that time. Note that E,  - E, 
where E is the event that 0 is never entered by the process. Now P ( E )  is the 

Jf(l)= 1. 
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product p1p2m . . . , and it is possible to choose the probabilities so that their 
product equals f. (For material on infinite producu, see Apostol, 1972.) 

Then, suppressing the dependence on XO = 1, we see that ue,,/n = 1 - 
= 1 - Es[S,IE,JP(E,) - E&&IcJP(EL) 5 I - Ee[S,(E,]P(E,J We have P(E,) - P ( E )  = a.  Moreover Eo[S,IE,] -. $. This is so because if the process has 
not entered 0, then the proportion of time it spends in the * states approaches 

U 4. This reasoning implies that Je(1) 5 1 - = 

7.2 THE (SEN) ASSUMPTIONS 

The examples in Section 7.1 show that some assumptions are necessary to guar- 
antee the existence of an average cost optimal stationary policy. It is also useful 
for these assumptions to imply that J ( i )  I J c - for i E S. This means that the 
minimum average cost is a (finite) constant J, independent of the initial state 
of the process. The property of constant minimum average cost hoids in the 
models of interest to us. 

Thus we desire a set of assumptions under which there exist a stationary 
policyf and a (finite) constant J such that J ( i )  r J/(i) = J for i E S ,  Proposition 
6.2.3 suggests that f might be obtained as a limit point of discount optimal 
stationary policies, as the discount factor approaches 1, and it will be shown 
that this i s  possible under suitable asumptions. 

Proposition 6.4. I(iii) is a necessary and sufficient condition for the minimum 
average cost to be a constant when S i s  finite. This result suggests that we might 
take this as our assumption when S is countable. This is a viable approach. 
However, when S is infinite, it turns out that Proposition 6 .4 . lW is far too 
strong an assumption and fails to hold in many models. A subtle modification 
of it will accomplish our goals. 

(As an important reminder, we need to keep in mind throughout this chapter 
that quantities that were automatically finite in Chapter 6 may become infinite 
when S is infinite. This possibility must be taken into account in all of our 
proofs.) 

This reasoning leads to the following set of (SEN) assumptions. Let i be a 
distinguished state in S. 

(SENI). The quantity (1 -cr)V,(z) is bounded, for a E (0,l). (This implies 
that VJz) c - and hence we may define the function h,(i) = : V,(i)  - V&) 
without fear of introducing an indetenninate form.) 

(SEN2). There exists a nonnegative (finite) function M such that h,(i) I 
M ( i )  for i E S and a! E (0, I) .  

fSEN3). There exists a nonnegative (finite) constant L such that - L  S h,(i) 
for i E S and a E (0, I). 
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Note that h&) = 0, and hence we may always take M ( z )  = 0. The first 
assumption is related to the requirement that the minimum average cost be 
finite. Notice that the second and third assumptions comprise basically the con- 
dition in Proposition 6.4.1(iii), though modified to allow the upper bound for 
h, to be a function rather than a constant. In Section 7.7 a set of assumptions 
allowing the lower bound to also be a function is developed. This approach 
requires additional assumptions to carry out the development. The requirement 
of a constant lower bound simplifies the presentation and suffices for many 
models. 

Here is an important lemma. 

Lemma 7.2.1. Let e be a stationary policy. Assume that there exist a (finite) 
constant J and a (finite) function h that is bounded below in i such that 

Then J,(ij I J for i E S. 

Pmo$ By assumption, there exists a (finite) nonnegative constant L such 
that h(i) 2 - L  for i E S. The proof is similar to the development in (6.14-16). 
However, we present all the details here. 

Let XO = i, X I ,  Xz, . . . be the sequence of values of the process operating 
under the policy e and suppress the initial state in what follows. Then from 
(7.4) it follows that 

We claim that E,[h(X,)j < -, and to show this, we prove by induction on 
t that E,[h(Xt)] I r J +  h(i). This is clearly true for t = 0. Now assume that it 
is true for t. Then from (7.5) it follows that E,[h(X,+ 1)IXJ 5 J + h(X,). Tak- 
ing the expectation of both sides and using a property of expectation (i.e., that 
E(E[XI Y]) = E[X]), we find that E,[h(X,+ I)] 5 J + E,[h(X,)J 5 J + rJ + h(i) = 
(t+ 1)J+h(i). Here the second inequality follows from the induction hypothesis. 
This completes the induction. 

Now take the expectation of both sides of (7.5) to obtain 

What has just been proved assures us that we have not created the indeterminate 
form - 00. Add the terms in (7.6j, for t = 0 to n - 1, and divide by n to obtain 
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(7.7 f 

Taking the limit supremum of both sides of (7.7) yields the result. D 

Before proceeding with our main result, we present a definition. It is given 
in general terms independent of (SEN). 

Definition 7.2.2. 

(i) Let z be a distinguished state, and assume that V, ( t )  < a, for CY E (0, I). 
This implies that the function h,(i) = VJi) - V J z )  involves no inde- 
terminate form. Let a,, -“.c 1-. Assume that there exist a subsequence 
(call it 6, for convenience) and a function h on S such that 

lim hO,(i) = h(i), i E S. (7.8) 
n-- 

Then h is a limit function (of the sequence !I=,,). 

(ii) Letfa be a stationary policy realizing the discount optimality equation, 
and let a,, - I - .  Assume that there exist a subsequence & and a 
stationary policy f such that lim,t-- f a  = f .  This means that for a 
given i and sufficiently large n (dependent on i ) ,  we have f p n ( i )  7 f( i). 
Then f is a lirnir poinr (of f a , I ) .  (This is Definition B. 1 repeated here 
for convenience.) 

(iii) Letf be a limit point. The limit function h is associared wlirhf if there 
exists a sequence 6, such that limn - ha, = h and limn ~ jb, =f. This 
means that there exists a sequence such that both quantities converge 

U with respect to this sequence. 

The following existence theorem is the major result of this chapter: 

Theorem 7.2.3. Let A be an MDC for which the (SEN) assumptions hold. 

(i) There exists a finite constant J =: I i Q -  1 - ( I  - a)V,( i )  for i E S. 
(ii) There exists a limit function. Any such function h satisfies -L 5 h 5 M 

and 
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Let e be a stationary policy realizing the minimum in (7.9). Then e is 
average cost optimal with (constant) average cost J and 

1 
lim - E,[h(X,)[Xo = i] = 0, 

n r -  n ie s. (7.10) 

(iii) Any limit pointf is average cost optimal. There. exists a limit function 
associated withf. Any such function h satisfies 

and 

1 
lim - E@(X,)IXo 2 i] 0, i E S.  (7.12) 

n - r -  n 

(iv) The average cost under any optimal policy is obtained as a limit. 

Proofi We first pmve (ii). Fix a sequence a, -. 1-. It follows from 
(SEN2-3) and Proposition B.6 that there exists a limit function of the sequence 

Now let ti be any such limit function as in (7.8). It follows from (SEN2-3) 
that - L I h I M. Using (SENI) we see that (1  -&,)V~,(Z) is a bounded sequence 
of real numbers. Any such sequence has a convergent subsequence. Hence there 
exist a subsequence (call it 6, for convenience) and a (finite) number J such 
that 

ha, * 

Note that (1 -- a)V,(i) = (1 - a)h,(i) + (1 - a)V,(z).  Let CY = 6,, and let n 
+ OQ. The last term approaches J .  It follows from (7.8) and the finiteness of 
h that the second term approaches 0. Hence 

lim (1 - 6,)V6fl(i) = J ,  i E S. (7.14) 
f l - -  

The discount optimality equation (4.9) may be written as 
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(7.15) 

This is obtained from (4.9) by subtracting aV,(z) from both sides and by adding 
and subtracting V,(z) from the left side. 
Now fix a state i, and consider the .sequencefs,(i) of discount optimal actions 

in i. Because the action sets are finite, it is the case that there exist an action 
a(i) and a subsequence y n  (dependent on i) such thatf,,,(i) L a(i). For the fixed 
state i and a = v n ,  (7.15) becomes 

Taking the limit infimum of both sides of (7.16) as n ---c m and using (7.8), 
(7.13), and Proposition A.2.1 yields 

(7.17) 

Because this argument may be repeated for each i ,  it follows that (7.9) holds. 
Now let e be a stationary policy realizing the minimum in (7.9). Then 17.4) 

holds for e.  To prove that e is optimal, let 8 be an arbitrary policy, and fix an 
initial state i. Then 

(7.18) J, ( i )  5 J 5 limsup ( I  - a)V,( i )  S lim sup (1 - c ~ ) V t l , ~ ( i )  S Jo( i ) .  
a - 1 -  0 - r  1 

The leftmost inequality follows from Lemma 7.2.1. The next inequality follows 
from (7.14) and the definition of the limit supremum. The next inequality fol- 
lows, since V, 5 Vp.,, and the rightmost inequality follows from (6.1). This 
proves that e is average cost optimal. Moreover, by setting 8 = c, we see that 
J,(i) r J ,  and hence J is the minimum average cost. 

Recall that the whole argument w a ~  carried out with respect to the sequence 
an. Given this sequence, we obtained a subsequence 6, such that (7.14) holds 
for the minimum average cost J .  This means that given any sequence, there 
exist. a subsequence such that (7.14) holds for the fixed value J .  This implies 
that the limit exists, and hence (i) holds. 
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We prove (iv) and then return to the prod of (7.10). To prove (iv), let J/ 
be an arbitrary average cost optimal policy. Note that all that is known is that 
J 5 J&). We have 

J = lim (1 - a)V,( i )  I iiminf (1 -. c u ) V ~ . ~ ( i )  < limsup (1 - a)V+,,(i)  5 J .  
n-, I a-1-  a- 1 -  

(7.19) 

The leftmost equality follows from (i). The next inequality follows from the 
fact that V, I; V J . , ~ .  and the rightmost inequality follows from (6.1) and the 
optimality of $. Hence all the terms in (7.19) are equal to J ,  and it follows that 
w-. I - (1 - Cr)V$*,(i) exists. Then (iv) follows from Proposition 6.1.1. 

Let us now prove (7.10). Using the optimality of e and (iv), it follows that 
we may take the limit of both sides of (7.7) to obtain (7.10). 

It remains to prove (iii). We sketch the proof and leave the details to Problem 
7.2. Letf be a limit point. Then there exists a sequence @,, such that lirn,,+ fa,, 
= f. Using (SEN2-3) and Proposition B.6 yields a subsequence E,, and a limit 
function h of h,, , Then h is ssociated with f (the sequence c,, works in Defi- 
nition 7.2.2( iii)). 

Now let h be associated with f and assume that the sequence @,, works in 
Definition 7.2.2(iii). Fix a state i and choose n so large thatfH,,(i) = f ( i ) .  Letting 
(Y = f!,' in (7.15) and recaIIing thatfa,, is discount optimal yields 

Taking the limit infimum of both sides of (7.20) as n -+ 00, and using (i), (7.8), 
and Proposition A.2.1 yields (7.1 1). The optimality off follows immediately 

0 from Lemma 7.2.1. Finally (7.12) follows as in the proof of (7.10). 

Notice that Theorem 7.2.3 encompasses two viewpoints. In (ii) we show that 
an arbitrary limit function may be used to construct an average cost optimal 
stationary policy, namely the one realizing the minimum in (7.9). In (iii) we 
show that any limit point of a sequence of discount optimal stationary policies 
is average cost optimal. 

The rest of this chapter is spent eluci&ting the consequences of this theorem 
and showing how the (SEN) assumptions may be verified. Here we address the 
following question: Assuming that (SEN) holds for a distinguished state L ,  can it 
fail if z i s  replaced by another state? Proposition 6.4.1 suggests that the answer 
is no, and the following result confirms ths. 

Proposition 7.2.4. Assume that the (SEN) assumptions hold for a distin- 
guished state z. Then (SEN) holds if z is replaced by any other state. 
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Pmofi Assume that (SEN) holds for z, and let x # z. We wish to show 
that it holds with i replaced by x. Let these assumptions be denoted (SEN),. 
By Theorem 7.2.3(i) it follows that l i q - .  1- ( 1  .- a)V,(x)  exists and is finite. 
This, together with the fact that V,(x)  is increasing in (Y (and hence V&) c 00 
for all a), implies that (SENI), holds. 

Now V,(i)-  Vn(x) = hw(i)-ha(x). This implies that -L-M(x)  I V,(i)-  V, (x)  
5 M ( i )  + L. Hence (SENIL), holds for the function M,( i )  = M(i)+L, and (SEN3), 

0 holds for the constant L, = M ( x )  + L. 

7.3 ANEXAMPLE 

We h o w  that a stationary policy e for the MDC A induces an MC with costs. 
The transition probabilities of the MC are given by P,(e(i))  = PJe)  and the 
costs by C(i, e). Sections C. I and C.2 of Appendix C give background material 
on Markov chains with countable state spaces. 

No implication concerning the structure of the MC induced by an optimal 
stationary policy can be drawn from the (SEN) assumptions. This is easily seen 
as follows: Let A be an MDC with any desired transition structure whatsoever 
but with identically 0 costs. Then (SEN) holds, and all policies are optimal. 

Here is a more interesting example. It shows that an optimal stationary policy 
may induce a null recurrent MC and that the inequalities in (7.9) and (7.1 1) may 
be strict. This example may be omitted by the reader whose primary interest is 
in applications. 

*&ample 7.3.1. The state space S = (0, 1. 2, . . .}. In state i 2 1 there is 
a null action with PI1-  1 - 1 and C(i) 2 1. In state 0 there are actions a and b 
with C(0, a)  = 0 and C(0, b) = 1. Let (p,) and (4;) be probability distributions 
on i 2 1 to be specified later. The transition probabilities are given by P&I) = 
p1 and Po,(b) = qI- 

To summarize, when in state i 2 1, the process decreases one state at a time 
at a cost of I per slot. When in state 0, there are two choices of “fanning out” 
to the states i 2 1. One choice costs 0, and the other costs 1. 

Let f (respectively, e) be the stationary policy that chooses a (respectively, 
b) when in state 0. The costs under e are identically I ,  and hence V , , ( O )  = 
1/(1- a). It is clearly the case that Vf,,(z) I 1/( 1 - a) for i 2 0. Hence Vf,,(O) 
= 0 + a C p I  V,-,&) I a/(l -a) < I .  Hencef is discount optimal for a E (0,l). 

We verify that (SEN) holds with z = 0. Observe that (SENI) holds in any 
MDC with bounded costs. For i 2 1 it is easily seen that V , ( i )  = ( I  - a’)/( 1 - a) 
+ cu’V,(O). After some algebraic manipulation we have 

(7.21) 
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The first term on the right of (7.21) is bounded above by i. The second tern 
lies between 0 and 1 .  Hence 0 5 h,(i) S i ,  and (SEN2-3) hold. This proves that 
(SEN) holds. It follows from (7.21) and Theorem 7.2.3(i) that h(i) = i(l - J). 

Moreover from Theorem 7.2.3(iii) it follows thatf is average cost optimal. 
Assume that XO = 0. and let S,, be the proportion of time, during t : 0 to t = 
n _- 1, that the process is in state 0 when operating underf. Then it is easy to 
see that J = 1 - limn- oo S,. If we choose (p,) such that ip, = 00, then the 
MC induced by f is null recurrent and S, - 0. This yields J = 1 and h = 0. 

We now examine (7.9) and (7.11) for i = 0. The left side is J + h(0) 7 1. 
The right side of (7.9) is min(0 + 0, 1 + O }  = 0 achieved by the policyf. This 
shows that there is strict inequality in both equations. 

(The example will fail if X =: ip, < -, In this case f induces a positive 
recurrent MC and S,  -+ TO = ( I  + A)-’, Then J = 1 - 1r0 = X/( 1 + X) and h(i) 
= i / (  1 + A). At i = 0 the left side of (7.9) is A/( 1 +A), and it is easy to see that 
this equals the minimum on the right side, and that this minimum is realized 
by f .  This suggests that if the optimal stationary policy f is positive recurrent 
at state i, then (7.9) is an equality there. This idea is proved in the next sec- 
tion.) 

The reader may have noticed that no further mention has been made of the 
distribution (q,).  This may be chosen arbitrarily, and we have J ,  z 1. It implies 
that e is also average cost optimal. However, e does not realize the minimum in 
(7.9) at i = 0. If the distribution satisfies C iq, < m, then this gives an example 
of an MDC satisfying (SEN) and for which there exist two average cost optimal 
stationary policies. The one arising from the discount optimal stationary policies 
is null recurrent. The other is positive recurrent yet fails to realize the minimum 
in (7.9). 

7.4 AVERAGE COST OPTIMALITY INEQUALITY 

Assume that the (SEN) assumptions hold. Equation (7.9) is known as the aver- 
age cosf optimulify inequality (ACOI). Theomm 7.2.3(ii) tells us that any sh- 
tionary policy realizing the minimum on the right of the ACOI is average cost 
optimal with constant average cost J. Example 7.3.1 shows that the inequality 
in the ACOI may be strict. If (7.9) is an equality, we refer to it as the average 
cost optptimulify equation (ACOE). 

In this section we give conditions under which the ACOE holds. As part of 
this development, some important properties of any limit function h are derived. 
These properties are related to some of the results in Chapter 6. It turns out 
that the ACOE is “almost always” valid and will certainly hold in the models 
of interest to us. 

We first develop some notation. Let G be a nonempty subset of S. Then 
!R(i,G) is the set of policies B satisfying &I(& E G for some n 5: llX~ = i )  
= 1 and the expected time mi&) of a first passage from i to G is finite. This 
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is the class of policies having the property that starting from i ,  the set G will 
be entered sometime in the future and the expected number of slots before this 
first happens is finite. 

We let %*(i, G) be the class of policies 8 E %(i, G) such that the expected 
cost c,G(O) of a first passage from i to G is finite. If G = (x}, then %(i,G) 
(respectively, %*(z. G)) is denoted %(z, x) (respectively, %*(L x)). 

The proofs of the following two lemmas are closely related, and hence we 
present these results together. The first result gives a sufficient condition for 
(SEN2) to hold. The second result gives an upper bound for h under the assump- 
tion that (SEN) holds. 

Lemma 7.4.1. Assume that VJz) c w, for a distinguished state z and a E 

(0,l). Given i Z z, assume that there exists a policy 8, E %*(i,z). Then ha(i) 5 
clz(8,), and hence (SEN2) holds for z with M ( i )  = clL(8,). 

Proof: If the process begins in state i Z z and follows O,,  it will reach state 
z at some time in the future. Let T be a random variable denoting this time. 
Let the policy 9 follow B,  until z is reached, and then follow an 01 discounted 
optimal policy f a .  

Then 

The result then follows by subtracting Va(z) from both sides. 0 

Lemma 7.4.2. Assume that the (SEN) assumptions hold. Assume that for 
some fixed state i and nonempty set G, there exists a policy 8 E %(i ,  G) such 
that z,E M(j)Pg(x~ - j )  c 00, where T is the first pasage time from i to G 
and M i s  the function from (SEN2). Then for any limit function h we have 

h(i) <- c,(;(8) - Jrn,c(B) + E f l [ h ( X ~ ) ( X o  = i ] .  (7.23) 

Proof: (Note that if 8 ar ?R*(i, G), then the right side of (7.23) is infinite.) 
Let us suppress the initial state i in the proof. In a derivation very similar to 
that in (7.22). we obtain 
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(Problem 7.3 asks you to supply the details.) Then (7.24) may be written 

This follows by subtracting V&) from both sides and by adding and subtracting 
Ee[a']V,(z) from the right side. 

Now 

m 

= c ( I + a + . . . + a' ~ ')P@(T = t) .  (7.26) 

The term in parenthesis is increasing in a and converges to t ils (I! .- 1-. We 
may apply Corollary A.2.4 with bounding function w(t) = r to conclude that 
the limit of the left side of (7.26) exists and equals rn,&). 

Let us assume that the limit function h is defined in terns of the sequence 
6,  as in (7.8). Now take the limit of both sides of (7.25) as a = fl,, - 1-. 
Using what has just been proved and Theorem 7.2.3(i) yields 

Hi) 5 c,~;w - ~ m , c ( @ )  + lim EB ~ ( B , , ) ~ ~ ~ , ( x T ) I  
11 - m  

(7.27) 

To justify passing the limit through the summation, we will employ Corollary 
A.2.4. Note that the index set of the summation is the set of pairs ( j , t ) .  The 
function u n ( j ,  t) = ha,,(j)(on)' which converges to h( j ) .  The bounding function 
is w ( j )  = max{L,M(j)}, where L is from (SEN3). The assumption allows us 
to apply Corollary A.2.4 to (7.27), which yields (7.23). 

We now give sufficient conditions for the ACOE to hold. 

Theorem 7.4.3. Assume that the (SEN) assumptions hold, and let t. be a 
stationary policy realizing vlle minimum in the ACOI (7.9). Define the nonneg- 
ative discrepancy function 4 to satisfy 
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Then cP(i) = 0, and hence (7.9) is an equality at the particular state i under any 
of the following conditions: 

(i) There exists a nonempty set G such that e satisfies the assumptions in 
Lemma 7.4.2. This also implies that e E %*(i,G) and h(i) = c,&) - 
Jm,c(e) + E,[h(Xr)IXo = iJ, where T is the time of a first passage. 

(ii) We have e E %(i,z). This also implies that e E !J?*(i,z) and h(i) = 
c,,(e) - Jmi..(e). 

(iii) The MC induced by e is positive recurrent at i .  
(iv) We have xi Pi,(a)M(j) < 00 for a E A,. 

Praofl To prove equality under (i), let the process operate under e, and 
suppress the initial state i .  As in the proof of Lemma 7.2.1, we obtain 

Rearranging terns and adding for t = 0 to k 1 yields 

If T is the first passage time from i to G, then by assumption mi&) = 
C kP,(T = k )  < m. Let us multiply each term of (7.30) by P,(T = k) and 
sum over k. This yields 

It follows from (7.31) that c , ~ ( e )  c -, and hence e E %*(i,G). We may then 
apply Lemma 7.4.2. The other claims follow from (7.23), (7.31). and the non- 
negativity of (P. In addition to proving that @ ( i )  = 0, notice that this argument 
proves that CP 3 0 during a first passage from i to G. 

Claim (ii) follows from (i) by choosing G = (2) and recalling that h(z) -= 0. 
Claim ( i i i )  follows from (i) by noting that if the MC induced by e is positive 
recurrent at i ,  then e E %(i,i). From (i) it then follows that J = q,(e) /mJe) ,  
which agrees with Proposition C.2. I(ii). 

To prove equality under (iv), we return to the proof of Theorem 7.2.3 and 
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consider (7.15). Let us take the limit of both sides as a = Y~ 4 i-. Using 
Proposition A. 1.3(ii) and Corollary A.2.4 (with bounding function M ), we 

0 

Theorem 7.4.3(i) is a remarkable result. A coroilary of this result is that if, 
starting from an arbitrary initial state i, in a finite expected amount of time the 
MC induced by e reaches a finite set G, then the ACOE holds. Note that G 
may depend on i. 

obtain J + h(i) = min,{C(i,a) + c, P,,(u}h(j}}, and hence + ( i )  = 0. 

7.5 SUFFICENT CONDITIONS FOR THE (SEN) ASSUMPTIONS 

We now consider the verification of the (SEN) assumptions. It is often difficuft 
to verify them directly, and some well-chosen sufficient conditions will prove 
extremely useful. In this section we assume that A is an MDC, and we seek 
sufficient conditions for (SEN) to hold. 

The following definition gives an important type of policy. 

Definition 7.5.i. Let d be a (randomized) stationary policy. Then d is a z 

0 
standard policy if the MC induced by d is z standard (see Definition C.2.5). 

We will usually use the letter d to refer to a z standard policy, and the reader 
should keep in mind that d may be either a stationary policy or a randomized 
stationary policy. The following preliminary result is useful: 

Lemma 7.5.2. If d is a z standard policy with positive recurrent class R, 
then 

Proof: The result follows by multiplying the expression in Proposition 
C.2.l(iii) by a" and summing over n. Interchanging the order of the summations 
i s  justified by the fact that the terms are nonnegative. n 

The next result gives our standard method for verifying (SEN1-2). 

Proposition 7.5.3. Assume that there exists a z standard policy d. Then 
(SEN1-2) hold for z. 

/'roo$ From (7.32) it folIows that J d  2 (1 . cX)lr,(d)Vd,,(z) 2 (1 - 
a)Kz(d)V,(z). Hence (1 - a)V, (z )  I; Jdr;'(d) = c&), by results in Appendix 
C. Hence (SENI) holds. 
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From Lemma 7.4.1 it follows that (SEN2) holds with M ( i )  = ci,(d) for i @ z. 
n 

Corollary 75.4. Assume that S = (0, 1.2, . . .} and that V, is increasing in 
i for a E (0.1). If there exists a 0 standard policy, then the (SEN) assumptions 
hold. Moreover every limit function is nonnegative and increasing in i. 

Proofi Let the distinguished state be 0. It follows from Proposition 7.5.3 
that (SEN1-2) hold. Since V, is increasing, it follows that h, 2 0, and hence 
(SEN3) holds with L = 0. The second statement is clear from (7.8). n 

Suppose that the (SEN) assumptions have been verified. Then Example 7.3.1 
shows that an optimal stationary policy may induce a MC without any positive 
recurrent states. The next result gives a sufficient condition for an optimal sta- 
tionary policy to induce a MC with at least one positive recurrent state. This 
result is stated in a form independent of (SEN). 

The term used in (7.33) below is defined in (C.1). 

Proposition 7.55. Assume that the minimum average cost is a constant J 
and that e is an optimal stationary policy. Assume that there exist a state i and 
c>Osuchthattheset G =  {jlC(j,e)I:J+e}satisfies 

(7.33) 

Then the MC induced by e has at least one positive recurrent state j E G, and 
i leads to j .  

(Equation (7.33) says that the limit may be moved across the summation. 
This is always possible if G is finite and may be possible in certain situations 
if C is infinite.) 

Pmufi The set G must be nonempty (why?). Let Xu = I ,  and suppress the 
initial state in what follows. Then, operating under e, we obtain 

= ( J +  E)  1 - Q$'te) . ( j o c  ) (7.34) 

Here f is the indicator function. To obtain the first line in (7.34), the costs 
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associated with visits to G have been set to 0, and the costs associated with 
visits outside of C; have been replaced by their lower bound J + E .  The second 
line follows from (C. 1 ) and the definition of the expectation of an indicator 
function. 

of both sides of (7.34). Using 
the optimality of e, (7.33), and results in Section C.1, we obtain 

We now take the limit supremum as n - 

(7.35) 

where rj(e) is the steady state probability of being i n j  and T,, is the first passage 
time from i to j. This yields a contradiction unless there exists j E G such that 
Pe(Ti, < -) > 0 (which means that i leads toj)  and Ir,(e) > 0 (which means 

0 that j is positive recurrent). 

Corollary 7.5.4 verifies (SEN3) by employing a structural result on the dis- 
count value function. This is an important method of verification. However, it 
is also useful to have a method that does not employ structural results. The 
following set (BOR) of assumptions implies that (SEN) holds, that the ACOE 
is valid, and tbat optimal stationary policies possess “nice” properties. 

Theorem 75.6. Assume that the following set (BOR) of assumptions 
holds: 

(BORZ). There exists a z standard policy d with positive recurrent class 
Rd * 

(BOR2). 
i s  a finite set. 

There exists E > 0 such that D = { i fC(i ,a)  I J d  + E for some 0 )  

(BOR3). Given i E I) - RJ, there exists a policy 8;  E %*(z, i) .  

Then: 

(i) The (SEN) assumptions hold and the ACOE is valid. 
(ii) The MC induced by an optimal stationary policy e has at least one pos- 

itive recurrent state in the set D(e) = {il Qi, e) I J + e}. Let R(c) be the 
set of positive recurrent states. Then the number of positive recurrent 
classes making up R(e) does not exceed lo(e)[, and there are no null 
recurrent classes. 

(iii) If e is a stationary policy realizing the minimum in the ACOE, then 
e E %*(i,D(e) fl R(e)) for all i .  Hence, if R(e) consists of a single 
class, then e is x standard for x E R(e). 
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*Pm# We first verify (SEN). It follows from (BORI) and Proposition 
7.5.3 that (SEN1-2) hold. Let us now show that (SEN3) holds. Consider the 
statement: 

(*) For each or E (0.1) the minimum value of V, exists and is taken on in 
the set D. 

Assume that (*) has been proved. Then we claim that 

(7.36) 

will work in (SEN3). Proposition C.2.2(iv) shows that the second term on the 
right of (7.36) is finite, since z E R,r and thus cZ,(d) < 00. The first term is finite 
by (BOR3). Hence L < 03. 

For each i and or, by (*) we may choose and fix; E D such that V,(i)  2 
V&). Then h,Ci) = (V, ( i )  - V , ( j ) )  + h, ( j )  2 M j ) .  

We use the proof method of Lemma 7.4.1. If j E D - Rd, then, following 
this proof, it can be shown that V,(z ) -  V&)  I c,j(6j) 1 L. Xfj E R d n R -  {z}, 
then it can be shown that V,(z )  -- V , ( j )  I c&f) I L. Hence in either case we 

So to complete the verification of (SEN), we need to prove (*). Fix a 
throughout this segment of the proof. The key to the proof is the following: 
For any stationary policyf and i 4 D, let T be the time of a first passage from 
i to D. Then we have 

have ha( ; )  2 -L. 

+ { (") ( I  - C Y T )  + aTvf,t,,(x,, I(T € m) . (7.37) 
I - o r  I 1  

This follows since Jd +. e is a lower bound on the costs outside of D. 
Since the expression on the right of (7.32) is a convex combination, it folIows 

from (7.32) that there exists i, E Rd such that J d  2 (1 - a)Vd, , ( i , ) .  We claim 
that 

J d  2 (1 - or)vd.o(;a)  for somej, E D. (7.38) 

The proof is by contradiction. Assume that (7.38) fails. The use (7.37) with f 
= d and i = i, (note that Z(T - m) 2 0) to obtain a contradiction. 

Since D is finite, it follows that there exists k, E D such that V , ( j )  2 V,(k,) 
for all j E D. Then from (7.38) it follows that 
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(7.39) 

Let us now begin the process in state i e D and operate underf,. Applying 
(7.37) with f = fa and using (7.39) easily yields V,( i )  2 V,(k,). This proves 

The proof of the validity of the ACOE is given later in this proof. To prove 
(ii), let e be an optimal stationary policy and fix an initial state i. Since D(e) is 
a subset of D, it is finite and hence (7.33) holds for D(e) and i. It follows from 
Proposition 7.5.5 that the MC induced by e has at least one positive recurrent 
state j E D(e) such that i leads to j .  This clearly proves (ii). 

(*). 

To prove (iii), assume that e realizes the minimum in (7.9). 
We first show that e E %(i,D(e)) for i e D(e). Recall that h 2 -L. Let us 

define the nonnegative function r = h + L. Now add L to both sides of (7.9) and 
rearrange the terms to obtain 

If i B D(e), then J - C(i,e) c --E. The result now follows from Proposition 
C. I .5, and we have mi,xc)(e) 5 r(i)/e.  

We now prove that e E %(i,D(e)) for i E m e ) .  Using reasoning as in 
Appendix C. we obtain 

J + r(i) 
< I + - - .  

E 
(7.41) 

The second line follows from what has just been proved. The third line follows 
from the nonnegativity of r. The last line follows from (7.40). 

This proves that c E %(i,&e)) for all i. The validity of the ACOE now 
follows from Theorem 7.4.3(i). 

Let F = D(e) n R(e). Let us now give an informal argument that e E %(i, F) 
for all i .  For i e5 D(e) it follows from the above that in finite expected time we 
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will reach the finite set D(e). Hence it is sufficient to argue that e E % ( i , F )  
for i E D(e). 

First assume that i E F. Then i E R(e),  and since nt,,(e) < 00, it follows that 

Now let j E m e )  - R(e). Then j is transient, and there is a probability q, > 0 
of not returning t o j  each time it is entered. Then q =: min{q,[j E D(e)-R(e)} is 
a positive lower bound on the probability of never returning to m e )  - R(e) each 
time it is entered. Observe that m :: max{mJntc,(e)lj E m e ) -  R(e)} is a (finite) 
upper bound on the expected time to return to m e )  from the set D(e) - R(e). 

Now assume that the process begins in i E me)-R(e ) .  Each time the process 
returns to D(e), it conducts a “trial” which results, with probability at least q, 
in entering F.  Hence mtF(e) I m/q.  

This proves that e E %H(i,F) for all i. It follows from Theorem 7.4.3(i) that 
e E %*(i,F) for all i. The second statement of (iii) is then clear. Problem ‘7.4 

0 

e E !R(i, F ) .  

asks you to fill in the details of this proof. 

“Remark 7.5.7. The reader may have noticed that the positivity of E is not 
used in some parts of the proof. Problem *7.7 explores this issue and gives a 
weaker set (WS) of assumptions under which Theorem 7.5.6(i-ii) hold but for 
which (iii) may fail. In this problem you are asked to construct an example 
with an optimal policy from the ACOI that has a positive recurrent state but 

0 for which the expected time to reach this state is infinite. 

Remark 7.5.8. Assume that the (BOR) assumptions hold, and let e be an 
optimal stationary policy. Theorem 7.5.Nii) shows that the MC induced by e has 
a nonempty set R(e) of positive recurrent states and no null recurrent classes. It 
is shown in Sennott (1 993) that the probability of going from a transient state 
to R(e) i s  1. However, an example is given there to show that the expected 
time of such a first passage may be infinite, Of course this cannot happen if e 
realizes the ACOE. D 

Here are some sufficient conditions for the (BOR) assumptions to hold. 
These conditions are easy to verify and often hold when the costs of A are 
unbounded. The proofs are left as Problem 7.8. 

Corollary 7.5.9. Assume that the following set (CAV) of assumptions hold: 

(CAVI) = (BORl). 

(CAVZ). Given U > 0, the set Dr/ = { i lC(i ,a)  5 U for some a }  is finite. 

(CAV3). Given i E S - R d ,  there exists a policy t9i E %*(z, i ) .  

Then the (BOR) assumptions hold. 
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Corollary 7.5.10. Assume that the following set (CAV*) of assumptions 
hold: 

(CAVI). There exists a standard policy d such that & = S. 

(CAVZ). Given U > 0, the set D L ~  = {ilC(i,a) 5 U for some a }  is finite. 

Then the (CAV) assumptions hold, and hence (BOR) is valid. 

7.6 EUMPLES 

It is time to put the theory to the test. Are these results of use in verifying the 
existence of optimal stationary policies in interesting models? In this section 
we present three examples that amply illustrate the practicality of the theory. 

There is a set of basic ussumptions IBA) for each example. Other assump- 
tions may be added as necessary. 

fiample 7.6.1. This is Example 2.1.1 which is also treated in Section 3.4. 
Let s = sup{jlp, > 0). The basic assumptions (BA) are as follows: 

CBAI). The holding cost H ( i )  is increasing in i with H(O) = 0. 

(BA2). We have 0 < po < 1. n 

In each slot there is a positive probability of no amivafs and a positive pmb- 
ability of a batch arriving. Hence it follows that 1 I s I-. (Note that J = M 

means that batches of arbitrarily large size may arrive in a single slot.) As nota- 
tion we let H- = lim,+ H ( i )  and K( i )  = ci , H ( j )  for i 2 1 (set K ( 0 )  = 0). 
Recall that A is the mean batch s ix .  Nothing is assumed about these quantities 
at this time. 

Lemma 7.6.2. Assume that (BA 1) holds. For a E (0, 1) and a zero terminal 
cost, L J ~ , ~  is increasing in i €or n 2 0. Hence V, is increasing in i. 

Proofi This is pmved in Lemma 3.4.1 for cr = 1 and a terminal cost of 
N ( i ) .  The same proof works here, and Problem 7.9 asks you to confirm this. 

n The fact that V,(i) is increasing in i follows from Proposition 4.3.1. 

Proposition 7.6.3 Assume that the (BA) assumptions hold. 

(i) The (SEN) assumptions hold and h i s  nonnegative and increaqing in i. 
Letting H*(i )  = xj pj[k( i  + j )  - Mi)], the ACOI may be written 
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(ii) If X < 00 and C K(i + j )p ,  < for i 2 0 (note that if H" < 00, then 
X < 00 implies the second condition), then the ACOE holds. 

(iii) Assume that the conditions in (ii) hold and that H- > R. Then the (BOR) 
assumptions hold, and any optimal stationary policy is positive recurrent 
at 0. 

(iv) Assume that the conditions in (iii) hold, and let e be a stationary policy 
realizing the ACOE. Then e is 0 standard. Assume that c breaks ties by 
rejecting. If e rejects in state i, then it rejects in higher states. If H" = 
DO, then there exists i* such that e(i*) = r. 

Pmu& We employ Corollary 7.5.4. First consider any stationary policy f .  
Since at most one packet can be served in any slot and po > 0, it follows that 
i 2 1 leads to 0 in the MC induced by f, and that the only path is i -+ (i - 1) - ( i - 2 )  --*r ... - 1 + 0. 

Now let d be the policy that always rejects; we claim that d is 0 standard. 
Now P&i) = 1, and hence R,t = (0). We must show that d E %*(i,O) for 
i 1 1 .  Starting in state i ,  no new batches enter the system. The expected time to 
serve a packet is l/p, and hence m,o(d) = i / p ,  The expected cost of serving the 
first packet is ( H ( i )  + R ) / p ,  and similarly for the second, and so on. Thus we 
see that c,,,(d) ( K ( i )  + Ri) /p .  Then the first cIaim in (i) follows from Lemma 
7.6.2 and Corollary 7.5.4. 

Using (7.9). we can easily see that the ACOI is given by 

J + h(i)  2. H f i )  + min{R + phfi - 1) + ( 1  - p)h(i) ,  

Then (7.42) is obtained by subtracting ph( i  - I )  + ( I  -- p)h( i )  from both sides 
of (7.43). This proves (i). 

To prove (ii), we employ Theorem 7.4.3(iv). Recall that for i 2 1 we have 
M ( i )  =- c,o(d) = ( K ( i )  + Ri) /p .  Then C p,M(i + j )  ": p, { K ( i  + j )  + R(i + j ) } ,  
which is finite under the assumed conditions. Theorem 7.4.3(iv) then verifies 
that the ACOE holds. 

Now assume the conditions in (iii). We verify the (BOR) assumptions for 
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the policy d that always rejects. We have seen that (BOR1) holds and note that 

Since H is increasing and H(0)  = 0, there must exist a state x with the fol- 
lowing property: For i f j0,x) we have H ( i )  I R but H(x + 1) > R. Choose 
E > 0 such that R + E < H(x + 1). Then the set D in (BOR2) is precisely the 
interval [0, x], and hence (BOR2) holds. 

To verify (BOR3), it is sufficient to construct a stationary policyf with pos- 
itive recurrent class Rf 2 [O,x] and such thatf has finite average cost on R f .  
(BOR3) will then follow from Propositions C. 1.4(iv) and C.2.2(iv). 

First assume that s = -, and let f be such that f (0 )  = u and f( i) = r for i 2 1. 
Observe that f induces an irreducible MC on [O, -). We claim that the chain 
is positive recurrent. Using what has been proved for d,  we see that rnm(f) 
= 1 + & f O  p,m,&) = 1 + X/p. Similarly cw(f) = x, f ;o  p,c,o(d) is finite by 
assumption. Hence Jf  c m. 

Now assume that s < -. If x = 0, then the policy that always rejects will 
fulfill the conditions. Next assume that x 2 1. Define f(i) = u for 0 5 i < x, 
and f(i)  = r for i 2 x .  It is easy to see that [0, x - 1 + s] is a communicating 
class containing [0, x]. Observe that from this class no state outside the class 
can be reached. Hence this class forms a finite state MC, and by Section C.3 
it is positive recurrent with finite average cost. This completes the verification 
of the (BOR) assumptions. 

If e is an optimal stationary policy, then it follows from Theorem 7.5.6(ii) 
that the MC induced by e has a positive recurrent state i. If i > 0, then it leads 
to 0, and hence 0 must lead to i. This implies that i and 0 are in the same 
communicating class, and hence the MC is positive recurrent at 0. This proves 
(iii). 

Now assume that e realizes the ACOE. We have shown that the MC induced 
by e is positive recurrent at 0. It is clear that there cannot be two positive 
recurrent classes. Hence it follows from Theorem 7.5.6(iii) that e is 0 standard. 

To prove the next claim it is sufficient to prove that if e(i) = r, then e(i+ 1) = r. 
From (7.42) it is easy to see that this holds if H*(i)  is increasing in i .  Moreover 
H * ( i )  is increasing in i if the following holds: For each fixed j ,  h(i + j )  - h(i)  
is increasing in i. Because this is a sum of one-step increments, it is cfear that 
this holds if the following statement is true. 

J d  = R. 

(*) For i 2 0, h(i + 1) - h(i) is increasing in i. 

It remains to prove (*). Suppose that the process starts in state i + 1. It must 
pass through state i in a first passage to 0. Letting G = ( 2 ) .  it follows from 
Theorem 7.4.3(i) that 

The quantity on the right of (7.44) is the J revised cost of a first passage from i 
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+ 1 to i. In each slot of the first passage, we can think of the “cost” of C(i, e) J 
being incurred. 

It follows from Lemma 7.4.2 (with G = { i } )  that if 8 is any policy with finite 
J revised cost from i + 1 to i ,  then this J revised cost is bounded below by the 
right side of (7.44). This leads to the important idea that the optimal stationary 
policy e from the ACOE minimizes the J revised cost of a first passage from 
i +  1 toi. 

The argument to prove (*) may be completed as follows: Fix states k < j .  
Probabilistically both situations are exactly the same except that the holding 
costs in states abovej arc uniformly at least as great as the corresponding hold- 
ing costs in states above k. Therefore the minimum J revised cost fromj + 1 
t o j  must be at least as great as the minimum J revised cost from k + I to k. 
This proves that (*) holds. 

It remains to prove that if H” = 00, then e must reject batches for a large 
enough buffer content. Let W = lim, + H*(i). If we can prove that W = 00, 

then the result follows from (7.42). Since s 2 1, we may fix j *  1 1 such that 
p, > 0. Then h(i + j  *) - h(i) 2 h(i + 1 ) - h(i)  2 W ( i  + 1 )  - J. The last inequality 
follows by (7.44) and the observation that a revised cost of at least W ( i +  1 ) - J 
is incurred at every stage of the first passage. Hence H * ( i )  2 p,*[h(i+j *)- h(i)]  
1 p,*(H(i + 1) - J ) .  Since W- = 00, we must have W = 00. This completes the 
proof of (iv). 0 

Example 7.6.4. This is Example 2.1.2. Let Afof = I: jnpj be the nth moment 
of the arrival process, with A(’’ = h. The basic assumptions (BA) are as follows: 

(BAI). The holding cost H ( i )  is increasing in i. 

(BA2). There exist a (finite) constant B and nonnegative integer n such that 
H(i) 5 Bi“ for i 2 0. 

(BAS). We have 0 4 A c aK and A(”+ ’ )  c DQ. 3 

Observe that 0 c h < a~ implies that 0 < po < 1. It makes sense to assume 
that C(a) is increasing in a, but suprisingly this is not necessary for our results. 

Lemma 7.65. Assume that (BAI) hoIds. For cx E (0, I )  and a zero terminal 
cost, u ~ , ~  is increasing in i for n 2 0. Hence V ,  is increasing in i. 

Pro08 Recall that in Problem 3.2 you were asked to develop the finite 
horizon optimality equation for this model. In Problem 3.11(i) you were asked 
to prove that the finite horizon value function is increasing in i .  This holds for 
a terminal cost of 0. a 

Lemma 7.6.6. Assume that (BA2-3) hold. Let d be the stationary policy 
that always serves at rite U K  and let c =: aK - X > 0. Then: 
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(i) Any stationary policy induces an irreducible MC on [O, -). 

(ii) The policy d is standard with R d  = [O,  00). 

(iii) We have nta(d) I i / e  for i 2 1, and m(&) I I + A/€- 
(iv) There exists a (finite) constant D such that c,&) 5 Di"+ ' for i 2 I ,  and 

co&i) 5 DX'" .+ '1. 

Pruof Under any stationary policy there is a positive probability of no 
batches arriving as well as a positive probability of a batch arriving and a service 
not being completed. Hence all states communicate with 0, and (i) holds. 

If we can prove (iii-iv), then (ii) will follow. To prove (iii), we apply Corol- 
lary C. 1.6 with z = 0 and y( i )  = i. Then the first inequality in (C. 10) holds, since 
A < -. The left side of the second inequality becomes 

Since A - UK = - E ,  it follows that nzlO(d) I i / c .  Moreover we have m&l) = 

To prove (iv), we apply Corollary C.2.4 with r(i) = Ki"", where K is a 
positive number to be specified later. The first inequality in (C.16) holds for 
i 2 0. since A("+ c -. Note that 

1 + & +()Pjmjo(d) 5 1 + XJe. 

After some algebraic manipulation we find that the: left side of the second 
inequality in (C. 16) may be written as 

(7.47) 

We see that A("+ ' )  is the largest moment involved, and hence Q(i> is finite; 
note that it is a polynomial in i of degree n. By letting u = 11, we find that its 
leading coefficient is -Ke(n + 1). 

Consider the requirement Q ( i )  I; -C(i ,d) in (C.14). This is true if Q(i) I 
-(H(i) + C(UK)). It is equivalent to Q(i) + H(i)  + C(a,) I 0. So it is clearly 
sufficient to prove that U(i)  =: Q(i] + BF + C(a,) 5; 0. 

Now U is a polynomial in i of degree n with leading coefficient -Ke(n+l)+B.  
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If K is chosen to satisfy K > B[e(n+ l ) ]  I ,  then the leading coefficient of U is 
negative. 

A polynomial with negative leading coefficient is negative for sufficiently 
large i, say i > i*. Then we may let H* = [O, i*], and the hypotheses of Corollary 
C.2.4 hold. 

Then from Corollary C.2.4 and (iii) it follows for i 2 1 that c,o(J) I Ki"+ 
+ Fi/E I Din+ I ,  where D = K + F / E .  Finally cW(d)  = x, p,c,o(d) I DX(n+ I ) .  

Here is the main result. 

Proposition 7.6.7. Assume that the (BA) assumptions hold. Then: 

(i) The (SEN) assumptions hold, and the ACPE i s  valid. Moreover h is 
nonnegative and increasing in i. Letting H ( i )  = z, p,[h(i + j )  - h(i+ 
j - I ) ]  for i 2 I ,  the ACOE may be written as J - 2 p,h( j )  for i = 0, 
and 

(ii) If H ( i )  is unbounded, then (CAV') holds, and any optimal stationary 
policy e is standard with Re = [O, =). If C(u) = Cu + C for a positive 
constant C and for C" 2 -H(l), then e = d. 

(iii) Assume that H ( i )  i s  unbounded, and let e be a stationary policy realizing 
(7.48). Assume that e breaks ties by always choosing to serve at the 
lowest rate satisfying (7.48). Then e(i) is increasing in i and eventually 
chooses rate U K .  

Proof: The proof of (i) is very similar to the proof of Proposition 7.6.3(i-ii) 
and is left as Problem 7.10. 

To prove (ii), observe that the (CAV") assumptions clearly hold for d. Fmm 
Theorem 7.5.6(ii) and Lemma 7.6.6(i), it follows that the MC induced by e is 
positive recurrent on [O, -). Since J ,  J < m, it is the case that e is standard. 

Now assume that C(u) - Cu + C* as in (ii). We wish to prove that e = d. 
We employ Proposition C.i.7. The drift y,(e) is easily calculated to be yo = X 
and r,(e) = X - e(i) for i 2 1. 

Now by Proposition C.1.7 it follows that the mean drift C r,(e)-yl(e) - 0. 
This implies that Z;, r,(e)e(i) z A. Then 
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m 

(7.49) 

The problem of minimizing the average cost then becomes equivalent to min- 
imizing the average “holding cost” for a holding cost of 0 in state 0 and U(i)  
+ C* 2 0 in i 2 1. But it i s  clear that this is minimized by always serving at 
maximum rate; hence e I d. This proves (ii). 

We now prove some facts about H*(i). Since h is increasing in i, i t  follows 
that H * ( i )  2 0. Using the same argument as in the proof of Proposition 7.6.3, 
it may be shown that h(i + j )  - h(i + j  1) is the minimum J revised cost of 
a first passage from i + j to i + j  - 1 and that this quantity is increasing in i 
for each fixedj. This implies that H*(i )  is increasing in i. Moreover we have 
H*(i) 2 polh(i) - -  h(i - 111 = po[ct, - t (e )  - ~ m , ,  - I (ell 2 p o ( ~ ( i )  - J ). Since H is 
unbounded, it follows that H* is alsc! unbounded. 

From (7.48) it follows that e(k) satisfies 

and that the inequality in (7.50) is strict for a < e(k). Now assume that e(i) > 
r(i+ 1). We wish to obtain a contradiction. Applying (7.50) and the convention 
to k = i yields 

(7.51) 

Applying (7.50) to k = i + 1 yields that H*(i + 1) is less than or equal to the 
quantity on the right of (7.51). This contradicts the fact that H* is increasing 
and thus proves that e(i) is increasing in i. 

Now assume that e does not eventually serve at rate aK. Because there are 
only finitely many rates, there must exist a rate a* c ax and a sequence i, .--) 

00 such that e(i,) = a*. Then (7.51) yields 

C ( U K )  - C(U*) 
H*(i , )  5 * -  a~ - a 

(7.52) 

But this contradicts the fact that H* is unbounded. i t  proves (iii). a 

The result for linear service costs is a somewhat counterintuitive result. Per- 
haps it can be said that when C* 2 - H ( l ) ,  then the balance requirement in 
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Proposition C.1.7 dominates and forces maximum service. Note that if K = 2, 
it is not necessarily true that the optimal policy equals d. The reason is that 
even though C(a) is linear in a in this case, we may have C* < -H(l). 

Exumpk 7.6.8. This is Example 2.1.4. To simplify the presentation, we 
assume that K = 2 and that there is no cost for changing the routing deci- 
sion. Hence S = { ( i l , i t ) ( i l  and i2 nonnegative integers}. Rather than attempt- 
ing to prove the most general result possible, we give assumptions under which 
(CAV*) holds. The basic assumptions (BA) are as follows: 

(BAZ). The holding cost H k ( i k )  is increasing and unbounded for k = 1, 2. 

(BA2). There exist a (finite) positive constant R and nonnegative integer n 
such that Hk(ik) I Bi; for k = I ,  2. 

Note that 0 < h implies that po c 1. Afixed splitring is a randomized station- 
ary policy d(w) defined by the probability distribution (w, 1 - w). The inter- 
pretation is that an arriving batch is sent to the first server with probability w 
and to the second server with probability 1 - w. This is implemented by a ran- 
domization that is performed before the batch size is observed. Recall that the 
arrival slot is taken up with routing and packets are available for service in the 
following slot. 

We have discussed the fact that any randomized stationary policy induces a 
MC on S. In this case the costs are C(i,d(w)) I N l ( i l )  + Hz(i2) .  For i I  and iz 
both positive, we have, for example, Pitr, &,, rl I , (d(w)) = wp,( 1 - p i  )p2. Other 
transition probabilities are obtained similarly. 

Lemma 7.6.9. Assume that (BA2-3) hold, and let w = p 1 /@I + pz). Then 
d(w) is standard with Rd,,, = S. 

Pmofi One can easily see that any fixed splitting with 0 < w' < I induces 
an irreducible MC on S. Such a fixed splitting actually induces two independent 
MCs, one governing the first buffer and the second governing the second buffer. 
Each buffer behaves as in the previous example, with a fixed service rate. 

Now let w - pl/(pl + p2). We apply the result in Lemma 7.6.6. The first 
buffer has mean arrival rate wh and service rate p 1 .  Since wk < p ~ ,  it follows 
from Lemma 7.6.6 that the induced MC is positive recurrent. It also follows 
that the average cost J d c ,  )( 1)  for the first buffer is finite. Similar remarks are 
valid for the second buffer. 

Then the MC induced by d(w) is positive recurrent and q ( d ( w ) )  = 
T,, (d(w)).n,,(d(w)), since the two buffers operate independently. Moreover we 
see that 
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and hence the average cost under d(w) is the sum of the average costs associated 
with each buffer. CI 

Proposition 7.6.10. Assume that the (BA) assumptions hold. Then the 
(CAV') assumptions hold and any optimal stationary policy is positive recurrent 
at (0, 0). 

Yrrx$ Clearly Lemma 7.6.9 and (BAI) imply that (CAV*) holds. Let e be 
an optimal stationary policy. Then the MC induced by e ha. a positive recurrent 
state. Assume that it is i it (0,O). It is easy to see that i leads to (0, 0) under 
any stationary policy. Hence (0, 0) and i must communicate, and thus the MC 

0 is positive recurrent at (0, 0). 

Problem 7.11 asks you to prove some additional properties associated with 
this example. 

7.7 WEAKENING THE (SEN) ASSUMPTIONS 

The (SEN) assumptions and the stronger (BOR) and (CAV) assumptions suffice 
for many models we wish to optimize under the average cost criterion. In certain 
models none of these assumption sets can be verified, and we need weaker 
assumptions. In addition there is merit in "picking apart" the proof of Theorem 
7.2.3 to determine exactly what makes i t  work. We will not attempt to find the 
absolutely weakest conditions under which the conclusions of Theorem 7.2.3 
hold. Rather, we give a usefui set (H) of assumptions under which they hold. 
It will be clear from the proof of Proposition 7.7.2 how to hurther weaken (H) 
if necessary. 

The set (H) of assumptions is weaker than (SEN). The idea is to weaken 
(SEN3) by allowing the constant L to be a function. In this case additional 
assumptions are required. The (H) assumptions are as follows: 

(HI) = (SENI). 

(H2) = (SEN2). 
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(H3). There exists a nonnegative (finite) function L such that -L(i)  I h,(i) 
for i E S and 01 E (0, I) .  

(H4). We have xi P,(a)L( j )  < for i E S and a E A,. 

(Ws). Let h be any limit function and e any stationary policy. Then for all 
initial states. we have: 

(i) -- c E,[h(X,,)] for n 2 2, 
(ii) lim inf,, - ID EP[h(X,,)]/n 2 0. 

The next result shows the relationship among (SEN), (H), and a slightly 
stronger version of (H), which we denote by (H*). 

Proposition 7.7.1. Let (H*) be the set (H) of assumptions with (HS) 
replaced by: 

(H*5). Given any stationary policy e and any initial state, we have the fol- 
lowing: 

(i) E,[L(X,,)] < 00 for n 12, 
(ii) limn - oc. E,[,!.,(X,t)]/n 0. 

Then (SEN) =j (H") 3 (H). 

Pro08 Assume that the (SEN) assumptions hold, and set L(.) = L from 
(SEN3). Then clearly (H3-4) and (H*5) hold for the constant L. Hence (H*) 
holds. 

To prove that (H*) =j (H), it is sufficient to show that (H*5) --$ (H5). To 
show (H5). let h be a limit function and let e be a stationary policy. It follows 
from (H3) that -E,[L(X,)] I EJh(X,)]. This together with (H"5) easily implies 
035)- 0 

Here is the existence result under (H). 

Proposition 7.7.2. Let A be an MIX fur which the (H) assumptions hold. 
Then the conclusions of Theorem 7.2.3 are valid where L is the function from 
W3). 

Pronfi We will follow the approach in the proofs of Lemma 7.2.1 and The- 

An examination of the proof of Theorem 7.2.3 shows that the steps continue 
orem 7.2.3 and indicate the necessary changes. 

to be valid under (H) up to and including (7.16). We may write (7.16) as 
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J 

where (H4) implies that the term added to each side is finite. We then take 
the limit infimum of both sides as before and use Proposition A. 1.7 to justify 
moving the limit infimum across the summation. This yields (7.17) and thus 
the ACOI (7.9). 

Let e be a stationary policy realizing the minimum in (7.9), and observe that 
(7.4) holds for e. Now examine the proof of Lemma 7.2.1. To avoid introducing 
an indeterminate form in (7.6), it is necessary to have --oo < E,[h(X,,)] c 00 for 
all P I .  The right inequality follows as in the proof of Lemma 7.2.1. The left 
inequality, for n 12,  is (H5)(i). For n = I it follows from (H3-4). 

The proof then proceeds as before, where (7.7) becomes 

We then take the limit supremum of both sides and use (HS)(ii) to obtain 

This proves that J,( i )  I J. 
Going back to the proof of Theorem 7.2.3, we see that (7.18) is valid. This 

proves that e is optimal with constant average cost J .  The arguments for (i) and 
(iv) are as before. 

To prove (7.10), use (iv) and take the limit infimum of both sides of (7.55) 
to obtain J 5; J - Iimsup,, E,[h(X,)]/n, This together with (HS)(ii) yields 0 I 
lim inf, E,[h(X, )J /n  I; lim sup, Ee[h(XJ] /n  I 0, which proves (7.10). 

The proof of (iii) is similar, and we omit it. n 

Here is a useful set of sufficient conditions for the (H*) assumptions to hold. 

Proposition 7.73. Assume that there exists a distinguished state z such 
that the following conditions hold: 

(i) There exists a (finite) function B such that rntz(e) I B(i) for all stationary 

(ii) For all i E S and any stationary policy e, we have &(e) c 00, where 

(iii) There exists a stationary policy d such that c,,(d) c m for all i E S. 

policies e and i E S. 

this is the B cost of a first passage. 
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Then the (H") assumptions hold. 

Proqf: It follows from (I) and (iii) that d is z standard. It then follows from 
Proposition 7.5.3 that (HI-2) hold. Notice also that every stationary policy is 
z standard with respect to the B cost. 

Assume that the process starts in i # z and operates under the discount 
optimal stationary policyf,. It must reach z in a finite expected amount of time; 
let T,  be the time to reach z. In a similar manner to (7.24), and suppressing the 
initial state, we obtain 

rr,- I 1 

T h i s  implies that 

t.7.57) 

(7.58) 

By (Hl)  there exists a (finite) number U such that (1 - a)V,(z)  I U. We 
know that (1 - aT')/(l - a> I, T,,  and hence we see that h,(i) 2 - nz,;(f,)U 2 
-lJB(i). Thus we may let L(i) = LIR(i) for i # z .  This verifies (H3). 

It is sufficient to verify (I-14) and (H"5) for the function B and an arbitrary 
stationary policy e. Since e is standard with respect to the B cost, it follows 
from Proposition C.2.6 that the average B cost is finite and is obtained as a 
limit. Let the average B cost be denoted by K,. The fact that K, < 00 implies 
that (H4) and (H*5)(i) hold. 

Now let w , ~  be the expected n horizon B cost under the policy e. Then we 
have 

The limit of the term on the left exists and equals K, < =. as does the first 
term on the right. Hence the limit of the second term must exist and equal 0, 
and this proves (H"S)(ii). 0 

Here is an example for which the (H*) assumptions hold but for which the 
(SEN) assumptions may fail. 

Example 7.7.4. This is a priority queueing system. The setup i s  shown in 
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Fig. 1.4, but with two buffers. There is a single server and the probability of 
a successful service in any slot is p, where 0 < p < 1. Services slot to slot are 
independent, Buffer 1, containing priority customers, has priority over buffer 
2. 

The state of the system is ( i ,x ) ,  where i is the number of packets in buffer 
I and x the number in buffer 2. The probability of a batch of size j arriving to 
buffer 1 is p, and (independently) the probability of a batch of size y arriving 
to buffer 2 is 9,. Let (respectively, w‘“) )  be the nth moment of the arrival 
process to buffer 1 (respectively, buffer 2). 

The server always serves the priority queue if there are packets in its buffer. 
When its buffer is empty, then the server is free to serve packets in buffer 2. 
Observe that the priority buffer is not affected in any way by the second buffer 
and does not even “see” it. Control may be exercised on the second buffer. The 
action a results in a batch arriving to buffer 2 being admitted, whereas action 
r results in the batch being rejected and lost. 

There is a nonnegative holding cost H(x)  on the content of buffer 2 and a 
nonnegative rejection cost of R(i) for choosing action r. Observe that the cost 
of rejecting a batch arriving to buffer 2 may depend on the content.. of buffer 1. 
We will be assuming that R(i) is decreasing in i. As the priority buffer becomes 
fuller, it costs less to reject batches to the second buffer. This has the effect 
that when the first buffer does clear, the second buffer will not be overloaded. 
Formally we have C[(i ,  x ) ,  a1 = H(x)  and C[(i, x) ,  rl = H(x)  + R(i). 

The basic assumptions (BA) for this model are as follows: 

(BAZ). There exist a (finite) constant U and integer tr 2 1 such that H ( x )  I 
Ux”. 

(BA2). The rejection cost R(i) is decreasing in i .  

(BA3). We have X + w < p. 

(BA4). The moments A(“+’) and o(”+’) are finite. D 

Proposition 7.75. Assume that the (BA) assumptions hold. Then the (H-) 
assumptions hold. For at least one value of the rejection cost, the (SEN) assump 
tions fail to hold. 

Pros$ We verify that the conditions in Proposition 7.7.3 are satisfied. We 
will show that any stationary policy e is z = (0, 0) standard. Let E =: p - (X + 
w )  > 0. We employ Corollary (21.6 with y( i .x )  = i + x.  It is easy to see that 
(C.10) holds and yields m(i,x)z(e) S ( i  + X)/E for ( i , x )  f z. Moreover we have 
ni,,(e) I P I E .  Hence (i) holds with B(z) = p / ~  and B(i,x) = (i + X ) / E  for ( i , x )  
# z. 
Now turn to the expected cost of a first passage to z. Since R(i) is decreas- 

ing, it foIlows that R(i )  I R(O), and hence the rejection cost is bounded. It is 
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sufficient to show that the expected holding cost gt,,.k(e) of a first passage is 
finite. This may be done in a similar way to the proof of Lemma 7.6.6 with 
r ( i , x )  = K(i + x)n+ I .  We leave the details to Problem *7.12. This proves that 
(iii) holds for any stationary policy. 

It remains to show that the expected B cost of a first passage is finite. This 
follows from the definition of B and from what we have claimed (and left as 
a problem) for the first passage holding costs. The reason is that in (BAl) we 
have assumed that n 2 1, and hence by (BA4) the second moments are finite. 
Then the proof for the finiteness of the first passage holding costs also yields 
the finiteness of the first passage B costs. This verifies that the conditions in 
Proposition 7.7.3 hold, and hence that (H*) holds. 

Let us now argue that for some value of the rejection cost, (SEN3) fails to 
hold. The key is to observe that the result in Lemma 7.4.2 remains valid under 
(H*) if the function L is bounded on the set G. This is easy to check, and 
we leave it to the reader. Now let d be the policy that always rejects arriving 
batches to buffer 2. Then it follows from Lemma 7.4.2 (with G = {z}) that 
W , O )  5 q , . o M  - Jw,,d&. 

Let m be the expected time to go from i to i - 1 in buffer I (clearly these 
times all have the same distribution). Then r n ( , , ~ , ~ ( d )  = im. Moreover c ( , , ~ , ~ ( d )  
-- rn(R(i) i R(i - 1) + . . . t R(1)). 

Let us choose R(i )  = I / i  for i 2 1, with R(0) 2 I arbitrary. Then 

(7.60) 

As i -+ DO, the expression in square brackets on the right of (7.60) approaches 
a constant y, known as EuIer’s constant. See Apostol (1972) for details. Thus 
lim, - (In i - J i ) ]  = -=. This implies that (SEN3) cannot 
hold. 

h(i) 5 rn[r + limi + 

Remark 7.7.6. Several weaker “sequence versions” of the (H) assumptions 
can be given. For example, assume thatf,, - f for some sequence of optimal 
discount policies with ol,, -+ 1-. We can mod@ (H) to guarantee only that the 
particular limit pointf is average cost optimal. Problem ‘7.13 asks you to give 
such a set (H), of assumptions and to determine how the statement of Theorem 
7.2.3 should be modified. n 

BIBLIOGRAPHIC NOTES 

The subject treated in this chapter has a large and diverse literature, making it an 
especially difficult topic for a person not immersed in the details. One purpose 
of Chapter 7 is to organize results and fit them into an intelligible framework. 
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We now attempt, to the best of our ability, to give credit to the originators of 
the ideas in this chapter. 

Reward versions of Examples 7.1.3 and 7.1.4 appear in Ross 11983) and 
Puterman (1994). Example 7.1.5 is due to Ross (197 1) and also appears in Ross 
(1983). Fisher and Ross (1968) contains a more complex example of an MDC 
with no average cost optimal stationq policy but for which every stationary 
policy gives rise to an irreducible standard MC. 

The results in Section 7.2 are largely from Sennott (1989a). Lemma 7.2.1 
appears there. The version of the aqsumptions given in Sennott (1989a) dif- 
fers slightly from the (SEN) assumptions. This current version, which appears 
in Sennott (1993), is clearer than the original version. For some additional 
coments, see Cavazos-Cadena (1991 c). 

Theorem 7.2.3 is a modification of the main result in Sennott (1989a). Part 
(iv) i s  new and is based on Proposition 6.1.1 (iii) + (ii). This result is classical 
(see Bibliographic Notes for Appendix A), but we were unaware of it when 
Sennotr (198Ya) was written. 

A somewhat similar set (SCH) of assumptions is presented in Schal (1993) 
for general (uncountable) state spaces. Problem 7.6 shows that (SEN) and 
(SCH) are equivalent. 

The impetus for the (SEN) assumptions came from a realization that the 
assumptions in Ross ( I  983) could be weakened. The results in Ross (1  983) were 
based on Ross (1968). Earlier pivotal work is Taylor (1965) and Dermdn (1966). 

The example in Section 7.3 is a minor modification of the one in Cavazos- 
Cadena ( 1 99 1 b). 

The idea for Lemma 7.4.1 comes from Theorem 2.4 of Ross (1983) and 
is used in Sennott (1986a), which is an early version of Sennott (1989a). The 
impetus for the rest of the material in Section 7.4 comes from Cavazos-Cadena 
(1991a) where many of these results are proved under somewhat stronger 
assumptions. We modified the proofs to hold under the (SEN) assumptions in 
Sennott (1 993). The proofs presented here have been simplified from the earlier 
versions. Additional references are Dennan and Veinott (1967) and Makowski 
and Shwartz (1994). 

Lemma 7.5.2 appears in Cavazos-Cadena and Sennott (1992). The ideas in 
Proposition 7.5.3 and Corollary 7.5.4 appear in Sennott (1989a). Proposition 
7.5.5 is based on a result in Cavazos-Cadena (1989). 

The assumptions in Theorem 7.5.6 are a modification of an important line of 
development due to Borkar (1984, 1988, 1989). The Borkar (1991) monograph 
summarizes his convex analytlc approach. The (BOR) assumptions given in 
Theorem 7.5.6 are weaker than the original assumptions in these papers. 

The proof that (BOR) - (SEN) appears in Cavazos-Cadena and Sennott 
(1992). The version of (BOR) given in Cavazos-Cadena and Sennott (1992) is 
stronger than this version, which appears in Sennott (1993). The idea for the 
proof of (ii) comes from Cavazos-Cadena (1989). Some parts of the proof of 
(iii) are in Sennott (1993) and some are new. 

Theorem 7.5.6 shows that strong conclusions hold under (BUR), and for this 
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reason it i s  an important set of assumptions. Remark 7.5.7 makes reference to 
another set (WS) of assumptions that appears in Stidham and Weber (1989). 
We have presented a slightly modified version of this set in Problem 7.7. It 
lies strictly between (BOR) and (SEN). Part (iii) of Problem 7.7 shows that the 
conclusions that can be drawn from (WS) are not quite as strong as those that 
can be drawn from (BOR). 

Remark 7.5.8 mentions an example in Sennott (1993) that presents a limitit- 
tion of the conclusions that can be drawn from (BOR). 

The (CAV*) assumptions appear in Cavazos-Cadena (1989), and the (CAV) 
assumptions are a slight modification of those. An earlier paper by Wijn- 
gaard (1978) approaches the Cavazos-Cadena concept but with additional strong 
assumptions. 

Example 7.6.1 is treated in Sennott (198%) and again in Sennott (1993). 
The argument for the form of h and the monotonicity of the optima1 policy 
appears (in a slightly less concise way) in Sennott (1993), and these ideas are 
a minor generalization of results in Stidham and Weber (1989). The seminal 
Stidham and Weber paper gives fresh ideas about proving structural properties 
for optimal average cost stationary policies. The arguments are for continuous 
time but are easily adapted to discrete time. 

Example 7.6.4 is treated in Sennott (1  989a) and again in Sennott (1993). The 
crucial argument in Lemma 7.6.6 appears in Sennott (1989a). The argument 
concerning the structural properties of an optimal stationary policy appears in 
Sennott (1 993) and is based on results in Stidham and Weber ( I  989). 

hdmple 7.6.8 is discussed in Sennott (1997b). 
The (H*) assumptions appear in Sennott (1995) in a slightly different form. 

The (H*) assumptions are most closely related to Hu (1992) and ii whole devel- 
opment due to Hordijk and other researchers. Hordijk (1976, 1977) initiates this 
line of development. The assumptions are related to those in Proposition 7.7.3 
but are not identical to our assumptions. In Hordijk (1976) a Lyapunov con- 
dition is assumed, and this work i s  extended in Hordijk (1977). Other work 
is Federgruen and Tijms (1978), Federgruen, Hordijk, and Tijms (l979), and 
Federgmen, Schweitzer, and Tijms (1983). The conditions in these papers are 
closely related (but apparently not identical) to the assumptions in Proposition 
7.7.3. Other development is presented in Spieksma (1990). 

A large survey of many approaches to the existence question is presented in 
Arapostathis et al. (1993). Work on extending the (SEN) assumptions has been 
performed by Hernandez-Lerma and other researchers. Hernandez-Lerma and 
Lasserre (1990) extend the existence result to the case of Bore1 state spaces. 
An extension is also given in Ritt and Sennott (1992). Some of the above refer- 
enced papers also deal with more general state spaces than covered in this book. 
Hernandez-Lerma ( 1  99 1 ) involves an extension of the Schal assumptions to the 
case of unbounded action sets. Other related work is Hernandez-Lenna (1 993) 
and Montes-de-Oca and Hernandez-Lerma (1994). This Iine of deveiopnent 
has culminated in the book by Hernandez-Lerma and Lasserre (1996). 

For an example related to the average cost criterion, see Rynn (1974). 
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PROBLEMS 

7.1. For the policy 6 in Example 7.14, prove that Je(1) = 0. 

7.2. Complete the proof of Theorem 7.2.3(iii). 

7.3. Fill in the details in the derivation of (7.24) in the proof of Lemma 7.4.2. 

7.4. Fill in the omitted details of the proof of Theorem 7.5.6. * 

7.5. This problem shows that some tempting modifications of the (SEN) 
assumptions are actually equivalent to (SEN). 
(a) Consider the statement: (*) There exists at) E (0, I)  such that (1 - 

a)V , ( z )  is bounded for a E (ao, I ) .  Show that (SENI) w (*). Hence 
nothing is gained by replacing (SENI) with (*). 

(b) Consider the statement: (**) There exist (YO E (0, l), a finite non- 
negative function M, and a finite nonnegative constant L such that 
- L  5 h&) 5 M ( i )  for i E S and a E (ao, 1). Show that (SEN2-3) 
w (**). Hence nothing is gained by replacing (SEN2-3) with (**). 

7.6. Define w, = infi. s Vcx(i) .  Consider the following set (SCH) of assump- 
tions: 

(SCHZ). The quantity ( I  - a)w, is bounded for a E (0, I ) .  

(SCHZ). 
for i E S and a E (0,I). 

There exists a (finite) function W such that V,( i )  - w, I W ( i )  

Prove that (SEN) holds if and only if (SCH) holds. 

*7.7. Ctmsider the following set (WS) of assumptions: 
(WSI) = (BORl). 

(WS2). The set D* = {ilC(i,a) 2 J(/  for some a} is finite. 

(WS3). Given i E D* - Rd.  there exists a policy 6, E ?)1*(z, i). 
(a) Prove that (BOR) I--> (WS) -3 (SEN). The proof of (SEN3) follows 

with minor modifications to the proof of Theorem 7.5.6(i). Check the 
details. 

(b) Let e be an optimal stationary policy and D(e) = { i lC(i ,e)  I J}. Prove 
that e has at least one positive recurrent state in me).  

(c) Construct an example for which (WS) holds but such that e realizing 
the minimum in (7.9) satisfies e e %(i, m e ) )  for some i .  This exam- 
ple shows that while (WS) is only slightly weaker than (BOK), it 
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cannot guarantee that an optimal stationary policy realizing the ACOI 
induces an MC with a "nice" structure. 

7.8. Prove Corollaries 7.5.9 and 7.5.10. 

7.9. Prove Lemma 7.6.2. 

7.10. Prove Proposition 7.6.7(i). Hint: This follows much as the proof of Propo- 
sition 7.6.3(i-ii). 

7.11. This problem concerns Example 7.6.8. Assume that (BA) holds. 
(a) Give the finite horizon discounted optimality equations. 
(b) Prove that ~ ~ . ~ ( i ~ ,  i z )  i s  increasing in one coordinate when the other 

coordinate is held fixed. Hint: Prove this by induction; it is only nec- 
essary to argue it for the first coordinate. 

(c) Use the result in (b) to prove that the (SEN) assumptions hold even 
if the holding cost$ are bounded. 

(d) Now assume that there exists a cost for changing routing decisions. 
Show that the (CAV*) assumptions still hold. Hint: What is the new 
state space, and how does it behave under d(w)? 

7.12. Fill in the omitted details in the proof of Proposition 7.7.5. 

7.13. Carry out what is requested in Remark 7.7.6. 

* 

* 

7.14. There is a single server, and the probability of successfully serving a 
packet is p, where 0 c p < 1. This server serves two buffers (see Fig. 
I .4). The probability of a batch of size j arriving to the first buffer is p,, 
and the probability of a batch of size y arriving to the second buffer is 
q,, The two anival processes are independent, and A'"' (respectively, w(")) 
is the nth moment of the arrival process to the first buffer (respectively, 
second buffer). 

In each slot the decisions are a = serve (or be in front of, if it is empty) 
buffer 1, and b = serve (or be in front of, if it is empty) buffer 2. Let 
( i , x )  denote the buffer status, where i is the number of packets in the 
first buffer and x the number in the second buffer. There are nonnegative 
holding costs H ( i )  and K(x)  and a cost for changing buffers. 

The (BA) are: 

(BAI). The holding cost H ( i )  is increasing and unbounded in i and sim- 
ilarly for K(x) .  

(BA2). 
m such that H ( i )  I UP and K(n) I Uxm for i, x 2 0. 

There exist a (finite) constant U and nonnegative integers n and 
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(BA3). We have 0 c p o  < 1.0 < qu c 1, and X + w < p. 

(BA4). 
(a) Set this model up a% an MDC. 
(b) Prove that the (CAV") assumptions hold. 

The moments A(" + I )  and w ( ~  + ' )  are finite. 

7.15. This problem summarizes the relationships among all the assumption sets 
that have been introduced in this chapter. Observe that 

(CAV*) 3 (CAV) + (BOR) + (WS) 7 j  (SEN) 3 (H") 3 (H) 
8 

(7.61) 

The first implication is in Corollary 7.5.10, and the second is in Corol- 
lary 7.5.9. The third and fourth implications are in Problem "7.7. The 
equivalence is in Problem 7.6, and the last two implications follow from 
Proposition 7.7.1. 

Equation (7.61) provides a road map of possible assumption sets to use 
in verifying the existence of an average cost optimal stationary policy. 

The claim is that each of the implications on the top row of (7.61) is 
nonreversible (but we do not concern ourselves with the last implication). 
The example in Problem *7.7(c) shows that (WS) does not imply (BOR). 
Example 7.7.4 shows that (H*) does not imply (SEN). 
(a) Construct an example for which (CAV) holds but for which (CAV*) 

(b) Construct an example for which (BOR) holds but for which (CAV) 

(c) Provide an example for which (SEN) holds but for which (WS) fails. 

fails. 

fails. 



C H A P T E R  8 

Computation of Average Cost 
Optimal Policies for Infinite 
State Spaces 

In Chapter 7 the existence theory was developed for the case of a countable state 
space. By means of this theory we are able to prove that average cost optimal 
stationary policies exist in a wide variety of models. However, the existence 
theory does not yield a method for the computation of an optimal policy. 

In this chapter we develop the approximating sequence method for the com- 
putation of an average cost optimal stationary policy when the state space i s  
denumerably infinite. Throughout this chapter we have an MDC A with a denu- 
merable state space and an approximating sequence (AN). We will require that 
(1) the minimum average cost in AN be constant, (2) the sequence of constant 
minimum average costs in (A,+!) converge to the (constant) minimum average 
cost in A, and (3) any limit point of a certain sequence of optimal stationary 
policies for (AN) be optimal for A. 

It might seem natural to begin with one of the assumption sets from Chap- 
ter 7 for the existence of an optimal stationary policy and then add additional 
assumptions in order to carry out the computational program. However, this is 
not the approach we take. Recall that in Chapter 3 we introduced Assumption 
FH and in Chapter 4 we introduced Assumption DC. both related to properties 
of the approximating sequence. A similar approach is followed in this chapter. 
A set (AC) of assumptions is introduced specifically to guarantee that the com- 
putational program can be carried out. The results in this chapter are largely 
independent of the material in Chapter 7. Selected results from Chapter 7 will 
occasionally be called upon, If the reader has omitted Chapter 7, then these 
results may be scanned as they are needed. 

In Section 8.1 the (AC) awumptions are introduced, and the major result 
of the chapter is proved. In Section 8.2 we discuss the verification of these 
assumptions. 

In Section 8.3 we show how to verify the (AC) aqsumptions for several mod- 
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els, including the single-server queue with reject option, the single-server queue 
with controllable service rates, and the routing to parallel queues model. In Sec- 
tion *8.4 the routing model with a cost for changing the decision is treated. In 
Section 8.5 we give computational results for the single-server queue with con- 
trollable service rates, and in Section 8.6 computational results for the routing 
model are presented. 

Section 8.7 presents a generalization of the (AC) assumptions. This material 
is useful in Chapter 9. 

8.1 THE (AC) ASSUMPTIONS 

Let A be an MDC with a denumerable state space S. The objective is to compute 
an average cost optimal stationary policy. This is done by computing optimal 
stationary policies in an approximating sequence and showing that any limit 
point of these policies is average cost optimal for A. 

We now give a set (AC) of assumptions that allows this to be accomplished. 
Let us assume that we have an AS (A,v)N;. ,v~ for A. The (AC) assumptions are 
a!! follows: 

(ACI). 
such that 

There exist a (finite) constant J N  and (finite) function P” on S,V 

(AC2). We have lim supN, - rN( i )  < 03 for i E S. 

(AC3). There exists a nonnegative (finite) constant Q such that -Q 5 
fim infhr - IIJ r”(i) for i E S. 

(AC4). We have Iim sup, - sa J” =: J *  < 03 and J * I J ( i )  for i E S. 

Here is the major result of the chapter. It utilizes Lemma 7.2.1. 

Theorem 8.1.1. Assume that the (AC) assumptions hold. Then: 

(i) The quantity J * = 1imN - oll J N  is the minimum average cost in A 
(ii) Any limit point g* of a sequence d‘ of stationary policies realizing the 

minimum in (8.1) is average cost optimal for A. 

Pruu) It follows from (ACI) and Proposition 6S.l(ii) that J N  is the con- 



1 70 COMPUTATlON OF AVERAGE COST OPTIMAL. POLlrIES 

stant minimum average cost in AN and that any stationary policy realizing the 
minimum in (8.1) is average cost optimal for A N .  

Let e N  realize the minimum in (8.1). Fix a sequence N,. By Proposition 
B.5 there exist a subsequence Nu of N, an!a stationary policy e* such that 
lim, - - eNu = e". This implies that e N U ( i )  = e ( i )  for sufficientIy large u (depen- 
dent on i ) .  

By (AC4) there exist a subsequence N ,  of Nu and a number Jo such that 
Iim,- Do J N v  = JO < QO. Let w(i)  = lim inf,, rtVLa(i). It follows from (ACZ-3) 
that w is a finite function bounded below by -Q. 

For a fixed state i E S and sufficiently large u, (8.1) may be written 

(8.2) 

Take the limit infimum of both sides of (8.21, and employ Proposition A.2.5 to 
obtain 

Since this argument may be carried out for each i. it is the case that (8.3) holds 
for i E S. 

It then follows fram Lemma 7.2.1 that Jr*(i)  I Jo for all i .  Using (AC4), we 
see that Jc*( . )  I Jo I J *  I; J ( . )  5 Jet( . ) ,  and hence these terms are all qua i .  
This proves that e* is average cost optimal with constant average cost JO = J . 

Since the argument may be carried out for any initial sequence, it follows 
that the h i t  in (i) must hold. 0 

Suppose that an approximating sequence has been constructed for a model 
and that the (AC) assumptions have been verified for a particular sequence r N .  
Let us assume that we can compute r N ,  and hence J" and the resulting average 
cost optimal policy realizing the minimum in (8.1). For N sufficiently large, it 
follows from Theorem 8.1. I that J N  -- J ,  where J is the minimum average cost 
in 4 and that e N  is close to optimal for A 

In practice we will carry out this operation until J N  is varying by less than 
some tolerance and elv is unchanging. Then we may be confident that an average 
cost optimal policy for A has been determined and that a very close approx- 
imation to the minimum average cost has been obtained. For some models a 
complete picture of the optimal policy may not be attainable, and we must be 
satisfied that it has been computed in the region of the state space S of most 
interest. This limitation is illustrated in Section 8.6. 
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8.2 VERIFICATION OF THE ASSUMPTIONS 

We will employ the Value Iteration Algorithm 6.6.4 to calculate an average 
cost optimal stationary policy for AN.  Proposition 6.6.3 justifies the VIA and 
deals with a relative value function rf(i) = uf ( i )  - u;(xN), where the base 
point xN is an arbitrary element of SN. We will verify the (AC) asumptions 
for a fixed base point x. After the discussion of the verification methods ha$ 
been completed, it will be argued that the base point may be chosen arbitrarily 
(and may vary with N ) ,  and the computation will still yield the same average 
cost optimal stationary policy given in Theorem 8.1.1. (Section "8.4 treats an 
example for which the transformation in Proposition 6.6.6 is applied to the AS.) 

Before beginning this development, the reader is advised to skim the material 
in Sections C.4 and C.5 of Appendix C. As you do this, feel free to omit the 
accompanying background results and focus solely on grasping the important 
notion of conformity. We now discuss how to relate the definitions in Section 
C.4 to A and (AN). 

Notice that any stationary policy d for A induces a stationary policy dlN for 
A,v, where we have P,,(dIN) = Pb(d( i ) ;N) ,  i ,  j E SN. A similar result holds for 
a randomized stationary policy. This means that any (randomized) stationary 
policy induces a Markov chain and accompanying approximating sequence for 
that MC as defined in Definition (2.4.1. Now let d be a z standard policy for A 
as defined in Definition 7.5. I .  Then (AN) is conforming af d if the MC and AS 
corresponding to d satisfy Definition (2.4.8. If d is a (randomized) stationary 
policy inducing an MC with a positive recurrent class Rd having finite average 
cost, then the AS is conforming on RJ if i t  satisfies Definition C.4.10. When first 
encountered these notions seem involved, but they are quite naturdl. Informally, 
conformity at d means that the AS is "well-behaved with respect to the MC 
induced by d. Thus steady state probabilities and the average cost under d / N  
converge to the steady state probabilities and average cost under d .  

Here we give a template of four steps to validate the VIA and verify the 
[AC) assumptions. 

Proposition 8.2.1. Let ( A N ) N ~ N ~  be an AS for A, and let x be a dist- 
inguished state (we may assume that x E S, for all N). Carrying out the 
following four step template justifies the use of the value iteration algorithm 
in A M  and verifies that the (AC) assumptions hold for the function r N t . )  = 
Iim, -. duf;i(.) - ut (x ) ) .  

Step 1. Show that every stationary policy for A, induces a unichain MC 

Step 2. Show that there exists an x standard policy d for A such that the AS 

Step 3. Do one of the following: 

with aperiodic positive recurrent class containing x. 

is conforming at d. 



172 COMPLTATlON OF AVERAGE COST OPTIMAL POI.ICIES 

(i) Show that ur(i) 5 u,(i) for all n, N, and i E S,. 
(ii) Show that V t ( i )  I V,(i)  for all a! E (0, I ) ,  N, and i E SN.  

(iii) Show that the minimum average cost in A is constant, and that there 
exists an average cost optimal stationary policy .f inducing an MC with 
a positive recurrent class Rf such that the AS is conforming on Rf .  

Step 4. Do one of the following: 
(i)  Show that u r ( i )  2 u:(x) for all n, N, and i E S,V. 

(ii) Show that V t ( i )  2 V:(x)  for all a! E (0,1), N, and i E SN- 
(iii) Show that there exists a nonempty finite set G such that u,” takes on 

a minimum in G for all n and N. Moreover there exists a stationary 
policy g inducing an MC with a positive recurrent class R,  r) G U {x} 
having finite average cost and such that the AS is conforming on Rs. 

(iv) Show that there exists a nonempty finite set G such that V z  takes 
on a minimin in G, for all N and a! E (0,l). Moreover there exists 
a stationary policy ,q inducing an MC with a positive recurrent class 
R ,  3 C U { x }  having finite average cost and such that the AS i s  con- 
forming on RR. 

Proof: Under Step 1 it follows from Proposition 6.4.1 that the minimum 
average cost in A,v is constant. Clearly Assumption OPA holds. Hence VIA 
6.6.4 may be carried out in AN. It follows from Proposition 6.6.3 that rN(.) =- 

h,,+ &I!(.) - u:(x)) exists. This provides a solution to (8. L) and verifies that 
(ACI) holds. We show that (ACZ-3) hold for the function r N  and that (AC4) 
is valid. 

Step 2 enables us to verify (AC2). Note that r N ( x )  E 0, and hence we may 
assume that i # x .  Note that uf I u: f; u;,,, where m 2 n and B is any m 
step policy for AN. Define 8 to follow dlN until state x is reached. and then to 
follow the optimal finite horizon policy for n steps. Then v:(i) I c:(dlN) + 
uf(x) .  and hence r N ( i )  5 cz(d lN) .  From the conformity at d it follows that 
Iim sup,v 

Step 3 enables us to verify (AC4). We first show that J ( . )  is finite. Since d 
from Step 2 is x standard, it follows that J ( i )  5 J d  < 00 for i E S.  

Now aSsume that Step 3(i) holds. Using Theorem 6.4.2(v), this implies that 

rN( i )  I ci,(d) c 00. 

= J e ( i )  (8.4) 
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for any policy 8 for A. Then clearly J N  S J ( i )  for all i E S,  and hence J* I 
J( . )  c -. 

If Step 3(ii) holds, then the argument is analogous to that in (8.4) but uses 
Proposition 6.2.3 and then Proposition 6.1.1. We omit the proof. 

Now assume that Step 3(iii) holds. In this case we have J ( i )  = J, ( i )  = J ,  for 
some constant J < -. This follows sincef is optimal and the minimum average 
cost is constant. Fix i E Rf.  Then J N  I J;,,,(i). Taking the limit supremum of 
both sides and using the conformity on Rf yields J *  5 J. This completes the 
verification of (AC4). 

Step 4 enables us to verify (AC3). If Step 4(i) holds, then r N ( i )  = 
lim,, . -(u;(i) - u;(x)) 2 0. This verifies (AC3) with Q = 0. 

Assume that h: from Theorem 6.4.2 is defined using distinguished state x. 
It then follows from Proposition 6.5.1(iii) and Step I that rN E hN. So if Step 
4(ii) holds, then we again have the validity of (AC3) with Q = 0. 

Now assume that Step 4(iii) holds. From Step 1 it follows that glN induces a 
unichain MC with a positive recurrent claqs W ( N )  containing x. We claim that 
for sufficiently large N ,  it is the case that W ( N )  3 G. For j E G it is the case 
that x and j communicate in the MC induced by g. By the definition of an AS, 
it is the case that they communicate in the MC induced by g [ N  for sufficiently 
large N ,  say N 2 N,. Hence j E W ( N )  for N 2 N,. Then for sufficiently large N, 
say N 2 N*, we have C c W ( N h  Note that the conformity was not necessary 
to obtain this result. 

Let us assume that N 2 N *  and observe that cE(g lN)  < - for j E G. 
Moreover it follows from the conformity on Rs and Proposition C.4.6 that 
c'z(glN) -+cn,(g). Let Q =: ma,. G ( c , , ( ~ ) ) .  

For fixed i # x, n, and N, choosej E G such that u r ( i )  2 u;(j) .  Using 
reasoning similar to that in the verification of (AC2), we have 

r f ( i )  (u,"(i) - u t (  j ) )  + ry( j )  L r,"(j) 2 -c$(glN).  (8.5) 

This implies that IiminfN,, r"(i) 2 -Q, and hence (AC3) holds. 
The first portion of the proof under Step 4(iv) is as under Step 4(iii). To 

finish the proof, observe that rN = h"', and let Q be as in Step 4(iii). Assume 
that the initial state is x ,  and fix j E G. We may follow g J N  until state j is 
reached and then follow an CY discounted optimal policy in AN, If T &notes 
the time to reachj, then this yields 

v:(x) I c E . ( g l ~ )  + E~JJv:( j )  

5 c,N,(glN) + VZ( i ) .  (8.6) 

For fixed i Z x, a, and N, choose j E G such that V:( i )  2 V z (  j). Then it 
follows from (8.6) that 
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The proof is then completed as in Step 4(iii). u 

The following special case of Proposition 8.2.1 arises frequently: 

Corollary 8.2.2. Let A have state space S = (0. 1,2,. . .}, let (A,v) have 
state space S,V = {O,  I , .  . . , N ), and send the excess probability to N. Assume 
that the following hold: 

(i) Every stationary p o k y  for AN induces a unichain MC with aperiodic 

(ii) For n, N 2 1 the value function u:(i) is increasing in 0 S i I N. 
(iii) For n 2 1 the value function u,(i) is increasing in i. 
(iv) There exists a 0 standard policy d for A such that rn,o(d) and cio(d) are 

positive recurrent class containing 0. 

increasing in i 2 1. 

Then the conclusions of Proposition 8.2.1 hold for the function r”(i) = 
Iim,t .~ ,(u:(i) - uf(O)). 

Proof: We show that the four-step procedure in Proposition 8.2.1 may be 
carried out for x = 0. Clearly Step 1 holds. To verify Step 2, note that (C.37-38) 
become the requirements that the mean first passage time and cost from i 2 I to 
0 under d are increasing in i .  Then Step 2 follows from Proposition C.5.3 and 
(ivh Note that (3.19), for a = I, becomes the requirement that v,,(N) 9 u,~(r - )  
for r > N. This is equivalent to (iii). Step 3(i) then follows fmm Proposition 
3.3.4. Step 4(i) follows from (ii). 

Next we present a way of validating the four step procedure for an ATAS that 
sends excess probability to a finite set. It is based on the (BOR) asumptions 
from Section 7.5. if Chapter 7 has been omitted, then the proof of the next 
result should be skipped. 

Proposition 8.23. Assume that the following hold: 

( i )  There exists a z standard policy d for A 
(ii) There exists E > 0 such that D = {ilC(i,a) 5 J,1 + E for some a} is a 

finite set. 
(iii) There exists a stationary policy g for A that induces an MC with a pos- 

itive recurrent class R, 2 D U { z }  with finite average cost. 
(iv) (It will be shown that there then exists an average cost optimal station- 

ary policy for A and that any optimal stationary policy induces an MC 
with at least one positive recurrent class.) If e is an optimal stationary 
policy for A, we assume that the MC induced by e has a single positive 
recurrent class, which contains z. 
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(v) The AS (A,v) is an ATAS that sends excess probability to D U (2). 

(vi) Every stationary policy for A,v induces a unichain MC with aperiodic 
positive recurrent class containing E .  

Then the VIA and the (AC) assumptions hold for the function t " ( i )  : 
Iim, - =(uf( i )  - u!(z)). 

*Proof: We will show that the four-step template in Proposition 8.2.1 can 
be carried out with x = z. It follows fmm (vi) that Step I holds. 

By Proposition C.5.2 and (v) it follows that the ATAS is conforming at d, 
and hence Step 2 holds. 

Let us now show Step 3(iii). Note that (i-iii) imply that the (BOR) assump 
tions in Theorem 7.5.6 hold. The condition in (iii), which we denote (BOW'), 
is slightly stronger than (BOR3). If (BOR3') holds, then (BOR3) holds with 

It follows from Theorem 7.5.6 that (7.9) is an equality (the ACOE for A) 
and that any stationary policy e realizing (7.9) is average cost optimal for A It 
follows from Theorem 7.5.6 and (iv) that e is z standard. It then follows from 
Proposition C.5.2 that the ATAS is conforming ate, and hence Step 3(iii) holds. 

Finally we show that Step 4(iv) holds. We first show that the (BOR) assump- 
tions, with (BOR3*), hold for AN for sufficiently large N. It follows from (vi) 
that dlN is a z standard policy for AN. This verifies (BOR1). 

Since the ATAS is conforming at d ,  it follows that J f l N  - - c J d .  Hence, for 
N sufficiently large, we have J&, I J$ + c/2. Then DN =: ( i  E S ~ l C ( i , a )  5 
J &  + 4 2  for some a} c D. The set DN satisfies (BOR2). 

To verify (BOR3*) for AN, it is sufficient to show that D c R Z N  for N 
sufficiently large. The proof is similar to that of Step 4(iii) in Proposition 8.2.1, 
and we omit it. 

We have verified that (BOR) holds for AN for sufficiently large N. It then 
follows from the proof of Theorem 7.5.6 (statement (*) applied to AN) that V z  
takes on a minimum in D,v c D. This together with (iii) and Proposition C.5.2 

3 

ei 4 g. 

applied to g shows Step 4(iv). 

This completes our discussion of the verification of the (AC) assumptions. In 
certain examples it is not possible to employ either Proposition 8.2.1 or Propo- 
sition 8.2.3. and in these cases a modified approach must be used. Example 
8.4. I illustrates this situation. 

Remark 8.2.4. kt us now discuss the base point for the computation, as we 
promised earlier. The results in Section 8.2 have verified the (AC) assumptions 
for a specific base point x. It has been shown that rN( i )  = limn =(u:(i) - u,?;(x)) 
exists and that r N  satisfies (AC2-3). Now suppose that we wish to use another 
ba.e point. More generally, suppose that we chmsex' E SN so that the base point 
may be an arbitrary element of SN and may vary with N. What happens then? 
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It follows from Proposition 6.6.3 that w ~ ” ( i )  = limn . ~ ( u f ( i ) - u ~ ( x N ) )  exists. 
Since uf( i ) -of (xN)  = ( u ~ ( i ) - t $ ( x ) )  + ( u ~ ( x ) - u ~ ( x ‘ ) ) ,  it follows that the limit 
of the Iast term must exist and equal a constant u N .  Hence we have d ( i )  = 
r”(i )  + u’, and so the functions w N  and I” differ by a constant (which may 
depend on N). 

Hence the class of stationary policies realizing the minimum in (8.1) equals 
the class realizing the minimum in (8.1) with r N  replaced by d. It is proved in 
Theorem 8.1.1 that any limit point of such a sequence of stationary policies is 
average cost optimal for A Hence this continues to be true even if the optimal 

CI policy eN is computed using w N .  

The important conclusion i s  that once the (AC) assumptions and the hyp the -  
ses of Proposition 6.6.3 have been verified, then the optimal stationary policies 
in the approximating sequence may be computed using any desired base point, 
and the base point may even vary with N. 

8.3 EXAMPLES 

In this section we show how to verify the (AC) assumptions in severdl models. 

Exumpfe 8.3.1. This is Example 7.6.1. This is a single-buffer/single-server 
model with the option of rejecting arriving batches. Under action a the arriving 
batch is admitted, whereas under action r it is rejected. We operate under the 
basic assumptions of Example 7.6.1. 

Let S,V = {0,1,. . . . N }. There is excess probability possible only under the 
admit action, and any such probability is mapped to N. This means that if the 
admission of a batch would cause a buffer overflow, then the probability of 
such an event is given to the full buffer state N. 

We employ Corollary 8.2.2. Since po and p are positive, it is always possible 
for the system to transition downward in one slot. This means that any stationary 
policy for AN is 0 standard. Since P t ~ ( r )  = I and Pw(a) = po > 0, it is the 
case that every stationary policy has a single aperiodic positive recurrent class 
containing 0. This verifies (i). 

Lemma 7.6.2 shows that (iii) holds. This is intuitively clear since, if the 
process begins in i 2 1 and operates optimally for n steps, it cannot do better 
than if it begins in i - 1 and operates optimally for n steps. The same argument 
convinces us that this is also me for AN, and hence that (ii) holds. 

It remains to verify (iv). Let d be the policy that always rejects. It is shown 
in the proof of Proposition 7.6.3 that d is 0 standard and that m,&) and c,&) 
are increasing in i 1 1. 

Hence the conclusions of Corollary 8.2.2 are valid for this model. n 

Example 8.3.2. This is Example 7.6.4. This is a single-buffer/single-server 
model with the actions being the allowable service rates. Arriving batches are 
always admitted. We operate under the basic assumptions from Example 7.6.4. 
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Let S, = (0, I , .  , . , N }. If a batch arrives that would cause a buffer overfiow, 
then the probability of that event is given to the full buffer state N. We again 
employ Corollary 8.2.2. 

The actions are the (geometric) service rates, and under action a the packet 
at the head of the line is served at rate a. Since p~ and a are positive, it is 
always possible for the system to transition downward in one slot. This means 
that any stationary policy for AN is 0 standard. Since Po0 = po > 0, it is the 
case that every stationary policy has a single aperiodic positive recurrent class 
containing 0. This verifies (i). 

Lemma 7.6.5 shows that (iii) holds. This is intuitively clear since, if the 
process begins in i 2 1 and operates optimally for n steps, it cannot do better 
than if it begins in i - I and operates optimally for n steps. The same argument 
convinces us that this is also true for AN and hence that (ii) holds. 

It remains to verify (iv). Let d be the policy that serves at maximum rate U K .  

It is shown in Lemma 7.6.6 that d is standard with Rd = [o ,~) .  At most one 
packet may be served in a slot. This implies that m,o(d) = mi, - l(d)+rn, - t,o(d), 
and hence mlo(d) is increasing in i 2 1. A similar result is true for the first 
passage costs. Hence (iv) holds. 

Hence the conclusions of Corollary 8.2.2 are valid for this model. 

Exumpk 8.3.3. This is Example 7.6.8. This concerns the routing of batches 
of packets to two parallel queues. We assume that the basic assumptions in 
Example 7.6.8 hold with the exception that one (or both) holding costs may 
be bounded. In this example there is no cost for changing the routing decision. 
Example 8.4.1 treats this model when there is a cost for changing the routing 
decision. 

The ATAS may be described as follows: Each buffer is limited to N cus- 
tomers. If a decision is made to route to buffer 1 (say) and the arrival of a batch 
of a certain size would cause a buffer overfiow in buffer 1, then the probability 
of that event is assigned to the full buffer state at buffer 1. 

We apply the four-step procedure in Proposition 8.2.1 with x = (0, 0). Since 
p~ > 0 and the service rate at each buffer is positive, there is a positive prob- 
ability of each buffer decreasing by I in a given slot (or remaining empty if 
currently empty). This means that any stationary policy for &I is x standard. 
Since P,f1) = P,(2) 2 PO > 0, it is the case that any stationary policy has a 
single aperiodic positive recurrent class containing x, and hence Step 1 holds. 

The fixed splitting d from Lemma 7.6.9 is x standard (in fact induces an 
irreducible MC on S). Let us verify that (C.37-38) hold for the MC induced 
by d. It will then follow from Proposition C.5.3 that the ATAS is conforming 
at d, and this will complete Step 2. 

Assume that d chooses I in state i = (il, i2) (if it chooses 2 the argument is 
similar). Recali from Example 2.5.6 that we introduce a variable s, where s = i2 
if i: = 0 or there is no service completion at buffer 2, and s = i2 - 1 if there is 
a service completion at buffer 2. Then (C.37) becomes m~,~, , , , (d )  I qr,,@) 
for r > N. This holds if the expected first passage time is increasing in the first 
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coordinate, with the second coordinate held fixed. This is intuitively clear. The 
same argument works for the expected first passage costs in (C.38). 

We show that Step 3(i) holds by applying Proposition 3.3.4 with cy = 1. It 
is easily seen that (3.19) holds if u,, is increasing in one coordinate, with the 
other held fixed. T h i s  was proved in Problem 7.1 1. A similar proof shows that 
u r  is incre.asing in one coordinate, with the other held fixed. This implies that 
u," 2 u,"(x), and hence Step 4(i) holds. 

c1 Hence the conclusions of Proposition 8.2.1 are valid for this model. 

Exumple 8.3.4. In this model batches of packets arrive to a buffer, with 
pJ = P (a batch of sizej arrives in a slot) > 0 for j  2 0. 

The state of the system i s  the number I 2 0 of packets in the buffer. There is 
a null action in state 0. When in state i 2 1 the action set is {I ,  2,. . . , i}, where 
action k means that k packets are served perfectly in one slot. (Serving more 
than one packet at a time is known as batch senice.) 

H ( i )  = 00. 

There is a nonnegative service cost B(kj that is increasing in k. We have C(0) 
= 0 and C(i,k) = H ( i ) + B ( k )  for 1 5 k I i .  The transition probabilities are given 
by PO, = p, and P,, - k + , ( k )  = pJ for J 2 0 and 1 S k 5 i .  Finally we assume that 

Consider an ATAS with S,v = (0, 1, . . . , N that sends excess probability to 
0. We employ Proposition 8.2.3 (with z = Oj, and note that (v) holds. 

Now consider an arbitrary stationary policy e for A. Since PO > 0 and at 
least one packet must be served in each slot, it follows that i leads to 0 under 
e. Since pi  > 0, it follows that 0 leads to i. Hence e induces an irreducible MC 
on S. 

The same reasoning shows that any stationary policy for AN induces an irre- 
ducible MC on SN. Since POO = PO > 0, it follows that the chain is aperiodic. 
This verifies (vi). 

Let d be defined by d( i )  F: i for i 2 1 so that in each slot all the waiting 
packets are perfectly served. This policy induces an irreducible MC on S whose 
transition matrix has identical rows. By Remark C.2.7(ii) it will follow that d 
is 0 standard if the induced MC is positive recurrent with finite averdge cost. 
Because the rows are identical, we may view the expected time to return to 0 
as the expectation of a geometric random variable with probability of success 
PO. Hence mt& j = l/p~l and TO = PO. Then it is easy to see from Proposition 
C.l2(i) that ?r,(d) = p i .  From Proposition C.2.1(i) we have J d  = cJ2, p , [ H ( j ) +  
B ( j ) ]  < 00. This verifies that (i) holds. 

Since H is unbounded, it is clear that (ii) holds, and in fact D = [O , i * ]  for 
some I . Since & = S, it follows that we may take g = d in (iii). 

it remains to verify (iv). We have shown above that any stationary policy for 
A induces an irreducible MC on S. Since an optimal stationary policy induces 
a MC with at least one positive recurrent class, it follows that (iv) holds. 

Hence the conclusions of Proposition 8.2.3 are valid for this model. n 

There is an increasing holding cost H ( i )  with H ( 0 )  = 0 and lim 

c, 2 1 PI WO') + W l <  Oe. 

.* 
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Notice that this proof makes crucial use of two facts: ( 1 )  There is a positive 
probability of a batch of any size aniving in any slot, and (2) at least one 
packet must be served in any slot. Problem 8.2 explores this example when ( 8 )  
is weakened. 

*8.4 ANOTHER EXAMPLE 

The example in this section is the routing problem of Example 8.3.3 except 
that a cost is allowed for changing the routing decision. Proposition 8.2.1 is 
not directly applicable, but its ba.ic approach remains valid in modified form. 
Another complicating factor is that the VIA may not hold for the approximating 
sequence but will hold for the transformed version of the AS. The reasoning is 
somewhat more involved and may be omitted on first reading. 

Example 8.4.1. This is the routing problem of Example 8.3.3 except that 
a cost is allowed for changing the routing decision. The states are [(it, iz), k*]. 
where i = ( i ,  , i z )  is the current buffer level and k* is the previous routing deci- 
sion. 

The ATAS is defined in Example 2.5.6. Recall that the content of each buffer 
is limited to N customers and that the informational tag k* is carried along. 

Let x = [(O, 0), 11 and y = [(O, 0), 21, and consider AN. Since po and the 
service rates are positive, it i s  clear that for any initial state and under any 
stationary policy e, one of x or y may be reached. Hence e induces a MC with 
at most two positive recurrent classes. There are four possibilities for decisions 
made in { x , y } .  If e(x) x e ( y )  = 1, then y leads to x and P,,(e) > 0. Hence e 
induces a MC with a single aperiodic positive recurrent class. Similar reasoning 
holds if e(x) = e(y) = 2. If e(x) = 1 and e ( y )  = 2, then Pxl(e)  > 0 and P&) > 0, 
and hence e induces a MC with one or two aperiodic positive recurrent classes. 
However, if e(xj = 2 and e ( y )  = I ,  then there is a single positive recurrent class 
containing {xly}, and there is the possibility that this class is periodic. 

For this reason we must effect the aperiodicity transformation on AN dis- 
cussed in Section 6.6. Let us assume that this transformation has been carried 
out yielding AN*. 

Recall Problem 7.1 I(ivj. It3 solution should show that the fixed splitting d from 
Lemma 7.6.9 induces an irreducible positive recurrent MC with finite average cost 
on the state space S. Note that dlN may be used to verify Proposition 6.4.l(v), 
and hence the minimum average cost in AN is constant. (This was proved for a 
stationary policy but is also valid for a randomized stationary policy.) 

Then it follows from Proposition 6.6.6 that the minimum average cost in &+ 

is given by rJN and that the VIA may be carried out in  AN^, yielding a solution 
to the ACOE for AN. It is the case that rN*(.)  = limn-- ( u t * ( . )  - u:*(x)) is 
a solution to (6.37). This verifies (ACl). 

To verify that (AC4) holds, we first show that (3.19) holds. Assume that thepro- 
cess is in state [i, I ]  and that action 1 is chosen. Then (3.19) becomes the require- 
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mentthat~,~([(N.s), 11) I u,,([(r,s), I]), wherer > Nandsistheauxillaryvdnable 
introduced in Example 8.3.3. This is clearly valid. Now assume that the process 
is in state [i, 11 and that action 2 is chosen. Then (3.19) becomes the requirement 
that u,&[(s,N). 21) I u,#([(s, I), 2]), where r > N and s is the auxiliary variable. 
This is clearly valid. Similar reasoning holds if the process is in state [i, 21. 

Hence it follows from Proposition 3.3.4 that uy 5 u,,. The verification of 
(AC4) then follows exactly as in (8.4). 

It remains to verify that (AC2-3) hold for r N * .  We first show that (Ah) is 
conforming at d by verifying that (C.37-38) hold and then applying Proposition 
C.5.3. If d chooses I ,  then (C.37) becomes m [ ( ~ . ~ ) , ~ l . ~ ( d )  .S m[t,,.,),~b,(d) for 
r > N. This holds if the expected first passage times to x are increasing in the 
first buffer content, with the second buffer content held fixed. This is intuitively 
clear. If d chooses 2, then (C.37) becomes r n l c s , , ~ ) , 2 & )  5 r r ~ ~ ~ ~ . ~ , , ~ ~ & f )  for r > 
N. This is true by the same reasoning. Notice that to effect the first passage, 
we make decisions randomly according to the fixed splitting d until we reach 
an empty system at the same time that the previous decision was 1. Similar 
results hold for the expected first passage costs. This verifies (C.37-38), and 
hence (A,v) is conforming at d. 

We cannot claim that (A,,?*) is “conforming at d” because the restriction of 
d to AN* does not induce an AS for the Markov chain induced by d, as defined 
in Definition C.4.1. Nevertheless, let us see what can be deduced from the fact 
that CAN) is conforming at d. 

Recall that dlN induces a positive recurrent MC on AN (and on AN*). Hence 
we need not worry about multiple classes or transient states. Since the steady 
state probabilities associated with dlN are identical for AN and A N x ,  it is cleat 
that the convergence of the steady-state probabilities behaves properly. More- 
over /&,* = 7J&, --+ 7Jd. 

We need to examine the convergence of the mean first passage times and 
costs. Problem 33.3 asks you to prove that 

Let us see how (8.8) may be used to complete the proof. The verification of 
(AC2) follows as in the proof of Proposition 8.2.1. To verify (AC3). note that 
it i s  intuitively clear that 
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This implies that rr*([i, I ] )  2 0. Moreover we have 

r:*([i,21) = (u:*([i, 21) -- uf * (y ) )  + ( u y l y )  - U f * ( X ) )  

2 u; *( y) - u:*(x) 

2 -C,”,*(dlN) 

= --c,N,(dlN). (8.10) 

Since the last term converges to -cxy(d), it follows that (AC3) holds with Q = 
C.&# ). 0 

8.5 SERVICE RATE CONTROL QUEUE 

In this section we give computational results for a special case of Example 
8.3.2. Recall that this model is a single-server queue with service rate control. 
We compute an average cost optimal stationary policy under the assumption 
that the packet arrival process is Bernoulli. That is, there is a probabiiity p of 
a single packet arriving in any slot and a probability 1 - p  of no arrival, where 
0 < p < 1. The holding cost is given by H ( i )  = Hi, where H is a positive 
constant. This is PmgramThree. 

Under the assumption that p < a ~ ,  the basic assumptions are valid, and it 
follows from Proposition 7.6.7 that any optimal stationary policy e is standard 
with Re = lo,=). Moreover, if e realizes the ACOE (7.48) and breaks ties by 
choosing to serve at the lowest optimal rate, then e(i) is increasing in i and 
eventually chooses U K .  

So it i s  likely (unless there are ties) that the optimal policy computed using 
(AC) will be increasing in i and eventually choose U K .  Our computational 
results bear this out. The optimal policy may be given as a sequence of K - 1 
intervals, with the first interval conresponding to service at rate at ,  the second 
to service at rate u2, and so on. The interval at which it is optimal to serve at 
maximum rate is then obvious and may be omitted. 

The expressions for the VIA 6.6.4 are given by 

The second and third equations in (8.11) may be evaluated in the same loop by 
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introducing an auxillary variable that equals i + 1 for 1 5 i 5 N - 1 and equals 
N for i = N. 

We would like to have a benchmark policy to compare with the optimal 
policy. Assume that rate a satisfies p < a. Then the policy d(a) that always 
serves at rate a has finite average cost and can be impIemented with no buffer 
observation. This is called open loop conrrol. Our benchmark policy d serves 
at the rate a that minimizes J d ( u ) .  That is, under d we serve at the constant rate 
that yields J d  = min,.,(Jd(a,). 

In the case of non-Bernoulli arrivals, the stability condition is X < a, and we 
can calculate J d  by employing the same program that calculates the optimal 
policy but reducing the actions to the single one a. Or a separate program to 
do this efficiently can be given. However, in the case of Bernoulli arrivals, it 
i s  possible to give a closed form expression for Jd(a) .  

Proposition 8.5.1. Assume that a satisfies p < a, and let &a) be the policy 
that always serves 

Proof: L e t r =  

at rate a. Then 

(8.12) 

(1 - a)y/[a( 1 - p ) ] .  The steady state probabilities of the MC 
induced by d(a) are given by ni, = 1 - (p /a )  and ?ri -- ror' / ( l  - a) for i 2 1 .  
This can be shown by verifying that Proposition C. 1.2(i) holds for these values. 
Then the expression in (8.12) follows after some algebra. Problem 8.4 asks you 
to till in the details. CI 

Remark 8.5.2. It is intuitively clear (and may be proved by induction on 
(8.1 1)) that ifH and C(aj are multiplied by a positive constant, then the optimal 
average cost is multiplied by that constant, and the optimal policy is unchanged. 
For this reason we assume that H = 1 in all ow scenarios. We may then examine 
the effect of a cost of service small relative to 1, as well as the effect of a large 
cost of service. Whether a service rate option is less than p or greater than p will 
be seen to be a crucial factor. In all scenarios we used the weaker convergence 
criterion (Version 1) of the VIA. 0 

Remark 8.5.3. Consider the situation in which there are just two service 
rates. In this case the service rate cost is linear in the rates, and we have C(a) = 
Ca + C*, where it is easily seen that 

(8.13) 
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We know from Proposition 7.6.7(ii) that if C* 2 - 1, then the benchmark policy 
d(a2) is optimal. This can be intuitively explained by observing that in this case 
the cost of higher service is not a great deal more than for slower service, and so 
it always pays to serve at the higher rate. However, if C* < -1, then higher-rate 
service costs a great deal more than lower-rate service, and it may be optimal to 
serve for a while at the lower rate. We will use this result to check the program. 

c3 

Scenarios 8.5.4. Here K = 2. The results are summarized in Table 8.1. A 
dash indicates that the entries in that box are identical with the corresponding 
box in the previous column. The row labeled J d  gives the value of a yielding 
the benchmark policy and the average cost under that policy. The row labeled 
J contains the approximation generated by the program. Proposition 7.6.7(iii) 
implies that the optimal policy eventually serves at maximum rate, and hence 
the policy may be indicated by a single interval that gives the buffer content 
for which it is optimal to serve at the slower rate. Note that 0 means that it 
is optimal to serve at maximum rate. Because the program printout is given in 
four columns, we,choose N divisible by 4. For most of the scenarios we selected 
N ‘II 96 and e = 0.00005, and then N = 120 and 6 = O.ooo005. It was always 
the case that the optimal policy was immediately indicated and unchanging for 
large N. In fact, in these examples, the optimal policy is typically determined 
for much smaller values of N. However, determining an approximation to J 
accurate to three decimal places nezessitates the larger N and smaller e .  

In Scenario 1 it is the case that C 2 - 1 and hence we know that it is optimal 
to Serve at maximum rate. This is confirmed by the program, In the rest of the 
scenarios we have C* c - 1, and it turns out to be optimal to initially serve at 
the slower rate. 

In Scenario 2 the system is stable under both rates. It is optimal to serve at 
the slower rate when the buffer content is no more than 4. In Scenario 3 the 
system is unstable under the slower (free) rate, and it is only optimal to serve 
at this rate when there is a single packet in the buffer. Scenario 4 examines 
this system when the faster rate costs twice as much as under Scenario 3. The 
content under which it is optimal to serve at the slower rate only increases from 
1 to 2. Under Scenario 5 the system is stable under both rates and the higher 
rate costs 20 times the lower rate. In this case it is optimal to serve at the slower 
rate for a buffer content of no more than 5. Scenario 6 examines this system 
when the costs of both rates from Scenario 5 are multiplied by a factor of 5. In 
this case it is optimal to serve at the slower rate for buffer content of no more 
than 18. Scenarios 7 and 8 have large packet arrival rates. 

In conclusion we see that if the queue is unstable under a given rate, then 
0 this rate will be used sparingly, even if it is free. 

Scenarios 8.5.5. Here K = 3. The results are summarized in Table 8.2, 
The optimal policy may be given as two intervals, with the first indicating the 
buffer content level at which the controller should serve at slowest rate, and the 
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second the level at which the controller should serve at the middle rate. Thus 
00 means that it is optimal to serve at maximum rate. 

In Scenario I we have C(a) = 2a + 0.5, and hence according to the theory 
it i s  optimal to serve at maximum rate. This is confirmed by the program. In 
Scenario 2 the costs are moderate, and the queue is unstable under the slow- 
est service rate. The optimal policy never uses the slowest rate and switches 
from the middle to the fastest rate for buffer content of 4 or more. Scenario 3 
examines the effect of making the slowest rate free, of drastically reducing the 
cost of the middle rate, and doubling the cost of the fastest rate. The optimal 
policy still does not employ the slowest rrtte; the content at which it is optimal 
to switch to the fastest rate moves up modestly from 4 to 8. In this case the 
minimum averdge cost and the average cost under the benchmark policy are 
identical to three decimal places. 

Scenario 4 has two inexpensive rates yielding unstable queues and a highly 
costly fastest rate. Scenario 5 examines the effect of reducing the cost of the 
middle rate and increasing the cost of the fastest rate. The optimal policy is 
modestly changed. 

The queue under Scenario 6 is stable under all the rates. The fastest rate is 
very costly compared to the others. We know that at some point it is optimal to 
switch to this rate, but this point was not located for N = 1000. In the normal 
range of operation i t  is optimal to serve at the second fastest rate for content 
of 6 or more. 

The queue under Scenario 7 is unstable under the free slowest rate, and it 
is optimal to serve at this rate when the buffer content is 1 and to switch from 
the middle to the fastest rate when it reaches 9. See Fig. 8. I .  

The queue under Scenario 8 is stable under all three rates. In this interesting 
0 example it is never optimal to use the middle rate. 

8.6 ROUTING TO PARALLEL QUEUES 

In this section we give computational results for a special case of Example 
8.3.3. Recall that this concerns the routing of batches of packets to one of two 
parallel servers. We compute an optimal policy under the assumption that the 
packet arrival process is Bernoulli ( p ) ,  as in Section 8.5. The holding cost for 
i = ( i l , i? )  is H l i l  + Hziz ,  where HI and H2 are positive constants. This is 
ProgramFour. 

Under the assumption that p < p + c(2 the basic assumptions are valid, and 
it follows from Proposition 7.6.10 that the (CAV*) assumptions hold and any 
optimal stationary policy is positive recurrent at x = (0.0). Then from Theorem 
7.5.6 we see that the optimal stationary policy realizing the ACOE is x standard. 

Under the stability condition we have p =: p/(,u, + p2) < 1. A system 
with small p is called Zighrly lourled, one with moderate p is called moderately 
loaded, and one with p close to 1 is called heavily loaded. 

Let us develop the equation for the VIA 6.6.4. A couple of notational devices 
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Rate: 0.7 0.85 0.95 

Cost: 0 10 25 

6 

7 

H ( i )  = i 

0.8 

Minimum average cost 11 377 

Scenario 7 from Table 8.2. Figure 8.1 

will facilitate this. Let 41 equal il + 1 if 0 I il I N - 1 and equal N if il = N. 
The variable q 2  is defined similarly. Let 31 equal i t  - I if 0 < il I N  and qua1 
0 if il = 0. The variable S? is defined similarly. 

We now develop some pieces that will be combined to form the expression 
in Step 2 of the VIA. These pieces are constructed to hold for all states i. 

Let 

This is what is expected to happen if there is no arrival. It is independent of 
the routing decision. 

Let 

This is what is expected to happen if routing decision I is chosen and there 
is an arrival. The expression 2: is defined analogously and represents what is 
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expected to happen if routing decision 2 is chosen and there is an arrival. The 
reader should check that (8.14-15) indeed hold for every state. 

The VIA equations become 

We now construct a benchmark open-loop policy to compare with the opti- 
mal policy. It is a naive benchmark in that we can actually do better with open- 
loop control (see the Bibliographic Notes). We employ it because it has the 
virtue of being easily understood and its average cost is readily computed. 

Recall that in Lemma 7.6.9 we showed that there exists a fixed splitting 
inducing a standard MC on S. The optimuf firrd splitring i s  the fixed splitting 
with minimum average cost and this is our benchmark. 

Proposition 8.6.1. Let E =: pl  + c(2 - p > 0. The average cost under the 
optimal fixed splitting d* is specified by the following cases: 

Case I :  If HI -- H2 ( = H )  and PI = c(2, then J d *  = Hp(2 - p) / c .  

Now let 61 = dL1(1 - P I )  and P2 = d m .  Define 

Case 2: If H I  ": H2 and pl f p2, then Jd*  = F [ E @ I / ( &  + &)I. 

Case 3: If H I  f H2, then find x*, with 0 < x* < E ,  satisfying 

(8.18) 

Pmoe Let 4 4 )  be the fixed splitting that sends a packet to buffer 1 with 
probability 4 and to buffer 2 with probability 1 - q. This splitting has finite 
average cost if p4 < PI and p(1 - 4) < ~ 2 .  Observe that each buffer acts an 
independent single-server queue with fixed service rate. The average cost under 
d* is the sum of the average cost for each buffer. From Proposition 8.5.1 it 
follows that 
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We sketch the rest of the proof, with the details left as Problem 8.7. If we 
express (8.19) in terms of P I ,  p2, e, and the unknown x = PI - pq, then we 
obtain (8.17). The left side is called F{x) .  The stability requirements become 
O < X < € .  

To minimize F(x),  we solve F ’ P )  : 0. After some tedious algebra this 
reduces to (8.18). Thus the value x yielding the minimum is the solution of 
(8.18) and Jdt = F(x*). 

It is easy to see that in Cases 1 and 2 we obtain the stated results. To imple- 
ment the solution under Case 3, we can solve (8.18) using bisection or another 
method for finding roots. 0 

It is easy to see that if both HI and H2 are multiplied by a positive constant 
U, then J is multiplied by U and the optimal policy is unchanged. For this 
reason we may assume that HI = 1 in all our runs. We employ Version 1 of the 
VIA. 

Checking Scenarios 8.6.2. In the first scenario we set HI = 1, H2 = 0, 
p = 0.6, pl  = 0.8, and p2 = 0.7. Since it costs nothing to be in the second 
buffer, the optimal policy should always choose 2, and the minimum average 
cost should be 0. This i s  confirmed by the program. In the second scenario HI, 
Hz, and p are as above, and = 0.5, and p2 0.4. Since it costs nothing to 
be in the second buffer, the optimal policy should always choose 2, and the 
minimum average cost should be 0. This is confirmed by the program. Notice 
that in this case the second queue is unstable. 

In the third scenario we let H I  = 2, H2 =. 1, p = 0.7, pl = 0.01, and pz = 0.9. 
Since the holding cost in the second buffer is snialler than that in the first buffer 
and since the service rate in the first buffer is very small, we would expect the 
optimal policy to almost always choose 2 and J = 1.05 from (8.12). This is 
confirmed by the program. 

Scenatios 8.6.3. In these scenarios we set H I  H2 = 1 and PI  : c(2 (= 
F). Here J represents the minimum average number of packets in the system. It 
can also be taken as a measure of the minimum average total system delay. Recall 
that an arriving packet is not “counted” in the system until the slot following its 
arrival (in this model the arrival slot is devoted to muting, and hence the packet 
is not available for service). It is intuitively clear that the optimal policy mutes an 
amving packet to the shortest queue, and this is confirmed by the program. Hence 
our interest does not lie in computing the optimal policy but rather in comparing J 
with Jd..  The comparison shows the reduction in the average number in the sys- 
tem gained by observing the system and implementing the optimal policy com- 
pared with exercising open loop control using the best fixed splitting. 
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Table 83 Results for Scenarios 8.63 

Scenario 1 2 3 4 5 

P 0.3 0.6 0.6 0.8 0.8 
P 0.7 - 0.4 0.9 0.5 
P 0.2 1 0.43 0.75 0.44 0.8 
Jd  * 0.4636 1.0s 4.2 0.96 4.8 
J 0.4336 0.8969 2.45 17 0.895 1 2.5486 
Savings 0.03 0 . 1 ~ 3 1  1.7483 0 . ~ 4 9  2.2514 

The results are in Table 8.3. Under Scenario 1 we have a lightly loaded sys- 
tem in which the optimal policy effects a reduction in the average number in the 
system of 0.03/0.4636 = 6%. Under Scenario 2 we have a moderately loaded 
system, and the reduction in the average number in the system is 15%. Under 
Scenario 3 we have a fairly heavily loaded system in which the average num- 
ber of packets is reduced by 42%. Scenario 4 represents a moderately loaded 
system, and the average number of packets is reduced by 7%. Scenario 5 is a 
fairly heavily loaded system with a reduction of 47%. 

For these examples we chose N = 39 with a tolerance of 5 x 10 ' and 
confirmed with N = 47 and a tolerance of 5 x lo-'". The value of J is actually 
determined quite accurately for much smaller values of N. 

Consider a fixed state i. If one of the coordinates of i is close to the boundary 
N, then the calculated optimal decision may be incorrect. The reason for this is 
the weak convergence criterion in Version 1 of VIA 6.6.4. There are two ways 
to rnitigate this. The first way is to use Version 2, which will increase the run 
time. The second way is to increase N. As N is increased, a given state will 
receed from the boundary region, and the calculated optimal policy in that state 
wilt pull in. The second way requires more memory and also a modest increase 
in the run time. An additional factor in this particular case is that some of the 
values in the minimization in (8.16) may be equal, causing an ambiguity. U 

Scenarios 8.6.4. Table 8.4 presents results for the more general case in 
which the holding costs and/or the service rates are unequal. The first three 
scenarios have holding costs equal to 1 (and hence we are finding the minimum 
average number in the system) but unequal service rates. Scenario 1 is a ligbtly 
loaded system. The feduction in the average number in the system is 7%. 

Let us explicate the optimal policy given for Scenario 1. See Fig. 8.2. Clearly 
the controller will favor buffer 1 ; however, when this buffer reaches a certain 
level, then the controller will switch to buffer 2. The entries indicate the switch- 
ing points for fixed levels of buffer 1. For example, if il = 6 or 7, then the 
controller will route an arriving packet to buffer 2 if 0 I ir I 4. The other 
entries are intepreted similarly. This defines a swirching curve, and it could be 
given graphically. For the discrete situation in which the optimal policy will be 
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Table 8.4 Results for Scenarios 8.6.4 

Scenario I 2 3 4 

P 
PI 
8 2  

P 
HI 
H? 
Jd* 

J 
Savings 
Optimal 

policy 

0.3 
0.7 
0.5 
0.25 
1 .o 
I .O 
0.520 
0.482 
0.038 

(1.0) (2, 1) 
(3-4, 2) (5. 3) 
(6-7, 4) (8, 5 )  

(9-10, 6) 
(11, 7) (12. 8) 

(15, 10) 
(16-17, 11) 

(13-14, 9) 

0.5 
0.6 
0.4 
0.5 
1 .o 
I .0 
I .420 
I .090 
0.330 

(1,O) (2, 1) 
( 3 4 ,  2) 

(5, 3), (6-7, 4) 
(8. 5 )  (9-10, 6 )  

(11. 7) (12-13, 8) 
(14-15, 9) 
(16, 10) 

(17-18, 11) 

0.8 
0.7 
0.4 
0.73 
1 .o 
I .o 
2.897 
1.792 
1.105 

(2, 1)  (3-4, 2) 
(5. 3) (6-7. 4) 

(8-9, 5 )  (10, 6) 
(1  1-12, 7) 
(13-14, 8) 

(15, 9) 
(16-17, 10) 
(18-19, 11) 

(18, 12) (19, 13) (19, 12) (20, 13) (20, 121 
(20, 14) 

0.9 
0.8 
0.8 
0.63 
1 .0 
2.0 
2.001 
I .508 
0.493 

(2 5 il 5 13, 1) 
(14 5 i l  I 3 0 , 2 )  

implemented through table lookup, it is more efficient to give the policy as we 
have done in Table 8.4. 

We might conjecture that the optimal policy operates by routing an aniv- 
ing packet to the buffer that minimizes its expected system time. This is the 
individually opzimal policy, since it is what the packet would choose to do if it 
had the freedom to route itself. However, the optimal policy does not operate 
quite this way. Assume that a packet arrives to find the system in state (1, 0). 
If it is routed to buffer I ,  then its expected system time (less the arrival slot) is 
(0.7)( 1/O.7) + (0,3)(2/0.7) = 1.86. This is found by conditioning on what hap- 
pens to the packet in buffer I during the arrival dot. If it is routed to buffer 2, 
then its expected system time is 1/0.5 = 2. Hence the packet would send itself to 
1, whereas the optimal policy sends it to 2. This shows that the optimal policy 
(which may be regarded as socially optimal) is not the same as the individually 
optimal policy. However, for many of the entires on the switching curve, the 
socially optimal and individually optimal decisions do coincide. (For the case 
of equal service rates, the socially optimal and individually optimal policies 
coincide.) 

For these scenarios we chose N = 47 except for the last one, for which N 
= 59. Because of the weak convergence criterion we can only be confident 
of the optimal policy away from the boundaries and, as a rough rule of thumb, 
for states with coordinates not more than N / 2 .  This can be mitigated as pre- 
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H, = 1 

0.3 

X 

X 

X H,= f 

Minimum average number 
of customers 0.482 

Figure 8.2 Scenario I from Tahlc 8.4. 

viously discussed, either through changing the convergence criterion or by 
increasing N. 

However, notice that there is another way to look at this. For Scenario 1 the 
minimum average number in the system is less than 0.5, so it will be extremely 
rare for either buffer content to be above 20. If rhe optimal policy is given as 
in Table 8.4, then on those r a e  occasions in which the content of buffer I 
exceeds 20 we could simply implement the best fixed splitting. The resulting 
policy should be quite close to optimal. 

Scenario 2 i s  a moderately loaded system. The reduction in the average num- 
ber in the system is 23%. Scenario 3 is a somewhat heavily loaded system, and 
the reduction in the average number in the system is 38%. In Scenario 4 the 
service rates are equal but it costs twice as much to hold packets in the sec- 
ond buffer. See Fig. 8.3. The optimal policy strongly favors the first buffer. For 
example, if i i  = 20, then an arriving packet will be routed to the second buffer 
if and only if its content is less than or equal to 2. The reduction in the average 
holding cost is 25%. n 

Remurk 8.6.5. When the average number in the system is being minimized, 
these scenarios allow us to give some very rough guidelines on the percentage 
reduction that can be expected from employing the optimal policy. When the 
system is lightly loaded, reductions amund 5-1096 may be effected. When the 
system is moderately loaded, reductions around 15-25s may be effected, and 
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H,= I 

W W 

X 

x 

0.9 

H,= 2 

Minimum weighted average 
number of customers 1.508 

Figure 8.3 Scenario 4 from Table 8.4. 

when the system is somewhat heavily loaded, reductions around 30-50% may 
be effected. 0 

8.7 WEAKENING THE (AC) ASSUMPTIONS 

For some models it i s  not possible to verify the (AC) assumptions. In these 
situations it is useful to have a weaker set of assumptions under which the 
conclusions of Theorem 8.1.1 remain valid. We will not attempt to find the 
absolutely weakest conditions under which the conclusions of Theorem 8. I .  1 
hold. Rather, we give a useful set (WAC) of assumptions under which they 
hold. It will be clear from the proof of Proposition 8.7.1 how to further weaken 
(WAC) if necessary. 

The idea is to weaken (AC3) by allowing Q to be a function. This necessi- 
tates some additional assumptions. We have (WACI), (WACZ), and (WAC4) 
identical to their (AC) counterparts. The new assumption (WAC3) will be given 
in two parts. 

(WAQI). There exists a nonnegative (finite) function Q on S such that 
-Q(i)  5 lim infM * r N ( i )  =: u(i)  for i E S. 

(WAC32). Let e be a stationary policy for A and Xo = i an initial state. 
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Then: 

Suppose that (AC) holds. If we let Q(.) r;r Q from (AC3), then it is easy to 
see that (WAC3) holds. In this case, both summations in (WAC32)(i) equal Q. 
Hence (AC) 3 (WAC), and the latter i s  a weaker set of assumptions. Here is 
the existence result under (WAC). 

Proposition 8.7.1. Assume that the (WAC) assumptions hold. Then the 
conclusions of Theorem 8.1.1 are valid. 

Pro$ We proceed as in the proof of Theorem 8. I .  1 noting that w 2 u, up 
to (8.2), which may be written 

Note that the term added to both sides is finite, since it is a summation over a 
finite set. We then take the limit infimum of both sides and employ Proposition 
A.1.8 and (WAC32)li) to obtain (8.3). 

We now apply the proof technique from Lemma 7.2.1. This requires that 
--OQ c Ee.[w(X,)] c 00 for all n. The right inequality follows as in the proof of 
Lemma 7.2.1, while the left inequality follows from (WAC3z)(ii) and the hct 
that w 2 u. 

We may then proceed as in the proof of Lemma 7.2.1 where (7.7) becomes 

n n 

Taking the limit supremum of both sides and using (WAC32)(iii) yields Jet( i )  -< 
0 Jo.  The proof i s  then completed as before, 

BIBLIOGRAPHIC NOTES 

The approximating sequence method was originally developed for computing 
average cost optimal policies, and the (AC) assumptions were introduced in 
Sennott ( 1997a) with further results given in Sennott (1 997b). The original ver- 
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sion of (AC) was bas& on the relative value function h: from Theorem 6.4.2. 
We would like to thank Dr. Eitan Altman for the suggestion that we give (AC) 
in terms of a general solution to the ACOE in AN, which is the version given 
here. 

Thomas and Stengos (1985) give a method for the computation of optimal 
average cost policies in denumerable state space MDCs. Their method assumes 
that the costs are bouncled and in addition assumes a condition guaranteeing 
the existence of a bounded solution to the ACOE. It is clear from the results 
in Chapter 7 that this is a very limiting assumption that fails to hold in many 
models of interest. While this assumption renders a direct comparison of the 
methods quite difficult, it appears that one of the value iteration schemes is the 
same as our ATAS that sends the excess probability to a distinguished state. 
The paper also gives some approximate policy iteration algorithms. 

Van Dijk (1991) discusses an MDP 1 and a related MDP 2. Under certain 
assumptions it is possible to give a bound on the difference between the mini- 
mum average costs in 1 and 2. An example of Van Dijk is related to an ATAS 
that maps excess probability in a state i to a state that is a function of i. The 
method is applied to a particular network model, and some computations are 
presented. The quantity that is computed is the bound, and the minimum aver- 
age cost and optimal policy are not indicated. The ideas in this paper may give 
an avenue to develop bounds on the convergence of the minimurn average cost 
in An to the minimum average cost in A. We have not treated this topic, and 
it remains a fruitful direction for further exploration. 

The material in Sections 8.2-4 appears in a somewhat different form in Sen- 
nott (1 997a, b). The ideas behind the notion of conformity are detailed in the 
Bibliographic Notes to Appendix C. The example in Section 8.5 appears in 
Sennott (1997a). and the routing example from Section 8.6 appears in Sennott 
(1997b). The assumptions given in Section 8.7 further generalize the assump 
tions in Sennott (I997a). The ideas parallel the development in Section 7.7, 

There has been a large amount of work on the model of routing customers 
to parallel queues. Most of this work attempts to characterize optimal policies, 
develop bounds, or find good suboptimal policies. To the best of our knowl- 
edge there has been no attempt to calculate optimal policies or values. We will 
highlight a few results. 

Much of this work considers the model in continuous time and assumes that 
the servers are exponential and the customer arrival process is Poisson. If there 
are finitely many servers serving at the same rate, then Winston (1977) proves 
that the policy of sending an arriving customer to the shortest queue maximiifis 
roughly the discounted number of service completions in any finite interval 
[O, TI.  Weber (1 978) extends this result to a general anival process and servers 
with nondecreasing hazard rates. 

Hajek (1984) is a seminal paper treating a related model with two stations 
and proving that the optimal policy is described by a switching function. 

For the case of Poisson arrivals and unequal rate exponential servers, f i s h -  
nan (1987) introduces a heuristic based on the optimal fixed splitting. This 
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method performs a calculation based on the current state and the optimal split- 
ting and chooses an action based on that calculation that will give better per- 
formance than the optimal fixed splitting. 

Stidham and Weber ( I  993) is a survey stating results on the routing problem 
and related models with many additional references. 

There is a line of development that considers open-loop routing that per- 
forms better than the optimal fixed splitting. Assume that there are K parallel 
buffers. The idea is to construct a deterministic sequence of integers k, with 
1 I k I K, such that if a customer arrives and the value of the sequence is 
k, then that customer is routed to server k. The sequence can be constructed 
so that the average number in the system is less than under a standard random 
implementation of the optimal fixed splitting. Hajek (1985) initiated this line of 
research and showed how to construct the sequence for K = 2. Rosberg (1985) 
develops a certain sequence for K 2 2. See also Arian and Yevy (1992). Milito 
and Fernandez-Gaucherand (I  995) examine the problem for a fixed number of 
arrivals. Shanthikumar and Xu (1997) examine a related problem. 

PROBLEMS 

8.1. Consider the model in Problem 7.14, but with no cost for changing the 
decision. Let the ATAS be defined as in Example 8.3.3. Verify that the 
hypotheses of Proposition 8.2.1 are satisfied. 

8.2. Consider Example 8.3.4 modified so that some p, may be 0. In particular, 
assume that 0 < P O  and sup{j(p, > 0} - =. Verify that the hypotheses of 
Proposition 8.2.3 still hold. 

* 8.3. Verify (8.8). Hint: For i # j ,  what is ,uz(dlN)*? 

8.4. Fill in the details in the proof of Proposition 8.5.1. 

8.5. Run ProgramThree for the following scenarios, and discuss the results. 
Be sure to set N and NUMACT (-X) appropriately for each run. 
(a) p = 0.6, n l  = 0.65, u2 = 0.9, C(a1) = 1.95, and C(u2) = 2.7. 
(b)p=0.8 ,~1=0.8 ,~2- .0 .85 ,C(~ , )=0 ,andC(~z)=20.  

(c) p = 0.5, 41 = 0.48, a2 = 0.52, ~3 = 0.8, C ( U ~ )  = 0, C(a2) = 0.5, and 
C(n3) = 10. 

(d) p = 0.7, U I  = 0.7, a2 = 0.8, a3 = 0.9, = 0.99, C ( U ~ )  = 0, C(a2) 1, 
C(a3) - 5, and C(Q) 15. 

8.6. Make up some scenarios of your own for ProgramThme, and discuss the 
results. 
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8.7. Fill in the details in the proof of Proposition 8.6. I ~ 

8.8. Consider the routing model under the conditions in Scenarios 8.6.3. 
Recall that in this case J is the minimum average number of packets 
in the system, a quantity that is related to the total average system delay. 
Let D be the delay suffered by a randomly arriving packet (including the 
arrival slot) under the optima1 policy e (which routes an arriving packet to 
the shorter buffer and, if the buffers are equal, then routes it to buffer 1, 
say). We develop an expression for E[D] .  Let JO be the average number 
of packets in the shorter buffer, and let W be the probabiiity that at least 
one buffer is empty (both under the policy c in steady state). Prove that 
E[DJ = LI + (1 + ZJo)/p 5 1 + (1 + J ) / p .  Hinr: Show that the probability 
that an arriving packet finds the system in state i in steady state is equal 
to q(e). 

8.9. Run ProgramFour for the following scenarios, and discuss the results: 
(a) p = 0.4, p1 = pl  7 0.4, H i  = H2 = 1. 
(b) p = 0.7, /.ti = 0.7, p2 = 0.3, Hi = if2 = 1. 

(c) p = 0.9, pi = 0.6, p2 = 0.5, H I  = H2 = 1. 
(d) p T 0.6, p f  = 0.7, p2 = 0.7, Hi = 1, Hz = 1.5. 

8.10, Consider a system (see Fig. 1.5) with two independent geometric servers, 
with server 1 serving at rate pl and server 2 at rate pz, where 0 < pi < 
pz c 1. Batches of packets arrive to an infinite capacity buffer with p, = P 
(a batch of size j arrives in any slot), where 0 < po and X > 0 is the mean 
batch size. The arrival of batches is independent of the service times. 
An arriving batch is “counted” in the buffer at the heginning of the slot 
following its arrival. 

At that time, if the buffer is nonempty and server 2 is free, then the 
packet at the head of the line is instantaneously routed to server 2 and 
begins service. If server 2 is busy but server I is free, then the controller 
has two choices: a = route the packet to server 1, and b = allow server 
I to remain idle. Last consider the situation in which there are at least 
two packets in the system and both servers are free. Then the packet 
behind the one routed to server 2 may be instantaneously routed to server 
1 (action a) or held in the buffer (action b). This takes place simultane- 
ously with the routing of the head packet. It is helpful to make a sketch 
showing the possibilities. 

It is desired to compute a policy that minimizes the total average num- 
ber of packets in the system. This problem will guide you through setting 
up an MDC to model this system and verifying that the (AC) assumptions 
hold for a suitable approximating sequence. 

(a) Let s be an ordered pair of 0’s and 1’s indicating whether or not a 
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server is busy, with I indicating “busy.” An appropriate state space 
S consists of all pairs (i, s). What does i represent? 

(b) Which of the states have a single action (and what is it), and which 
have action set {a, b )? 

(c) What is the cost in state (i, s)? 
(d) Develop the transition probabilities. 

This completes the modeling of this system as an MDC A. Define 
an ATAS (AN) by letting SN z { ( i , s ) J i  < N )  and sending the excess 
probability to N. Let us verify that the hypotheses of Proposition 8.2.1 
hold. 

(el Show that any stationary policy e for AN is (0, 0) standard and has 
an aperiodic positive recurrent class. 

(0 Argue informally that Steps 3(i) and 4(i) hold. 
(g) Assume that A < p I + p2, and let d be the policy that always chooses 

a.  Prove that d induces an irreducible positive recurrent MC on S. 
Hint: Use Corollary C.1.6 with test function y(i, s) = i + #in service. 

(h) Assume the results in (g) and in addition that the second moment 
XC2) of the arrival process is finite. Prove that d is standard. Hint: 
Use Corollary (2.2.4 with test function r(i,s) = K(i  + # in serviceI2 
for some positive constant K. 

* 

(i) Argue that (C37-38) hold for (0, 0)  and the MC induced by d. 

This problem was treated, in the continuous time framework, by Lin and 
Kumar (1984) who proved that the optimal policy is of threshold type; 
that is, server t will idle until the buffer content reaches a certain level. 
A procedure for calculating the threshold is also given. Also see Shenker 
and Weinrib (1989). An advantage of our approach is that it generalizes 
to more than two servers. The optimal policy can then be found com- 
putationally. However, the dimension of the state space and the number 
of possible transitions both increase rapidly with the number of servers. 
Various observations on the obvious behavior of an optimal policy can 
be made to somewhat reduce the number of actions one needs to con- 
sider. Notice that in the problem formulation above we require a packet 
to be sent to server 2 if it is free. T h i s  must be true of the optimal policy, 
since we wish to minimize the total average number in the system and 
there is no penalty for employing the faster server. Building this in as a 
requirement (rather than proving it) simplifies the analysis. 
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Optimization Under Actions at 
Selected Epochs 

In this chapter we consider systems in which actions are available only at 
selected slots, known as epochs, rather than at every slot. This appears to be 
a dramatically new situation that the previous theory would be inadequate to 
handle. However, it will be seen shortly that these systems may be modeled as 
MDCs and hence that the previously developed theory applies. For this reason 
little new theory is needed. and this chapter concentrates on showing how the 
method works in examples. 

Section 9. I discusses a modeling dichotomy, namely whether a random quan- 
tity such as a service time is adequately determined by a single sample or must 
be repeatedly sampled as the service evolves. Section 9.2 deals with the theory 
behind repeated samples. 

Section 9.3 presents models involving service control of a singie-server 
queue, and Section 9.4 presents models involving arrival control of a single- 
server queue. Sections 9.5 and 9.6 verify that the computation of an average 
cost optimal policy may be carried out for two of the service control examples. 
Sections 9.7 and 9.8 present computational results for two of the models. 

9.1 SINGLE- AND MULTIPLE-SAMPLE MODELS 

Let us assume that we wish to repair a machine, and let Y denote the repair 
time. Here Y is a discrete random variable on the positive integers {I,  2, . . .). 
It may have a bounded or an unbounded distribution. 

As an example, consider the situation in which there are three possible failure 
modes. These modes are repaired by replacing certain boards, and as soon as the 
appropriate mode is determined, then it is a matter of replacing the boards for that 
mode, which takes a fixed amount of time. Assume that mode 1 repair takes 5 units 
of time, mode 2 repair takes 6 units, and mode 3 takes 9 units. Assume further that 
the probability of a mode I failure is 0.25, the probability of a mode 2 failure is 
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0.35, and the probability of a mode 3 failure is 0.40. Then the repair time Y has 
distribution P(Y = 5) = 0.25, P(Y = 6) = 0.35, and P(Y = 9) = 0.40. 

In this case it is reasonable to assume that a single sample from the distribution 
of Y is sufficient to remove all ambiguity. If a sample from the distribution yields Y 
= 5, then we can reasonably assume that it will take exactly 5 units of time to repair 
the machine. This is known as a single-sample (SS) model. The idea behind an SS 
model i s  that one observation ofthe underlying distribution suffices to remove all 
ambiguity and from then on the situation behaves deterministically. 

Now consider another machine. Assume that it has several failure modes. 
The situation is further complicated by the fact that as repairs are being made, 
it may be discovered that further work is necessary. An initial determination of 
a failure mode may not be sufficient to predict how long it will take to actually 
repair the machine. Let us assume that careful records kept over a period of 
time indicate that the total repair time Y is well-modeled by a truncated Poisson 
distribution with mean X = 3 hours. This means that 

The factor in the denominator comes from the fact that the truncated Poisson 
distribution i s  not allowed to assume the value 0. 

The service takes at least one slot (one hour equals one slot). Assume that we 
have been repairing the machine for one hour. There are two possibilities: Either 
the repair is finished, or it is not finished. The probability that it is finished is 
P(Y = 1) = 0.1572. The probability that it is unfinished is P(Y > 1) = 0.8428. 
We may view this as our first sample. Namely we sampled to see whether or 
not we were finished in one hour. 

Now assume that we are not finished. Let Y I  be the remaining (residml) 
repair time, and observe that it is at least one hour. Because uncertainty remains 
concerning how long the residual repair will take. it is reasonable to let Y1 be 
governed by the conditional distribution 

P(Y1 = y ) = P ( Y = y +  I I Y >  1) 

P(Y  -7 y +  I )  
P(Y > 1) 

- (0.0524/0.8428)3J'+ ' 
- 

( y +  I ) !  

- , Y 11. 
0.0622(3)'+ ' 

( y +  I ) !  (9.2) 
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The residual repair time is a random variable Y I  governed by the distribution 
in (9.2). Remember that this represents the remaining repair time. 

We now repeat this procedure. Continue to repair the machine for another 
hour. At the end of this time, either the repair is finished (having taken a total of 
two hours) or it is not finished. The probability that it is finished is P ( Y ,  = 1) 
- 0.2799. (Observe that this is not the unconditioned probability P(Y = 2 )  = 
0.2358.) The probability that it is not finished is P(Y,  > 1) = 0.7201. 

Assuming that we are still not finished, let us repeat the argument. Let Yz 
be the residual repair time, and observe that it is at least one hour. We let Yz 
be governed by the conditional distribution 

P(Y2 = y )  = P(Y = y + 21 Y > 2 )  

- P ( Y = y + 2 )  
- 

P(Y > 2) 

( Y  + 

( Y + W  

- (0.0524/0.607)3J + 

- 

0.0863(3)'+' 
- - , y l l .  (9.3) 

This process can be continued indefinitely. A model of this type is known 
as a multiple-sample (MS) model. 

It is important to realize that the SS and MS model types are independent of 
whether the underlying distribution is bounded or unbounded. We now illustrate 
this claim. 

To illustrate an MS model with a bounded distribution, assume that Y is uni- 
formly distributed over { 1, 2, 3, 4). Then under the MS model it is easy to see 
that Yt is uniformly distributed on {1,2, 3 } ,  that Y2 is uniformly distributed on 
{ 1,2}, and finally that P( Yz - 1) 7 I because, if the service has not terminated 
after three slots, then it must terminate in the fourth slot. 

To illustrate an SS model with an unbounded distribution, consider the trun- 
cated Poisson distribution in (9.1). We may take a single sample from this dis- 
tibution. it is likely to be around the mean, and in fact P(l 5 Y 5 5 )  = 0.91 18. 
Let us say that the sample yields Y = 4. Then it may be appropriate in certain 
circumstances to assume that the repair time is deterministically four hours. 

If you are given the task of modeling a system, should you use an SS model 
or an MS model'? This depends entirely on the physical situation and which one 
would be perceived as more appropriate under the particular circumstances. It is 
the case that an MS model will be somewhat more complicated mathematically. 
However, this minor complication may be deemed worth the extra effort to 
achieve good results from the model. It is also entirely possible that a system 
may be most appropriately modeled with some distributions being S S  and others 
being MS. 
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9.2 PROPERTIES OF AN MS DISTRIBUTION 

Assume that the distribution of a random quantity is treated using the MS 
model. In this case a certain restriction on the distribution will prove useful 
if it is desired to verify the (AC) assumptions. This and related matters are 
discussed in this section. 

Let Y be a random variable representing the quantity being modeled, and let 
its distribution be given by u, - P(Y = y )  for y = 1, 2, 3, . . . . Then F( y )  = 
P(Y <- y) is its cumulative distribution, and the complement of the cumulative 
is F*( y) = P(Y > y) = J -- F( y). Nate that these quantities are defined for y :- 
0 with F(0) = 0 and F (0) - I .  

It is helpful to have a specific situation in mind to motivate the material. We 
will assume that Y represents the length of service of a customer. However, 
keep in mind that these concepts are general and apply to other situations. In 
the service case F*( y) is the probability that the service lasts more than y slots, 
i.e., the probability that it lasts at least y + 1 slots. 

Here is an expression for the moments of Y involving F*. 

Proposition 9.2.1. We have E [  Y 1 = xy F*( y )  and 

E [  Yk]  =1+y ( t )  
: = 0 [~ v =  I 

f F * (  

Prm$ Note that 

k 2 2. (9.4) 

where we recall that F*(O> = 1. Writing out a few terms of the summation in 
the second line gives the third line. 

To prove (9.4), observe that 
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y =  1 

= F*(O) + c [( y + I)k ’.. y”F*( y )  
y =  I 

(9.6) 

Then (9.4) follows by interchanging the order of summation (valid since all 
terms are nonnegative). 0 

Remark 9.2.2. It is clear from (9.4) that E [ Y k ]  < = if and only if 
Z y k - 1 F * ( y ) < = .  

Now let us assume that the service has lasted for s slots and that it is not com- 
pleted. Then Ys is a random variable denoting the residual (remaining) service 
time. Generalizing the argument given in Section 9.1, we see that its distribution 
is given by 

P( Y ,  = y )  = P( Y = s + y j Y > s) 

P(U 5 s + y )  
P(Y > s) 

- - 

(9.7) 

Notice that the distribution given in (9.7) for s = 0 coincides with the distribution 
of Y. Hence we set Yo = Y, and assume that (9.7) applies for s 2 0. 

From (9.7) it follows that the complement of the cumulative distribution for 
Y, is given by 
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Using (9.8) and Proposition 9.2.1 (applied to the distribution for Y,), it is 
immediate that 

Notice that for s = 0 the expressions in (9.9) reduce to the results in Proposition 
9.2. I .  

The original development of these concepts had to do with reliability theory, 
and in this case Y represents the lifetime of a component. For this reason E[ Y, J 
is known as the mean residual lifetime. 

Proposition 9.23. Fix a positive integer k. Then EIYkl < OQ implies that 
E [ Y ~ ]  < 00 for all s 2 0. 

Pro08 This is Problem 9. I .  n 

Here i s  an important property that may be possessed by the mean residual 
lifetimes. 

DeJni8on 9.2.4. Assume that there exists a (finite) constant U such that 
E[Y.\,1 I U for s 2 0. Then the distribution of Y has bounded m a n  residual 

E l  lvetimes (BMRL). We denote this by BMRL-U. 

In a service time distribution that is not BMRL, if the service does not ter- 
minate as time goes on, the expected additional service required grows without 
bound. It is clear that any service with this property is undesirable, and hence 
the BMRL assumption is fairly natural. Nevertheless, it does entail the follow- 
ing strong consequence. 

Proposition 935. If the distribution of Y is BMRL, then Y has finite 
moments of all orders. 
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Pruufi Let U be the bound in Definition 9.2.4. Taking the reciprocal of the 
first equation in (9.9) and manipulating yields 

Letting w(s) = ~ ~ - s  F *( y), it is easily seen that this becomes 

(9.10) 

(9.1 1) 

Observe that w(0) = E [ Y ] .  Applying (9.11) inductively, we see that w(1) 5 
W " ( 1  - l / U h  w(2) I w(l)(l - 1LU) S E [ Y ] ( l  - l/U)2, and in general w(s) 
I E[Y1(1 - l/U).c. Since w(s) 2 F (s), this yields 

Then for k 2 2 we have 

al m I: y k -  ' F * ( y )  s E [ Y ]  I: y k - l  ( 1 - 7 ' pw, (9.13) 
y =  I v =  I 

and hence it follows from Remark 9.2.2 that all moments of Y are finite. 

Problem 9.3 asks you to show that any finite (bounded) distribution is 
BMRL. The next result shows that common infinite distributions are BMRL. 

Proposition 9.2.6. The following distributions are BMRL: 

(i) Geometric 
(ii) Negative binomial 

(iii) Truncated Poisson 

Pmofi Assume that Y has a ge0o.l) distribution, where 0 < p < 1. Then 
Y represents the number of repeated independent Bernoulli trials until the first 
success is achieved, where P(success) = p .  Then F * ( y )  = P(fai1ure in first y 
trials) = (1 - p)', and it is easily seen from (9.9) that E[ Y,] = E [ Y ]  = l/p. In this 
case the mean residual lifetimes are constant, which is what we would expect 
from the memoryless property of the geometric. 

Assume that Y has a neg bin@, r )  distribution, where 0 < p c 1 and r 2 2. 
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Then Y represents the number of repeated independent Bernoulli trials until 
exactly r successes are achieved. If Y > s, then s trials have been observed 
without achieving r successes. It is clear that the expected additional time to 
achieve r successes is bounded by the unconditional mean E[ Y 1 = r / p .  

Assume that Y has a trun Pois(h) distribution, where h > 0. Then 

(9.14) 

Using (9.7) and the definition of E[Y,]  gives 

4x3 
(s + 2)(s + 3)(s + 4) 

X3 
(s + 2)(s + 3)(s + 4) 

+ -- +... 3x’ 
(s + 2)(s + 3) 

x2 
(s + 2)(s + 3) 

+ 2h 
l+- 

(s + 2) 
h 

I + -  
(s + 2) 

- 
+... + + 

A’ kZ 
5 1 + x +  - + - +. 

2! 3! 

(9.15) A = e .  

The second line foIIows by factoring out and canceling the common term 
A” ‘/(s + I ) ! .  Focus on the second line. Its denominator is bounded below by 
1 ; hence its reciprocal is bounded above by 1. Its numerator is bounded by the 

D sequence in the third line, which is the power series for 2, 

Remark 9.2.7. Another proof of Proposition 9.2.6 is usually given. This is 
based on a stronger concept than BMRL, namely that of increasing failure rates 
(IFR). It is the case that IFR * BMRL and distributions with TFR possess many 
nice properties. For more on this concept, see the references in the Bibliographic 
Notes. We have not chosen to develop this topic further here. 

The distributions in Proposition 9.2.6 are the commonest infinite distribu- 
tions on {I ,  2,. . .}. However, there is a weaith of others whose properties for 
modeling have been little explored. Johnson and Kotz (1 969) and Johnson et 
a]. (1997) contain a great deal of material on discrete distributions. 
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9.3 SERVICE CONTROL OF THE SINGLE-SERVER QUEUE 

In this section we show various ways to model the service time control of a 
discrete time single-server queue. Some additional models are given in the prob- 
lems. 

Example 9.3.2. Batch Arrivals with SS Service Control. In each slot there 
is a probability p, of a batch of j customers amving for j  2 0, and the amvals 
are independent slot to slot, An arrival is counted in the buffer and available 
for service at the beginning of the slot following its arrival. 

There is a finite set A of actions with a E A corresponding to a particular 
service time distribution. If Y, denotes the service time under action a, then 
we let u,(a) = P(Y,  = y), y 2 1. Also Fa denotes the cumulative distribution 
function’of the service time, and F: the complement of the cumulative. It is 
assumed that a new service distribution may be chosen only at the beginning 
of a service so that the whole service must be completed under the chosen 
distribution. 

The epochs of decision are the slots in which a new service is to begin. Under 
the SS model, when action a is chosen, then the service time at that particular 
decision epoch is determined by a single sample taken from the distribution 
F,. Given the sample value, the service proceeds “lock step” until it is com- 
pleted. 

Let us see how to model this system as an MDC. The state space S consists 
of the following states: State 0 means that the buffer is empty; there are no 
decisions in this state. State i 2 1 means that there are i in the buffer, and a 
new service is to be initiated, the action set is A. The service-in-progress states 
are necessary to represent progress during a service of length at least 2. In this 
case ( i ,s) ,  for s 5 1, means that there are currently I in the buffer and that 
a service is ongoing and has s slots remaining until completion. Note that in 
the service-in-progress states there are no actions (null action). (In state ( i ,  1) 
we know that the service will be completed in the current slot, and hence we 
might be tempted to want to choose the next service distribution at this time. 
However, this is not allowed, since it is desirable to base the decision in part 
on how many new customers enter during the final slot of service.) 

We assume that there is a cost C(a) for choosing action a (incurred at the 
beginning of the service) and a cost rate d(s) for having an ongoing service with 
s slots remaining until completion. In addition a holding cost H ( i )  is incurred 
when there are i customers in the buffer (including the one currently in service), 
where H ( 0 )  -1 0. For example, if the system is in state (8, 2), then we know 
that there are currently 8 customers in the buffer and that 2 slob remain in a 
service (this does not tell us how many were in the buffer when the service 
began). Since there is no action in state ( i ,s ) ,  we can commit a slight abuse of 
notation and denote the cost as CCi,s). The cost structure is given by C(0) = 0 
and 
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C(i, a)  = H ( i )  + C(n), 
C(i, s) = H ( i )  + d(s), i 2 I. (9.16) 

Note that under a, a service of length I incurs a total cost of C(a), whereas a 
service of length y 2 2 incurs a total cost of ~ ( a )  + x:~,' d(s). 

The transition probabilities are given by 

(9.17) 

This completes the specification of this model as an MDC. We may then 
optimize it. Either the infinite horizon discounted or the average cost criterion 

0 is perhaps more suitable than the finite horizon criterion. 

Exantple 9.3.2. Batch Arrivals with MS Service Control. The arrival pro- 
cess and service time distributions are as in Example 9.3.1. However, when 
action a is chosen, then service is begun under F, as explained in Section 9.1. 
As service continues, its additional time is determined from the residual life- 
time distributions. So at the beginning of the service, it is not known how long 
the service will take. 

To model this as an MDC, let S be as in the previous example except that 
the service-in-progress states are ( i ,  a, s) for a E A and s 2 1. The state ( i ,  a, s) 
means that there are currently i in the buffer, that a service is ongoing under F,, 
and that the service has lasted for s slob and is no? completed. If the distribution 
governed by a is finite with maximum value Ba, then we have s I Bo - 1. 

Let us assume that the cost C(a) is incurred when action a is chosen and 
that a cost rate of d(n) is incurred for each unit of time (after the first slot) that 
service is ongoing. A holding cost H ( i )  is incurred when there are i customers 
in the buffer (including the one currently in service), where H ( 0 )  = 0. The cost 
structure is given by C(0) = 0 and 

C(i, a)  = H ( i )  + C(a), 

C(i, a, s) = H ( i )  + d(u), i 2 1. (9.18) 

The transition probabilities are given by 
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The last line is the probabiIity that the service is completed in the next slot, 
given that it has been ongoing for s slots and has not been completed. and this 
follows from (9.7). The second to the last line is the probability that the service 
will not be completed in s + 1 slots, given that it has not been completed in s 
slots, and this follows from (9.8). 

We have modeled this as an MDC and may now proceed to optimize it. 
0 

Example 9.3.3. Batch Amvals with MS Service Control and Intervention. 
In this variant of the last model we specify a positive integer U as a cutoff value. 
If the process reaches state (i,u, V), then the customer currently in service is 
ejected from the system, and a penalty cost is incurred. This mechanism imposes 
a firm limit on the amount of service provided to any customer. Problem 9.5 

0 asks you to model this as an MDC. 

Example 9.3.4. Priority Batch Arrivals with Uncontrolled MS Service. 
There are priority and nonpriority classes of customers. There is a probability 
p, (respectively, qJ) of a batch of j priority (respectively, nonpriority) customers 
arriving in any slot. The arrival processes are independent slot to slot and class 
to class. 

A choice of service time distribution might be included in the decision 
options, but to keep the model simple, let us assume that the service time of 
any customer is governed by a single distribution with cumulative distribution F 
and complement F*. When a service i s  completed and the system is nonempty, 
then the server has a decision to make. The actions are a = serve a priority cus- 
tomer, b = serve a nonpriority customer, and c = idle. The server is not allowed 
to idle when both classes of customers are present. 

The state space S consists of the following states: State (0,O) means that the 
buffer is empty; there are no decisions in this stab. State (i,~), with at least one 
coordinate positive, means that there are i priority and x nonpriority customers 
present and a new service may begin. If i, x L 1, then the action set is {u ,b } ,  
since a new service must be initiated. If i = 0, then the action set is {b ,c}  (see 
Fig. 9.l), while if x = 0, then the action set is {a, c } .  State ( i , x ,  a, s) is a service- 
in-progress state such that a priority customer is being served and the service 
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Departing customer 

Action c = idle 

-- 
% Action 6 = serve 

nonpriority 
customer 

Priority customers Nonpriority customers 

Figum 9.1 Example 9.3.4 with just cmptied priority buffer. 

has been ongoing for s slots and is not completed. State (i, x, h, s) has a similar 
interpretation with a nonpriority customer being served. There are no actions 
in these states. 

Assume that there is no cost for service. There are nonnegative holding costs 
H ( i )  (respectively, W(x) )  for holding i priority (respectively, x nonpriority) cus- 
tomers in the system. We assume that H ( 0 )  = W(0)  = 0 and that H ( i )  > W ( i )  
for i 2 1. 

A few of the transition probabilities are 

(9.20) 

It is clear how to obtain the remaining probabilities. This completes the speci- 
fication of the model as an MDC. u 

Exampie 9.3.5. Markov Modulated Batch Amhiils with MS Service Con- 
trol. This is a generalization of Example 9.3.2 with a more complicated arrival 
process. 

Consider an irreducible Markov chain on the finite state space { 1, 2, . . . , 
K} with transition probabilities &*. When the MC is in state k, then the batch 
arrival process is governed by the distribution (p,(k)),20. A state of the MC is 
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known as a phase. As the chain moves from phase to phase the batch anival 
process changes. 

The service time model is a? in Example 9.3.2. Notice that in this model 
the service times are being controlled and the arrival process is uncontrolled. 
In modeling this system, let us consider various options. Under option 1 the 
phase is known at the beginning of each slot, and ProbIem 9.6 asks you to 
model the system under this assumption. 

Option 2 assumes that the system has been operating for a long time (and 
hence that the MC has reached steady state) and that no information on the 
phases is utilked. In this case it is msonable to assume that P(system is in 
phase k )  = q, where q is the steady state probability associated with phase k. 
Convince yourself that under option 2 the MDC model is exactly as in Example 
9.3.2 with P(a batch of size j arrives) - xk p,(k)?rk. 

Option 3 assumes that the phase is unknown and attempts to make a statisti- 
cal inference concerning the current phase, given the historical data on customer 
arrivals. This approach will not be treated here. n 

9.4 ARRIVAL CONTROL OF THE SINGLE-SERVER QUEUE 

In this section we discuss several models dealing with the control of arrivals 
(often known as $ow control) to a single-server queue. To avoid obscuring the 
ideas, we will assume that the service time is uncontrolled. Obviously one could 
control both simultaneously but at the expense of increased model complexity. 

In the models in Section 9.3, it was assumed that the customers were essen- 
tially identical and that the service time Characteristics were attached to the 
server. Controlling the service involved adjusting the characteristics of the 
server rather than any inherent properties of the arriving customers. 

Now we switch to the point of view that the customer brings work into the 
system and that the controller has the option of adjusting the work load in 
various ways. Notice that one perspective or the other may apply in a given 
application. 

Example 9.4.1. SS Arrival Distribution Control with Fixed Service Rate. In 
this example we think of the customers as packets and assume that the service 
rate is fixed at one packet per slot. An action a from the finite set A corresponds 
to a particular phase a of arrivals and the length of the phase is governed by 
a distribution with cumulative distribution function F,, complement F:, and 
probability function rc(a). As long as this phase is operative, then P(a batch of 
size j arrives in a slot) z p,(a). Under the SS variant of this model, a single sam- 
ple is taken from the phase distribution, and this determines how long the phase 
laqts. Notice that the control is exercised on the arrivul statistics rather than on 
individual arrivals. A new action may be selected when a phase terminates. 

To model this as an MDC, the state space S consists of the following states. 
State i 2 0  means that there are currently i packets in the buffer and a phase 
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haq just ended; the action set is A. The phase-in-progress state (i ,u,s)  means 
that there are i 2 0 in the buffer and that phase a (of length at least 2) has s 2 1 
slots remaining until completion. 

There is a nonnegative holding cost H ( i )  on the buffer content, where H ( 0 )  = 
0. In addition we assume that a nonnegative reward R(a) is earned when phase 
a is chosen, and a nonnegative reward rate of r(a,s) is earned when there are 
s slots remaining of phase u. We assume that there exists a (finite) constant 
B that is an upper bound for the rewards and reward rates. This assumption 
enables the rewards to be incorporated into the cost structure as negative costs. 
To accomplish this, the net cost is incremented by R to make it nonnegative. 
If the system is optimized under the average cost criterion, then J - B will be 
the minimum average cost and hence B - J the maximum average reward. 

Under these assumptions the costs are given by 

C(i, u)  = H ( i )  R(a) + B, 
C(i, U, S) = H ( i )  - T(U, S) + B. (9.21 ) 

Compare this cost structure with that in Example 9.3. I .  In the latter the server 
is choosing a service distribution and hence must pay for it with presumably "on 
average faster" service costing more. We assumed that the cost rate depended only 
on the remaining service time and not on the particular service action choice. This 
makes sense because once the service length is determined, then the service pro- 
ceeds lock step until it is completed. Tn Example 9.4.1 we are thinking of compet- 
ing customer classes, and there may be a reward associated with allowing a certain 
class of packets into the system. It makes sense to allow the reward rate to depend 
on both the class identity and the remaining length of the phase, since the amval 
statistics from that class are operative in each slot of the phase. 

To develop the transition probabilities, it is helpful to introduce i* =: ( i -  I ) + .  
This quantity equals i - 1 for i 2 1 and 0 for i = 0. Recall that the service rate 
i s  I packet per slot. Then the transition probabilities are given by 

Ekurnpfe 9.4.2. MS Arrival Distribution Control with Fixed Service Rate. 
This is as in Example 9.4.1 except that the length of each phase is determined 

0 under the MS model. Problem 9.8 asks you to model this as an MDC. 

Example 9.4.3. Semi-Markov Modulated Batch Arrivals with Fixed Ser- 
vice and Reject Option. Assume first that we have an irreducible Mdrkov chain 
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as in Example 9.3.5. This chain will be the mechanism underlying the phase 
process, which works as follows: If the MC is in state k, we assume that a 
sample is taken from the transition probability distribution Q to determine the 
next state, say it is k*. Then associated with the pair (k,k:) is a cumulative 
distribution function F(k, k*) and probability function u(k, k ) that determines 
how long the current phase will last. Let ts  employ the SS model for the phase 
length. As long as the distribution F(k, k ) is operative, then P(a batch of size j 
amves in a slot) = pj(k, k*). This is known as a semi-Markov modulated batch 
arrivd process. The above description embodies full generality. As a special 
case it might happen that the phase length distribution depends only on the state 
k rather than on the pair (k ,k*) .  

Here i s  one possible method of control. Assume that when a new phase is to 
begin, the controller may choose action u = accept all incoming batches under 
that phase or b = reject all incoming batches under that phase. This decision 
is made with knowledge of the current MC state k but before the next state or 
the sampled length of the resulting phase are revealed. 

There i s  a nonnegative holding cost H on packets in the buffer. In addition 
there is a fixed penalty cost G for choosing b and a cost rate g(s) incurred when 
there are s slots remaining in a rejection phase. Let us assume a fixed service 
rate of one packet per slot. 

To model this as an MDC, we observe that the state space S consists of the 
following states: State ( i ,  k) means there are i packets in the buffer, a new phase 
is to begin, and that phase i s  determined by state k in the MC. The action set is 
{a ,b} .  State ( i , k , k * , I , s )  means that there are i packets in the buffer and that 
s 2 1 slots remain of an ongoing phase associated with (k ,k*) .  Here I is an 
indicator variable with I -L 0 meaning that a was chosen at the beginning of 
the phase and I = 1 meaning that b was chosen. Notice that if I = 1, then we 
know that no new packets will enter the system during the wiole phase. If the 
phase identity depends only on k, then the next MC state k may be omitted 
from the state description. 

The costs are given by 

C(i, k, a) = H(i) ,  
C(i. k ,  6 )  = H ( i )  + G, 

~ ( i ,  k,  k*, I ,  s) = H(i) i /g(s). (9.23) 

Recall that the service rate is one packet per slot, and let i* be an auxillary 
variable as in Example 9.4.1. The transition probabilities are given by 



214 OPTtMI%,ATlON UNDER ACTIONS AT SE1,ECTED EPOCHS 

This completes the specification of this model as an MDC. 

(9.24) 

3 

9.5 AVERAGE COST OPTIMIZATION OF EXAMPLE 9.3.1 

Once a system has been modeled as an MIX, then it may he optimized. We 
focus on optimization under the average cost criterion. To employ the approx- 
imating sequence method requires verification of the (AC) assumptions (or the 
weaker (WAC) assumptions discussed in Section 8.7). In this section we show 
how to verify the (WAC) assumptions for Example 9.3.1. 

Let X be the mean and A") the second moment of the batch size. Let r, be 
the mean service time under action a and 7:) the second moment of the service 
time. We operate under the following basic assumptions: 

(BAZ). 

(BA2). 

We have A'" < 0. 

For some a* it i s  the case that Xi,* < 1 and r: < QO. 

(BA3). We have 7, < 00 for all a. 

(BA4). There exist a and y 2 2 such that u,,(a) > 0. 

(BAS). The holding cost is given by H(ij = Hi for some positive constant 
H. The cost rate d(s) = 0. 

Note that (BAS) is assumed for convenience. The result could be proved 
under more general conditions, but at the expense of increased complexity. 
Since 7,* 2 1, it follows from (BA2j that X < 1, and hence plj > 0. There 
is no loss of generality in assuming that p~ c 1, since otherwise no customers 
will ever anive. The condition in (BA4) rules out another triviality. If it fails 
to hold, then the service time under every action is exactly one slot, and this 
situation is of no interest. 

Rentark 9.5.2. In this section and the next we will be calculating a number 
of expected times and costs. Suppose that i is a state in an MDC, and we need to 
calculate the expected first passage time (or cost) from i to a distinguished state. 
What i s  usually important is whether this quantity is a constant, a linear function 
of i ,  a quadratic function of i, and so on, rather than the specific parameters 
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involved. In what follows, all the “U” functions are assumed to be finite. We 
say a function is Vo if it is a constant. It is Ul(i)  (respectively, Uz(t))  if it is a 
linear (respectively, quadratic) function of i. 

This notation gives us a lot of flexibility. A function of i and s is U1 ( i ,  s) if it 
is a linear function of i and s. Such a function can have i ,  s, and constant terms. 
It is U’(i,s) if it is a quadratic function of i and s. Such a function can have 
i ’ ,  s 2 ,  and is terms as well as linear terms. The function is U ~ ( i ) U f ( s )  if it is a 
product of a linear function of i and a linear function of s. Other combinations 

0 can be created in an obvious way. 

Lemma 9.5.2. Assume that the (BA) assumptions hold, and let X(s) be the 
number of customers arriving in s slots. Then 

EtX(s)] = xs = if,@), 
E[(X(S))*] = X‘?T + P s ( s  - 1)  I= Uz(s). (9.25) 

Pmot Let Xk be the number of customers arriving in slot k. Then X(s) 
= Xk. Using the linearity of the expectation and the fact that E[Xk]  = X 
yields the first line of (9.25). 

We have var[XkJ = E[(Xk)2 ]  - (E[Xk])’ : A(” - X2. Moreover the variance 
of X(s )  is linear because the summands are independent. Using these facts and 

CJ some algebra yields the second line of (9.25). 

We now show that there exists a standard policy. 

Lemma 95.3. Assume that the (BA) assumptions hold, and let d be the 
stationary policy that always chooses a*. Then d is 0 standard. 

Proof: Since po > 0, there is a path from any nonzem state to 0 in the MC 
induced by d (indeed, in the MC induced by any stationary policy}. Hence this 
MC has a single communicating class R containing 0. 

We consider three cases concerning the service time distribution under a*: In 
Case 1 either this distribution is unbounded, or it is bounded and its maximum 
value B i s  the largest possible service time under any action. In Case 2 the 
maximum value of this distribution is B, and a service under at least one other 
action may be longer than B. Moreover either (B 2 2) or ( B  = 1 a n d m + p ~  c 1). 
In Case 3 we have B = 1 andpo+pl = 1. 

Under Case I the policy d induces an irreducible Markov chain on S (why?), 
and hence R = S, 

In Case 2 a queue can always build up, and hence the states L) = (0, 1, 
2, . . .} c R. Note that states ( i ,  s) for 1 I s I. B - 1 are dso in R, whereas states 
( i , s )  for s 1 B are transient. 

We first argue informally that under either Case 1 or Case 2, the class R is 
positive recurrent with finite average cost. Assume that a service has just com- 



216 OPTIMlZATlON UNDER ACTlONS AT SELECTED EPOCHS 

menced under a*. The expected number of customers arriving during that ser- 
vice is C uy(a* j( Ayj = kP+ < 1. Since one customer is served and the expected 
number of arrivals is less than 1, on average when the service is finished the 
buffer will contain fewer customers than when the service began. Eventually, 
in finite expected time, the MC will reach 0. 

L,et m be the expected time to go from state 1 to state 0. Starting in state 
i ,  the chain must transition to i - I ,  then i - 2, and so on, to reach 0. Each of 
these first passages is a statistical replica of the one from 1 to 0. Hence m,&) 
= inz. Then muc~(d) = 1 + p,( j m )  = 1 +mX < -. This shows that R is positive 
recurrent. 

We now upper bound the expected cost of a service initiated in i .  Let Pj( y) 
be the probability that exactly j customers arrive in y slots. Then 

The first line of (9.26) follows by assuming that the customers aniving during 
the service are charged a holding cost throughout the length of the service. Line 
two follows from the first line of (9.25). Note that the terms in the third line 
are finite by (BAZ). It is then possible to argue (we omit the details) that c,&) 
= U2(i). Thus c ~ ( d )  = p , U , ( j )  c 00 by (BAI). 

This completes the informal proof that R is positive recurrent with finite 
average cost. Problem 9.9 outlines a rigorous proof of the positive recurrence. 

This shows that d is 0 standard in Case 1. To complete the proof under Case 
2, we need to deal with the transient service-in-progress states. Let us develop 
expressions for the expected time and cost to reach D rather than the larger set 
R. If the process starts in transient state (i ,s) ,  then in s steps it will reach D. 
Hence m ( , , c ) ~ ( d )  = U,(s ) .  Moreover, using reasoning similar to that in (9.26j, 
we have 

= H [ i s  + As’] 

= U , ( i ) V , ( s ) +  U ~ ( S ) .  (9.27) 
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This completes the proof in Case 2. 
It remains to consider Case 3. In this caqe a queue cannot build up, and it is 

easy to see that R = (0,l). All other states of S are transient. We refer to Case 
3 as the Special Case. 

Since R is finite, it is a positive recurrent class with finite average cost. It may 
easily be seen that mjtl(d) = i/po = U I  (i) and c,o(d) = [C(a*)f + Hi(i  + 1)/21/p0 
2 Uz(i) .  

Using reasoning similar to that above, we have 

" Ut(i ,s) .  (9.28) 

Moreover 

- U2(irs). (9.29) 

Note that (9.29) utilizes the second line of (9.25). Thus d is 0 standard in the 
0 Special Case. The proof is completed. 

We now consider the verification of the assumptions for average cost com- 
putation. If all the service time distributions are bounded, then it is possible to 
verify the (AC) assumptions given in Section 8.1. However, if at least one distri- 
bution is unbounded, then we must employ the (WAC) assumptions from Sec- 
tion 8.7. (These only differ from (AC) in that (WAC3) is weaker than (AC3).) 
The (WAC) approach is more general and works for bounded or unbounded 
distributions. For this reason we show how to verify the (WAC) assumptions. 

First choose and fix a sequence M ( N )  of positive integers such that M ( N )  
-+ m as N + w. Then let SN = ti10 5 i I N }  U {ti,s)ll 5 i S N, 1 I 
s S M ( N )  I 1 }. This means that the buffer is not allowed to contain more than 
N customers and no service can last more than M ( N )  slots. If a batch arrives 
that would cause a buffer overflow, then the probability of that event is given 
to the corresponding full buffer state. So, if the system is in state ( i , s )  E S,, 



218 OPTIMIZ4TlON UNDER ACTIONS AT SELECTED EPOCHS 

then the probability of a batch of more than N - i customers is given to state 
(N, s- I). The probability of a sampled service time greater than M ( N )  is given 
to a service time of M ( N ) .  So, for example, if the system is in state i ,  I I i c N, 
then the probability that the service time is greater than M ( N )  and that a single 
customer anives is given to state ( i+  l , M ( N ) -  1). Other possibilities a~ handled 
in the obvious way. This defines (Ax). 

The next proof utilizes Section 7.7 and may be omitted if desired. 

Propasition 9.5.4. Assume that the (BA) assumptions hold for Example 
9.3.1, and let the AS be as above. Then the VIA is valid for (AN) and the 
(WAC) assumptions hold for the function r N ( . )  = lim - (u;(.) - uY(0)). 

*Proofi We follow the four-step template in Proposition 8.2.1 (with x = 0) 
with the exception of Step 4 which verifies (AC3). Instead, we will directly 
verify (WAC3) from Section 8.7. 

Since po > 0, it is easy to see that under any stationary policy there is a path 
from any nonzero state in AN to state 0. Moreover we have Po0 2 > 0. Hence 
the induced MC is unichain with aperiodic positive recurrent ciass containing 
0, and Step 1 holds. 

Let d be the 0 standard policy in Lemma 9.5.3. If we can show that (C.37-38) 
hold, then Step 2 will follow from Proposition C.5.3. Consideration of a few 
caSes will make this clear. If the process is in state i, where I I i S N, then 
it may transition to state ( r , y  - 11, where r > N and y > M ( N ) .  The proba- 
bility associated with this i s  given to ( N , M ( N )  - 1). It is clearly the case that 
~ ( N , M ( N  ,w(d)  S m(,..\. "(d) ,  since during the shorter service time fewer cus- 
tomers are expected to enter the system. Similar arguments may be given for 
other cases and for the first passage costs. Hence (C.37-38) hold. 

We verify that Step 3(iii) holds. Let us first show that the (H) assumptions 
from Section 7.7 hold for A (with distinguished state 0). This will give us the 
existence of an average cost optimal stationary policy. It follows from Lemma 
9.5.1 and Proposition 7.5.3 that (Hl-2) hold. It remains to verify (H3-5). 

Let us first explain where we are going and then show how to get there. It 
follows from (Hl) that (1 - a)V,(O) is bounded in a. Let 2 be an upper bound 
for this quantity. 

We will first show that 

L(i) = cor(d) and L(i,s) = cnl(d) + sZ, i 2 1, (9.30) 

works in (H3). For the function in (9.30) it is easy to see that (H4) holds. Check 
it out! Property (BA3) is needed. 

Now define 
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(9.31) 

Note that cot (d) + 2 5 W c w, where the finiteness follows since the subtracted 
quantity is a quadratic in s. Let h be any limit function (Definition 7.2.2(i).) We 
will show that 

h 2 --W. (9.32) 

Since h is bounded below by a constant, the vdidity of (H5) will follow. 

It is helpful to define the function ta, for a E (0, I), by z,(l) I 0 and 
So to complete the verification of (H), we show that (9.30) and (9.32) hold. 

z&) = (s -. 1)a' - I + (s - 2)cr" ,7 4- . . . + ( I ) &  s 2 2, (9.33) 

and note that 

s(9- I )  
lim z&) - ~ 

a - I "  2 .  

To proceed, observe that 

(9.34) 

(9.35) 

If the process is in state i 2 1, then the situation is probabilistically identical to 
the situation in state 1 except that the holding cost is greater. Hence the first 
line of (9.35) is clear. The reasoning for the second line is similar. 

Using (9.33, we see that it is only necessary to verify (9.30) and (9.32) for 
states with a buffer content of 1. Using reasoning similar to that in (8.6) but 
applied to A yiel&r h,(l) 2 -co,(d), and this verifies the first part of (9.30). 
It also shows that h(1) 2 -col(d) 2 - W and hence verifies (9.32) for decision 
epochs. 

We now obtain an expression for ha( l , s ) .  Let P,(s) be the probability that 
exactly j customers amve in the remaining sr slots of the service. Iterating the 
discount optimality equation (4.9, it may be seen that 
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V,(l.s) = 4discounted holding cost for s slots] + as Pj ( s )V , ( j )  
I 

To obtain the second line, the holding cost due to the customer in service has 
been discarded; the first term on the right is the expected holding cost of the 
customers arriving during the service. The third line follows from (9.33) and 
(9.35). It is useful for the reader to check the validity of (9.36) for s = 1, 2. 

Subtracting V,(O) from both sides of (9.36) and performing some algebraic 
manipulation yields 

Since L&) 2 0, it follows that h,(l,s) 2 -co,(d) - sZ, and this verifies the 
second statement of (9.30). 

It follows from (9.37) and (9.34) that 

(9.38) 

It then follows from (9.31) that (9.32) holds. This completes the verification of 
the (H) assumptions. 

From Proposition 7.7.2 there exists an average cost optimal stationary policy 
f for A and the minimum average cost is a finite constant. In the MC induced 
byf there is a single communicating class Rt that contains 0. Since p~ < 1 and 
every service lasts at least one slot, we must have 1 E R f .  (These statements 
are true for any stationary policy.) Let us consider various cases concerning the 
service time distribution underf( I). 

Under Case I ,  this distribution is unbounded, and then R, = S. Since f is 
average cost optimal and the holding cost is unbounded as the number of cus- 
tomers increases, it is intuitively clear that the chain is positive recurrent. Hence 
f is 0 standard. 

Under Case 2, the service time has maximum value B, where either ( B  2 2) 
or ( B  = 1 and po + P I  c 1). In Case 2 a queue may build up, and we have 
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i E Rf for i 2 0. The argument that Rr is positive recurrent is a.. in Case 
1. There may be transient service-in-progress states if there are service time 
distributions yielding longer services than under f.  Using reasoning similar to 
that in Lemma 9.5.3, it is easy to see that the expected time and cost to reach a 
decision epoch from one of the transient states are finite. Thus f is 0 standard. 

Under Case 3, the Special Case, the service time is one slot and po + p i  = I .  
Then Rf - (0, I }. We do not need to argue that f is 0 standard in this case. 

Using the fact that f is 0 standard under Cases 1 and 2, it may be shown 
just as was argued above for d, that (C.37-38) hold for the MC induced by f. 
The validity of this argument does not require the policy to always choose the 
same service time distribution. Instead, it relies crucially on two facts: first that 
exactly one customer is serviced at a time, and second that in a given decision 
state i, the actionf(i) is constant (which is true for any stationary policy). It 
then follows from Proposition C.5.3 that (A,) i s  conforming at f ,  
Now assume we are in the Special Case. Then it may be seen directly that 
= PO, tl = P I ,  and J = pl (C( f (  I)) + H). These same results hold for AN for 

N 2 I ,  and hence (AN) is conforming on R f .  Hence in all three cases we have 
conformity and Step 3(iii) holds. 

It remains to verify (WAC3) from Section 8.7. We have already shown that 
r N  satisfies (8.1). It follows from Proposition 6.5.1(iii) that 

Using (9.39) and following the method in the verification of (H3-5) above veri- 
fies (WAC3,) with the function Q being a constant. The rest of (WAC3) foliows 

0 immediately. The details are ommitted. 

9.6 AVERAGE COST OPTIMIZATION OF EXAMPLE 9.3.2 

In this section we show how to verify the (AC) assumptions for Example 9.3.2. 
Recall that Y,, denotes the service time under action a. We let Yu.,, be the resid- 
ual service time under u, given that the service has been ongoing for s slots and 
is not completed. Recall that 7a is the mean service time and 7L2j the second 
moment of the service time distribution under a. Let 7a,s = E[ Y,, ,] be the mean 
residual service time and 7;:: the second moment of the residual service time 
distribution. 

We operate under the following basic assumptions: 

(BAI). We have h'?) c m. 

(BA.2). For some a* it is the case that h7,' c 1. 

(BA3). There exists a (finite) constant U such that 7u,A I I/ for all u and s. 
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(BA4). There exist u and y 2 2 such that u,(a) > 0. 

(BA5). The holding cost is given by H ( i )  = Hi for some positive constant 
H. The cost rate d(a) = 0. 

We may argue as in Section 9.5 that 0 < c I .  Note that (BA3) says that 
the service time distributions are all BMRL. The purpose of (BA4) is to rule 
out the trivial case in which every service takes exactly one slot. The conditions 
in (BA5) are assumed for convenience. The result can be proved under more 
general conditions. 

We first show that there exists a standard policy. 

Lemma 9.6.1. Assume that the (BA) assumptions hold. and let d be the 
stationary policy that always chooses a*. Then d is 0 standard. 

Proo$- Note that for u # a*, states of the form ( i ,a , s )  are transient under 
the MC induced by d. To see if there are additional transient states, we need 
to consider two cases. In Case 1, one of three situations holds: the distribution 
under a* i s  unbounded, or it is bounded with maximum value B 2 2, or B = 
1 and po + P I  < 1. In any of these situations a queue can build up and the 
remaining states of S form a single communicating class R. 

In Case 1 an informal argument that R is positive recurrent with finite average 
cost may be given in a similar manner to the proof of Lemma 9.5.3. We omit 
the reasoning. A formal proof of the positive recurrence i s  outlined in Problem 
9.10. 

To complete the proof in Case 1, let D = (0, 1,  2, . . . 1, and assume that the 
process is in transient state (i,u,s). Note that reaching D and reaching R are 
equivalent. We now show that the expected time and cost to reach D are finite. 
Note that for fired s, we may consider ra,, and 7:; to be finite canstants. The 
mean residual service times are finite by (BA3), and the second moments are 
finite by Propositions 9.2.3 and 9.2.5. 

Remember the “U” notation from Remark 9.5.1. Do not confuse it with the 
bound U in (BA3). Observe that m,,,a,s)&f) = T ~ . ~  < - by (BA3). Conditioning 
on the length of the residual service time yields 

The first line follows by assuming that the holding cost is i n c u d  on all the 
customer arrivals for the whole length of the residual service time. The second 
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line follows from the first line of (9.25) and the finiteness is argued above. This 
proves that d is 0 standard in Case 1. 

In Case 2, the Special Case, we have R = 1 and PO + pl = 1 .  In this case a 
queue cannot built up. Then R 1- (0, I}, and the remaining states are transient. 
It is clear that m&) and c,&) are as given in the proof of Lemma 9.5.3. 
By using reasoning similar to that above and in Lemma 9.5.3, we can show 
that mtt,u,.t&i) = Ul( i )  and q,, . , .~)o(d) = U:(i). This completes the proof in the 
Special Case. n 

To define (A,) for this example, choose and fix a sequence M ( N )  of pos- 
itive integers such that M ( N )  -+ 00 as N - e ~ .  Let SN = { i lO  5 i I N }  U 
{(i,a,s)[l I i I N, all a, I S s I M ( N )  - l}. This means that the buffer is 
not allowed to contain more than N customers. If the system is in state (i, u, s), 
where 1 5 s I M ( N )  - 2, then just as in A, a sample is taken from the appro- 
priate residual service time distribution to see whether the service finishes in 
the next slot or not. If the system i s  in state ( i , a . M ( N ) -  l), then it is declared 
finished in the next slot. 

So, if the system is in state (i,a,s), i 5 N and s I M ( N )  - 2, then the 
probability of a batch of more than N - i custonters, and a continuing service 
is given to state (N,u,s, +I) .  If the system is in state ( i , a , M ( N )  - I), i I N, 
then the probability of a single customer arriving i s  given to state i (recall that 
the service is declared finished in the next slot). Other possibilities are handled 
in the obvious way. 

Here is the main result. 

Propositim 9.6.2. Assume that the (BA) assumptions hold for Example 
9.3.2, and let the AS be as above. Then the VIA is valid for (AN) and the (AC) 
assumptions hold for the function rN(.) = lim, - (uy( . )  - u;(O)). 

P m f i  We follow the four-step template in Proposition 8.2.1 with x = 0, 
except that (AC3) will be verified directly rather than through Step 4. 

Since pu > 0, it is easy to see that under any stationary policy there is a path 
from any nonzero state in Ah1 to state 0. Moreover we have PM) - po > 0. Hence 
the induced MC is unichain with aperiodic positive recurrent class containing 
0. This completes Step 1. 

Let us give an informal argument that (C.37-38) hold for the MC induced by 
d. It will then follow from Proposition C.5.3 that the AS is conforming at d, and 
hence Step 2 holds. Assume that the process is in state i with 1 I i I N .  It may 
transition in the next slot to (r,  a*, 1) where r > N. The probability of this event is 
given to the state ( N ,  a*, 1). It is clear that ~ Z ( N , ~ * ,  rp(ci) I m(r.u*.l)t)(d). This argu- 
ment relies on the fact that to reach 0 every customer must be served, one at a time. 
If the process is in state (i. a, s) with 1 5 i 5 N and 1 5 s 5 M ( N )  2, then it may 
transition in the next slot tor > N .  The probability of this event is given to the state 
N ,  and it is clear that mN&) I m&(d). If the process is in state (i, a, M(N) - I )  
with I S i I N ,  then it may transition in the next slot to (i + j ,  a ,  M ( N ) )  with 
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i - 1 + j > N. The probability of this event is given to the state N, and it is clear 
that m ~ " ( d )  5 m ( , + , , u , ~ ( ~ l w ( d ) .  The argument for the other cases and for the first 
passage costs is similar and hence (C.37438)  hold. 

Let us now verify that Step 3(iii) holds. We first verify that the (SEN) 
assumptions from Section 7.2 hold €or A (with distiguished state 0). This will 
give us the existence of an average cost optimal stationary policy with constant 
minimum average cost. It follows from Lemma 9.6. I and Proposition 7.5.3 that 
(SEN1-2) hold. It remaim to verify (SEN3). 

Observe that 

V,( i )  2 V a ( l ) ,  
V,( i ,a ,s)  1 V,(l.a,s). i 2 1. (9.4 1) 

If the process is in state i 2 1, then the situation is probabilistically identical to 
the situation in state 1 except that the holding cost is greater. Hence the first 
line of (9.41) is clear. The reasoning for the second line i s  similar. 

Using (9.41), we see that it is only necessary to verify (SEN3) for states with 
a buffer content of 1. Using reasoning similar to that in (8.6) but applied to A 
yields ha( 1) 2 -cof(d). 

Now assume that the process starts in (1, a, s), and let P,(k) be the probability 
that exactly j customers arrive during k slots of a service. Then 

Subtracting V,(O) from both sides yields 

I -  I 

k =  I 

2 - C O l ( d )  - zu, (9.43) 

where Z is an upper bound for (1 --a)V,(O). and U is from (BA3). Thus (SEN3) 
holds. 
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It follows from Theorem 7.2.3 that there exists an average cost optimal sta- 
tionary policy f for A and the minimum average cost is a finite constant J. 
There is a path from any nonzero state to state 0 under the MC induced hyf, 
which implies that there is a single communicating class Rf containing 0. Since 
po < 1 and every service lasts at least one slot, we must have 1 E Rr.  Let us 
consider two cases concerning the service time distribution under f (  1). 

Under Case I ,  one of three situations holds: this distribution is unbounded; 
or it is bounded with maximum value B 2 2; or B = 1 and p ~ )  +p1 c 1. In any of 
these situations a queue can build up, and Rf contains all the decision epochs. 
Note that states of the form (i, a, s) are transient if the action a did not arise 
underf. The reasoning in the proof of Lemma 9.6.1 shows that the expected 
time and cost of a first passage from a state ( i ,a,s) to a decision epoch are 
finite. Sincef is average cost optimal and since the holding cost is unbounded, 
it is intuitively clear that R, must be positive recurrent. Hencef is 0 standard. 

It may be argued that (C.37-38) hold for the MC induced byf. The validity 
of this argument does not require the policy to always choose the same service 
time distribution. Instead, it relies crucially on two facts: first that exactly one 
customer is serviced at a time, and second that in a given decision state i ,  the 
actionf(i) is constant (which is true for any stationary policy). It then folows 
from Proposition C.5.3 that (AN) i s  conforming atf. 

Under Case 2, we have B - 1 andpo+pl- 1. In this case a queue cannot build up, 
and K = (0 , l ) .  Then it may be seen directly that ao =PO, 11 =PI,  and J =PI ( C ( f (  I )) 
+ H). These same results hold for (AN) for N 2 1, and hence (A,v) is conforming 
on R f .  Hence in both cases we have conformity, and Step 3(iii) holds. 

The verification of Steps 1 ,  2, and 3 shows that (ACl), (AC2), and (AC4) 
hold. We now give a direct proof that (AC3) holds. We have already shown that 
r N  satisfies (8.1). It follows from Proposition 6S.l(iii) that (9.39) is valid for 
this example. The counterpart of (9.41) holds in (AN}, and hence it is sufficient 
to verify (AC3) for a buffer content of 1. 

Using reasoning similar to that in (8.6) yields, for sufficiently large N, that 
hE(1) 2 -c$,(dlN). Then using (9.39) and the conformity of the AS at d, we 
obtain liminf,v,, r N ( l )  2 -col(d). This verifies (AC3) for decision epochs. 

Now consider service-in-progress states. We may mimic the argument in 
(9.42) in (AN) to obtain, for 1 I s I M ( N )  - 1, 
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We now subtract V t ( 0 )  from both sides. Using reasoning similar to that in 
(9.43) yields 

m I 

This yields rN( l ,a , s )  = Iinx- 1- h:(l,a,s) 2 - c ~ ( d ~ N ) - J " U .  Recall that 
we have verified (AC4). and hence lim sup,, oo J" 5 J. Then taking the limit 
infimum of both sides yields lim inf, -. rN(  1, a, s) 2 -CIJ~ (d)-J U. This verifies 
(AC3) with Q = c01 ( d )  + J U. n 

9.7 COMPUTATION UNDER DETERMINISTIC SERVICE TIMES 

Let us consider a single-server queue in which the actions are choices of deter- 
ministic service times. Assume that action k corresponds to a service time of 
exactly k units If k = I ,  then the SS and MS models of this service time coin- 
cide. If k 2 2, then the SS model yields a single sample of k units. An exam- 
ination of (9.17) and (9.19) shows that the SS and MS models with determin- 
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istic service times are essentially equivalent, except that the SS model looks at 
remaining service time while the MS model looks at elapsed service time. 

Let us adopt the point of view of Example 9.3.2 and look at elapsed service 
time. We compute an optimal policy under the assumption that the customer 
arrival process i s  Bernoulli (p), with 0 < p < 1, and actions k = 1, 2, 3. The 
holding cost is given by H(i) = Hi, where H is a positive constant. This is 
ProgramFive. 

The basic assumptions of Section 9.6 are valid and hence the conclusions 
of Proposition 9.6.2 hold. If it is the case that C(1) > C(2) > C(3). then we 
would expect that an optimal policy f would satisfy f ( i )  is decreasing in i ,  and 
this is born out by the program, with one exception. Hence we may give the 
optimal policy as two intervals, where the first interval indicates buffer content 
for which it is optimal to serve in three dots. and the second interval buffer 
content for which it i s  optimal to serve in two slots. In the remaining states it 
is optimal to serve in one slot. For example [ 1. 51 0 means that it is optimal 
to serve in three slots when the buffer content is no greater than 5 and optimal 
to serve in one slot for content greater than 5. 

Given the AS a!! defined in Section 9.6 (note that there is no need to tyncate 
the service time). let us develop the expressions for the VIA 6.6.4. Let i equal 
i +  1 if l I i c N a n d e q u a l N i f i = N . T h e n  

Remurk 9.7.1. it is intuitively clear, and may be proved by induction on 
(9.46), that if H and C(. )  are multiplied by a positive constant, then the optimal 
average cost is muftiplied by that constant, and the optimal policy is unchanged. 
For this reason we assume that H = I in all our scenarios. In ail scenarios we 

9 used the weaker convergence criterion (Version 1) of the VIA. 

Whether the queue is stable or unstable under a given action turns out to be 
crucial, as we would expect from the examples in Chapter 8. The policy that 
always chooses action k induces a stable MC if p k  c 1. We have (a) stable 
under { 1,2,3} if p < f ,  (b) stable only under { 1.2) if 5 5 p c 5, and (c) stable 
only under (1) ifp2 f. 

The policy d that always Serves in one slot is our benchmark. Then R d  T; 

(0,1}, and we may easily see that TO = 1 - p ,  ?rl = p ,  and Jd = p(C( I )  + H). 
Under condition fb) ir is the caqe that the queue is also stable under the policy 
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that always serves in two slots, and this policy might yield a lower average cost 
than the benchmark. A similar comment holds under (a). In these cases we could 
give a sepcdte program to calculate the average cost under these policies for 
a potentially better benchmark. We have not chosen to do this here. 

As a check on the program, we let p - 0.3, H 5 1, and C(.) E 2. It is clear 
that d should be optimal with J = 0.3 (2 + 1) = 0.9, and this is born out by the 
Fog-. 

Remark 9.7.2. k t  us make the intuitively plausible assumption that an 
optimal policyf eventually chooses k 5: I .  In this case Rf is finite, and a natural 
limit is imposed on the buffer content. For example, assume thatf .: [ I ,  21 13, 
71. If there are 8 or more in the queue, then customers are served in one slot, and 
since no more than one customer can anive in a given slot. the queue cannot 
build up- The states 0 I i 5 8, together with the appropriate service in progress 
states, form R f .  0 

Scenarios 9.7.3. Some scenarios are given in Table 9. I. For each of them, 
except for Scenarios 7 and 8, we let E = 0.0000005 and N = 80 and confirmed 
with N = 100. 

Scenarios 1 and 2 fa11 under the stability case (a). Note that in Scenario 2 
we have C(2) = 4 C(3),  and it is never optimal to serve in 3 slots. Scenarios 
3 and 4 fall under the stability case (b). The optimal policy uses k = 2 quite 
selectively and k = 3 only when there is one customer in the queue. 

The remaining scenarios fall under the stability case (c) so that the queue 
is unstable under k = 2, 3. In Scenario 5 the controller switches to k = 1 for 
buffer content of 3 or more, even though C(t) 7 10 C(2). A similar comment 
holds for Scenario 8. In this case the program output is unclear for N = 100. 
Increasing to N = 200 yields the optimal policy unambiguously. 

The program is not well-behaved in Scenario 7, in the sense that f ( i )  is not 
decreasing in i, as we conjectured. Note that C(1) > 6C(2) and that p is fairly 

Table 9.1 Results for Scenarios 9.7.3 

Scenario 1 2 3 4 5 6 7 8 

P 0. I 
Costs 15.0 

5.0 
0.5 

Jd I .6 
J 0.393 
Savings 1.207 
Optimal [I ,  31 

policy (4, 71 

0.2 0.4 
10.0 15.0 
1.0 5.0 
0.25 0.5 
2.2 6.4 
0.667 3.483 
1.533 2,917 

I2. 31 
0 51 [11 

0.4 
20.0 
10.0 
0. I 
8.4 
4.576 
3.824 

(11  P I  

0.6 0.8 
50.0 25.0 
5.0 15.0 
0.1 0.5 

30.6 20.8 
15.528 19.755 
15.072 1.045 

0 [ I ,  21 tl l  0 

0.8 0.9 
40.0 30.0 
6.0 10.0 
0.2 0. I 

32.8 27.9 
25.667 25.213 

7.133 2.687 
0 [I, 38]? 0 [I] 
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large. On the basis of N T: 340 we have conjectured the policy given in Table 
9.1. Several comments are in order. If there is a nonunique optimal policy, then 
this might give rise to ambiguous output under any convergence condition. If 
there i s  a unique optimal policy, then the ambiguity might be resolved in one 
of several ways. First, a substantial increase in N might resolve it. Second, a 
smaller N might be sufficient under Version 2 of the VIA. Third, if neither of 
these remedies works, then we might conjecture that a policy e choosing k = 2 
in states 11, L] is optimal or close to optimal. We could then develop a program 
to calculate J ,  for various values of L to get close to J 5 25.667. This mystery 
is left for the interested reader to resolve! Q 

9.8 COMPUTATION UNDER GEOMETRIC SERVICE TIMES 

Let us consider Example 9.3.2 with geometric service times, This is a single- 
server queue with Bernoulli (p) customer arrivals and with the actions being 
geometric rates {at, a?, . . . , a x } ) ,  where 0 < a ,  < a2 < . . . < U K  < 1. When a 
service rate choice is made for a customer about to enter service, then a single 
cost is incurred, and the chosen rate must be used until the service of that cus- 
tomer is completed. This may be contrasted to the example in Section 8.5 in 
which a new rate may be chosen (and cost incurred) in each slot of an ongoing 
service. In the present case we envisage a situation in which the quuliry of ser- 
vice (Le., the service rate) given to a particular customer is to remain constant 
throughout the service of that customer. This is Programsix. 

Let the AS be defined as in Section 9.6, where no service can last more than 
L slots. Let i* = i + 1 if 1 I i c N and equal N if i = N. Then the expressions 
for the VIA 6.6.4 are 

If H and C(a) are multiplied by a positive constant, then the optimal average 
cost is multiplied by that constant and the optimal policy is unchanged. For this 
reason we assume that H = 1 in all our scenarios. 

Let d(n)  be the policy that always serves at rate a for a > p. The benchmark 
policy d serves at the constant rate that realizes Jd = min,., { J d ( , ) } .  Note that 
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the benchmark is defined as in Section 8.5. The expression in (8.12) is not 
valid because the cost for service is charged only once, at the beginning of the 
service, rather than during each slot of the service. The next result shows how 
to modify (8.12) in this situation. 

Proposition 9.8.1. Assume that a satisfies p < u. Let d(a) be the policy 
that always serves at rate a, where the cost of service C(u) is charged once at 
the beginning of the service. Then 

(9.48) 

Proof: Note that this MC and the one in Proposition 8.5.1 operate exactly 
the same and hence the steady state probabilities are identical. The first term 
of (8.12) is the expected holding cost and this remains the same. The second 
term is the expected service cost, which equals P(service is taking place) C(a) 
= ( I  .. T O )  C(a) = (p/u)C(a). In the present case, this is mudified to &service 
cost] = P(service is taking place) ( 1jEElength of a service]) C(a) = (p/a)aC(u) 
= pC(a), and hence (9.48) holds. 

Scenarios 9.8.2. Here K 3. The results are summarized in Table 9.2 and 
may be interpreted in a manner similar to Table 8.2. For these scenarios we chose 
E = 0.00000005, N = 68, and L = 8, which was the maximum aliowable under the 
stack size restriction. The values of J and the optimal policies are, at a minimum, 
quite close to optimal. Optimality should be confirmed with larger values ofN and 
L. Scenario 1 is a checking scenario and the results were as expected. 

Table 9.2 Results for Scenariw 9.8.2 

Scenario 1 2 3 4 5 6 7 

P 
Service 
rates 

costs 

J d  

J 
Savings 
Optimal 

policy 

0.6 
0.6 
0.7 
0.8 
2.0 
2 .o 
2.0 

a = 0.8 
2.4 
2.400 
0.0 
00 

0.3 
0.4 
0.6 
0.8 
1 .o 
5 .o 

25.0 
(I = 0.6 

2.2 
1.83 
0.37 

Dl 
[2, 231 

0.5 
0.3 
0.5 
0.9 
0.0 
0.1 

50.0 
a = 0.9 
25.625 
7.5 1 

18.12 

0 II, 61 

0.6 
0.55 
0.8 
0.9 
0.25 

10.0 
15.0 

u = 0.8 
7.2 
5.54 
1.66 

[I, 21 
13-71 

0.7 
0.75 
0.8 
0.85 
0. I 
2.0 

10.0 
a = 0.8 

3.5 
3.16 
0.34 

u. 21 
[3, 131 

0.8 
0.7 
0.85 
0.95 
0.0 

10.0 
25 .0 

u 7 0.85 
11.2 
10.48 
0.72 

tll 
12, 351 

0.9 
0.92 
0.95 
0.99 
1 .o 
5 .O 

10.0 
a = 0.92 

5.4 
4.38 
1.02 

r1.41 
[51 
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Server 0 Rate: 0.7 0.85 0.95 

Cost: 0 10 25 

H(i) = i 

0.8 

Minimum average cost 10.48 

Figure 9.2 Scenario 6 from Table 9.2. 

It is instructive to compare the model in this section with that in Section 8.5, 
when the respective parameters are equal (anival probability, service rates, and 
service rate costs). Let us call this one Model New (the service rate can only 
be changed at the beginning of a service, and the service charge is incurred 
once during the service) and the other one Model Old (the service rate can be 
chosen during each slot, and the service charge is incurred during each slot of 
service). 

Let us compare Scenario 3 in Table 9.2 and Scenario 5 in Table 8.2. We 
see that the optimal policy in Model New is slightly more conservative than 
that in Model Old. The former policy switches to the maximum service rate 
at the buffer content of 7, whereas the latter switches at a buffer content of 
8. This behavior occurs because the queue can only be stabilized under the 
maximum rate and because the controller in Model New is “locked in” and 
cannot adjust the service rate until a service is finished. Hence it wit1 tend to act 
more conservatively. Note that the minimum average cost of 7.51 is somewhat 
less than that of 8.003. This is because the cost of service is incurred only once 
rather than throughout the service. However, the difference is perhaps less than 
we would expect. This reflects the fact that most services finish in one or two 
slots. 

For another comparison, consider Scenario 6 in Table 9.2 (see Fig. 9.2) and 
Scenario 7 in Table 8.2. In contrast to the previous case, the optimal policy 
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in Model New is vastly different from that in Model Old. The redder might 
consider why this makes sense before reading further. Here is an explanation. 
Note that the queue is stable under both higher rates but the highest rate costs 
2.5 times the middle rate. In Model New there is a trade-off between keeping 
the queue stabilized and not serving so fast that a service finishes quickly so 
that another begins and a new charge is incurred. In other words, the controller 
in Model New has a much greater incentive to choose the middle rate than the 
controller in Model Old. A service under rate 0.85 has a 15% chance of not 
finishing in one slot. During the second and subsequent slots of this service, no 
service charge in incurred. A service under rate 0.95 has only a 5% chance of 
not finishing in one slot, and hence it is less advantageous, at least for smaller 
buffer contents. Eventually the holding cost consideration prevails and forces 
a switch to the highest rate. 

Note that the optimal policies for Scenario 7 in Table 9.2 and Scenario 8 in 
Table 8.2 differ only for a buffer content of 5. The slight difference between 
the optimal policies is more difficult to explain but is due to the same factors. 

0 

BIBLIOGRAPHIC NOTES 

Some of the material in this chapter is based on an unpublished paper Service 
Control of Discrete-lime Single-Server Queues, and the author would like to 
express her gratitude to the anonymous referees of this paper. Their helpful 
suggestions led to substantial improvements in portions of this chapter. 

The author would also like to thank Dr. Ken Berk, a fellow of the American 
Statistical Society, for pointing out the difference between an SS model and 
an MS model and for emphasizing that care must be exercised to choose the 
formulation most appropriate in a given situation. 

Some of the material in Section 9.2 is found in Barlow and Proschan ( 1  965), 
Wolff ( 1989), and Ross (1996). 

AIthough the vast majority of the Iiterature on queueing systems deals with 
queues in continuous time, research on (uncontrolled} discrete time queueing 
systems has been steadily increasing in recent years. We mention only two ref- 
erences. Bruneel and Kim (1993) contains a comprehensive treatment of the 
CI/G/I queue. This is as in Example 9.3.1 with a single-service distribution. 
Bruneel and Wuyts (1994) contains an analysis of the discrete time multiserver 
queueing system with constant service times. 

Bournas, Beutler, and Teneketzis ( I  992) treat a discrete time flow control 
model. In this model there are several transmitters (queues with infinite buffers) 
competing for a single channel (server). The service i s  organized in phases of 
fixed length T ,  At the beginning of a phase the actions consist of the various 
allocations of slots within the phase for use by the various queues to service 
packets residing in their buffers. The objective is to show that there exists a 
stationary policy (allocation) minimizing the expected average packet waiting 
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time. A more difficult problem is to incorporate a choice of phase length T into 
the decision process, together with a phase setup cost. 

PROBLEMS 

9.1. Prove Proposition 9.2.3. 

9.2. Give a distribution with a finite mean that is not BMRL. Hint: Look at 
Proposition 9.2.5. 

93. Verify that every distribution on { 1,2, . . . , K}, where K is a finite positive 
integer, is BMRL. 

9.4. What happens to (9.16) if the customer currently being served in an ongo- 
ing service does not incur a holding cost? 

9.5. Model Example 9.3.3 as an MDC. 

9.6. Model Example 9.3.5 as an MDC under the assumption that the phase of 
the chain is known at the beginning of each slot. 

9.7, In this model assume that the batch arrival process i s  as in Example 9.3. I 
and that service occurs in an MS fashion under a fixed distribution as in 
Example 9.3.4. If the buffer is nonempty in the slot following a service 
(or other activity) completion, then the server may choose action a = serve 
the next customer, or b L leave the queue to perform other tasks. Perhaps 
unfortunately, choosing b is referred to as taking n vacation and this type 
of model is  a vucarion model. However, taking a vacation does not con- 
note idleness, since the server is free to perform other tasks elsewhere! 
Let us assume that the server must take a vacation when the buffer is 
empty. 

The length of a vacation i s  determined in an MS fashion by a distri- 
bution G. Assume that there is  a cost H(i)  for holding i customers in the 
buffer and a fixed reward of R at the beginning of each vacation. Develop 
this model as an MDC. 

9.8. Model Example 9.4.2 as an MDC. 

9.9. Give a rigorous proof of the positive recurrence of the class R in Lemma 
9.5.3. This may be done by employing Corollary C. 1.6 with test function 
y ( i )  .= Yi,  and y ( i , s )  : s + Y ( h + i -  I). Show that for an appropriate choice 
of the positive constant Y, we can make the drift in (C.10) identically 
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equal to - 1  for nonzero states. It is possible to prove that R has finite 
average cost by employing Corollary C.2.4 with an appropriate quadratic 
test function, but the argument is much more complicated. 

9.10. Give a rigorous proof of the positive recurrence of the class R in Lemma 
9.6.1. This may be done by empIoying Corollary C.I.6 with test function 
y(i)  = Yi, andy(i,a ,s) = rcl*.r + l‘(X~,*.,+i- 1). Show that for an appro- 
priate choice of the positive constant Y, we can make the drift in (C.10) 
identically equal to - 1  for nonzero states. It is possible to prove that R 
has finite average cost by employing Corollary C.2.4 with an appropriate 
quadratic test function, but the argument i s  much more complicated. 

* 

9.11. Run ProgramFive for the following scenarios. Note: The three parameters 
labeled “C” are the values of C(1), C(2), and C(3), respectively. 
(a) H z 0.4, p = 0.25, C = 3, I ,  0.5. 

For the remainder of the scenarios, H =: 1. 

(b) p =- 0.25, C = 7.5, 2.5, 1.25. 
(c) p = 0.1, C = 6, 5,  0.5. 
(d) p = 0.2, C =  25, 10, I .  
(e) p = 0.3, C = 20, 8, 0.1 
(f) p = 0.4, C =  15, 5, 0.1, 
(9) p 7 0.8, C = 20, 3, 0.1. 

(h) p = 0.9, C = 40, 15, 0.1. 
(i) p = 0.9, C = 30, 20, 0. I .  

For each scenario determine J and an optimal policy, and discuss your 
conclusions. 

9.12. Run ProgramSix for the following scenarios. Note: The three parameters 
labeled “a” are the three service rates, and those labeled “C” are their 
respective costs. 
(a) H = 0.5, p 0.4, a = 0.3, 0.6, 0.8, C = 0.5, 2, 6. 

For the remainder of the scenarios, H = 1. 

(b) p = 0.4, 
(c) p = 0.2, u = 0.15, 0.3, 0.7, C = 0.1, 5, 15. 
(d) p = 0.5, 

(f) p = 0.65, 0 = 0.6, 0.8, 0.9, C = 0.1, 5, 15. 

= 0.3, 0.6, 0.8, C - 1 ,  4, 12. 

= 0.6. 0.7, 0.8, C = I ,  20, 40. 
(e) p = 0.6, a = 0.6, 0.8, 0.9, C = 0.1, 5, 15. 
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(& p 
(h) p = 0.9, u = 0.92, 0.95, 0.98, C - 0.1, 1, 4. 

0.8, u = 0.82, 0.9, 0.95, C = 0.01, 5,  10. 

For each scenario determine J ,  J d ,  and an optimal policy, and discuss your 
conclusions. Run some of the scenarios using ProgramFour and compare 
the optimal policies. 

9.13. Consider Example 9.4.1. The basic assumptions (with obvious notation) 
are as follows: 

(BAI). There exists a (finite) constant M such that F J M )  = 1 for all a. 

(BA2). For all a, either N, (a) > 0 or there exist relatively prime integers 
y ,  z such that u,(a) 0 and u,(a) > 0. 

(BA3). 
we have r(a, s) E r(a) for all u. 

The holding cost is Hi, where H is a positive constant. Moreover 

(BA4). 
0. 

There exists a* such that p&*) = I ,  Moreover R(a*) = r(u*) = 

(BA6). There exists a* such that p&”) + pl(aA) c 1. 

Note that (BAl)  says that no phase can last more than M slots. Under 
(BA2) phase lengths are “aperiodic.” Under (BA4) there exists a phase 
with no packet arrivals; during this phase no rewards are earned. Under 
(BA6) we avoid the trivial situation in which no more than 8 single packet 
can arrive in any slot under any phase. In this situation a queue cannot 
build up. 

(a) Let d be the stationary policy that always chooses a*. Show that d 
is 0 standard. Hint: Note that R,1 is finite. 
Define the AS so that the buffer cannot contain more than N packets. 
If a batch arrives that would cause a buffer overflow, then the prob- 
ability of that event is given to the corresponding full buffer state. 
For example. if the system is in state fi,a,s) for 1 I i I N ,  then the 
probability ofj > N i+ 1 packets arriving is given to state (N, a, s- 1). 

Show that the (VIA) is valid for (A,) and the (AC) assumptions 
hold for the function rN( . )  = Iim,* . (uf( . )  -- $(0)). Follow the gen- 
eral procedure in Proposition 8.2.1. 

(b) Note that (BA2) and (BAS) are needed to verify Step 1. If (BA2) 
is eliminated, then the aperiodicity transformation may be effected. 
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It should be possible to verify the constancy of the minimum aver- 
age cost in (AN) under weaker conditions than (BA5), but we do not 
explore this here. 

(c) Argue that Step 2 holds for the policy d .  Hint: It is only possible to 
exit s,V from a transient state ( i ,  a, s), a z a*. 

(d) Argue informally that Step 3(ii) holds. 
(e) Argue informally that V,”i) 2 VZ(0) and V:(i,a,s) 2 V,”O,a,s). 

Use this to show thal (AC3) holds. 



C H A P T E R  10 

Average Cost Optimization of 
Continuous Time Processes 

In this final chapter we show how to compute average cost optimal policies in 
a certain class of processes operating in continuous time. 

In Section 10.1 we review the exponential distribution and the Poisson pro- 
cess. All the necessary background is contained in this section. The continuous 
time processes we deal with have countable state spaces, as before. If the pro- 
cess is in a given state and a certain action is taken, then the time until the next 
trimsition is exponentially distributed with a parameter dependent on the state 
and action. The theory may be extended to allow more general transition times, 
but for brevity and simplicity we restrict ourselves to the exponential case. 

Section 10.2 formalizes the definition of a continuous time Markov decision 
chain (CTMDC). As an example, this section develops a CTMDC modeling 
the service rate control of an M/M/I queue. This is the most famous queueing 
system. It consists of a single server, serving at exponential rate, with arrivals 
occurring according to a Poisson process. Here it is allowed to control the ser- 
vice rate. A new rate may be chosen when a service is to begin or when a new 
customer enters the system. 

Section 10.3 discusses average cost optimization of the CTMDC. Under 
an assumption requiring the mean transition times to be bounded above and 
away from zero (which holds in prdctical models), it is possible to replace the 
CTMDC by a (discrete time) auxillary MDC. We may then bring the previously 
developed approximating sequence method into play to compute an average 
cost optimal stationary policy for the MDC. Under a reasonable assumption 
this policy is also optimal for the CTMDC. Hence, modulo the verification of 
the assumption, we have rigorously computed an average cost optimal station- 
ary policy for the original continuous time process. 

Section 10.4 gives computational results for the service rate control of an 
M/M/I queue. In Section 10.5 we consider a system with arrivals according 
to a Poisson process and a pool of K identical exponential servers. The actions 
consist in choosing how many of these servers to turn on. This system is called 
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an M/M/K queue with dynamic service pool. Computational results for this 
model are given. 

In Section 10.6 we consider a polling model. as in Fig. I .7. Customers arrive 
to each station according to a Poisson process. Both the service time of a cus- 
tomer and the waiking times are exponentially distributed. If the server is cur- 
rently at a station, then a decision to initiate a walk may be made under any 
of these conditions: The server has just arrived at the station, a service has just 
been completed, or a new customer has arrived somewhere in the system. The 
computation of an average cost optimal policy is ilhstrdted. 

10.1 
PROCESS 

EXPONENTIAL DISTRIBUTIONS AND THE POISSON 

In this section we discuss the structure of service times and customer arrivals 
in the continuous time models that are to be optimized. Let X be a random 
quantity. For specificity we wili think of X as a service time, but other inter- 
pretations are also important. We say that X has an exponential (p )  distribution 
if its cumulative distribution function is 

Fx(t) = P(X 5 t )  := I - e-fi', t 2 0. (10.1) 

Here i.t is a positive parameter known as the rute ofservice. The complement 
of the cumulative is P(X > t )  = e #', t 2 0. The density isfx(r) = pe-", t 2 0. 

It may be shown that E [ X ]  = I / F .  For example, if p = 2 customers per 
minute, then each service lasts on average 0.5 minute, and the server is serving 
at the rate of 2 customers per minute, on average. 

Definition 10.1.1. Let r(6) be a function of the positive number 6. Then 
r is o(6) (read "littie oh of delta") if lim ... ,,+ r(6)/6 = 0. This means that r is 
small relative to 6 when 6 is small. For example, r(6) = 6' is o(6) as is r(6) = 6'. 

E l  However, r(6) = 6 is not o(6) nor is r(6) .: 

Here are some important properties of the exponential distribution. 

Proposition 10.1.2. Let X have an exp ( p )  distribution. Then 

P(X > x  4- ylX > y )  = P(X >x), x ,y  > 0, (10.2) 
(10.3) P(X 5 6) = p6 .e u(6). 

As an aside, note that (10.2) is the famous nlemoryless property of the expo- 
nential distribution, It says that if a service was not completed in y time units, 
then the probability that it will be uncompleted after an additional x units is the 
same as the unconditional probability that the service lasts for at least x units. 
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In other words, a customer undergoing service according to an exponential dis- 
tribution receives no credit for the amount of service rendered, if the service is 
still uncompleted. This is undoubtedly a limiting assumption. However, it holds 
(or approximately holds) for some important situations, such as the length of 
a telephone conversation. The assumption of exponential service times simpli- 
fies the mathematics considerably, since the model does not have to take into 
account the amount of service rendered. 

Equation (10.3) says that for a small interval of time, the probabiliy that the 
service is compieted in that amount of time is approximately proportional to 
the length of the interval, with proportionality constant p. 

Pro08 To prove (1 0.2) note that 

= P (X > x). (. 10.4) 

The first line follows from the definition of conditional probability. The second 
line is clear. The other lines follow from (10.1 1. 

It follows from (10.1) that P(X S 6) = p6 + [ l  - p 6  - e-146]. Hence to prove 
(10.3). it is sufficient to show that the expression in brackets is o(6). Employing 
L'Hopital's rule yields 

(1 0.5) 

This proves (10.3). J 

Consider a situation with server 1 and server 2, serving independently. The 
service time of a customer serviced by i follows an exp(pi) distribution for i - 
1, 2. We wish to obtain the probability that server 1 finishes first, as well as the 
probability of both services finishing in a given interval, and the distribution of 
the time until the first service completion. (Recall that there is a zero probability 
of two independent exponential distributions taking on the same value.} 

Proposition 10.1.3. Let XI and XZ be independent exponentially dis- 
tributed random variables, with parameters and p2, respectively. Then 
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P(X1 s 6.X2 5 6) = u(6), ( I  0.6) 

PI 
PI +P2 

P(X1 <XI) = -. ( 10.7) 

Let Y = min(X1,Xd. Then Y has an exp(pl + p2) distribution. 

Equation (10.6) says that if two independent exponential services are under- 
way, then the probability that both will finish within a small interval of time 
is negligible. The last statement says that the time until the first service com- 
pletion is also exponentially distributed, with a rate equal to the sum of the 
rates. 

fmufi Note that 

The first line follows from the independence of XI and X2 and the second line 
follows from (10.1). It may be shown that this expression is o(6) by using 
L‘Hopital’s rule as in (10.5). This proves { 10.6). 

To prove (!0.7), we condition OR the value of X I  and use the law of total 
probability for continuous random variables to obtain 

Evaluating the last line of (10.9) yields (10.7). 
To prove the last claim, note that 

( 10.9) 

(10.10) 
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The second line follows from independence and (10.1) yields the result. D 

In this chapter we treat certain continuous time models in which the service 
time of a customer follows an exponential distribution. Let us now address the 
customer arrival process. 

The Poissun pmcess is the most important stochastic process for modeling 
customer arrivals, and it has several equivalent definitions. For our purposes the 
following description will suffice. A Poisson process with rate A, denoted PoisP 
(A), is a process that counts the number of customers arriving in any interval of 
time [0, t ] .  The system is assumed empty at time 0. The time that elapses until 
the arrival of the first customer as well as the successive times between customer 
anivals (inrerarrival times} are all independent expa) random variables. 

To generate a PoisP (A), we sample from an exp(A) distribution to obtain the 
time of arrival of the first customer. We then sample independently from the 
same distribution to obtain the elapsed time between the arrival of the first and 
second customers. This process is continued to obtain the time of arrival of the 
third and subsequent customers. 

The Poisson process is the correct model for completely random customer 
anivals. This follows from the memoryless property of the exponential distribu- 
tion that yields the interarrival times. Assume that it has been at least y units of 
time since the previous curtomer arrived and that there has been no new arrival. 
In the purely random situation this information should not make it either more 
or less probable that an arrival would occur in a certain time interval from that 
point on. The exponential distribution has this valuable property. 

The parameter X is the rare of the Poisson process. If A = 3 customers per 
minute, then on average three customers will arrive in any one-minute period. 
Note that if these customers are being served by a single expfp = 2) server, 
then we have trouble on our hands! On average, 3 customers are arriving to 
the system every minute, but only 2 are being served, and this system is un- 
stable. 

10.2 CONTINUOUS TIME MARKOV DECISION CHAINS 

In this section we discuss a mathematical structure, called a cunfinuuus time 
Markov decision chain (CTMDC), that is useful for modeling the control of 
certain systems occurring in continuous time. As the explanation proceeds, we 
carry along an illustrative example. 

The CTMDC, denoted 9, has a state space S that is a countable set. Asso- 
ciated with each i E S is a nonempty finite set Ai of actions available in i. 
Assume that action a E Ai is chosen. Then a cost is incurred. This may consist 
of both an instantaneous cost C(i, a )  incurred immediately and a cost rate g(i, a)  
in effect until the next transition. The time until the next transition is exponen- 
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tially distributed with parameter v(i,u). The new state is chosen according to 
a probability distribution (PJa)), S. The theory can be developed allowing 
P,,(u) > 0. However, for most systems it is the caqe that P,i(a) 3 0, and we 
assume this. That is, when a transition occurs, it is a “real“ transition that can 
be observed (an actual change of state) rather than a “dummy” transition from 
a state to itself. 

Example 10.2.1. Service Rate Control of the M/M/l Queue. This is a con- 
tinuous time analogue of Example 2.1.2. Customers arrive to a single server 
according to a Poisson process with rate X. If the queue is nonempty, then the 
action set is A - { a , ,  a?, . . . , aK}, where 0 < at < , . . < u K ,  If action u is chosen, 
then the service time is exponentially distributed with parameter u. 

There is a nonnegative holding cost rate H ( i )  for holding i customers in the 
queue and a nonnegative cost rate c(a) in effect when serving at rate u. In this 
model there are no instantaneous costs. 

We set S = { i l i  2 0). State 0 means that a service has just been completed, 
leaving the queue empty. In state 0 there are no actions (nult action). State i 2 1 
means that either a service has just been completed, and the served customer 
has departed (leaving a nonempty queue with i customers), or a new customer 
has just arrived (boosting the number in the queue to i). The action set is A. 
Note that if a new customer arrives and a service is ongoing, we allow a new 
service rate to be chosen. Because of the memoryiess property of the exponen- 
tial distribution, we do not have to take elapsed service into account and may 
assume that a fresh service starts at that point. 

The cost rateh are given by 

When the system is in state 0, then the waiting time until a customer arrives 
(and the system enters state 1) is exponentially distributed with parameter A. 
Hence u(0) - X and POI = 1. 

Now assume that the system is in state i 2 1 and action u is chosen. Then two 
”exponential clocks” are started. One measures the time until the next arrival, 
which occurs with rate X. The other measures the time until the service is fin- 
ished, which occurs with rate a. Hence the time until a transition (to either 
i + 1 or i - 1) is governed by the minimum of these two clocks. By Proposition 
10.1.3 the transition time is exponentially distributed with parameter X+a. Thus 
v(i,u) = h + a. The probabilities are found using (10.7). (Recall that there is a 
probability of zero that these two exponential clocks register exactly the same 
time. Hence we cannot have both an arrival and a service completion at the 
same time.) 

To summarize the transition rates and probabilities, we have 
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NO) = A, 

u(i, a )  = h + a, 

Pol = 1, 

( 10.12) 
U 

pji - I (a) = i 2 l .  

u 

This completes the specification of the CTMDC * and the development of 
an example to illustrate this concept. 

10.3 AVERAGE COST OPTIMIZATION OF A CTMDC 

In this section we give a set of assumptions that enable us to compute an average 
cost optimal stationary policy for P. The first point that needs to be addressed 
is the following: What constitutes a policy for q, and what does it mean for a 
policy to be average cost optimal? 

Informally we define a policy 8 to be a nonanticipatory rule for choosing 
actions. It may depend on the history of the process through the present state 
and may randomize among actions. The history includes the past states of the 
process, the actions chosen in those states, and the times spent in those states. 
A stationary policy is defined as in Chapter 2. 

There are two common definitions of the average cost under an arbitrary pol- 
icy. The first definition, and perhaps the most natural, considers the expected 
cost incurred under the policy during the interval [0, t ) ,  divided by 1. and then 
takes the limit supremum of this quantity as t -+ w. However, we employ the 
second definition, which considers the expected cost incurred during n transi- 
tions, divided by the expected time for those transitions, and then takes the limit 
supremum as n - 00. Formally let E%[C,1 be the total expected cost incurred 
under 8 during the first n transition periods. Let E@[T,] be the total expected 
time taken up under 0 for the first n transition periods. Then we define 

To be fully rigorous, we need to do wine work as in Section 2.3 to convince 
ourselves that the quantities in the first line of (10.13) are well defined. For the 
sake of brevity, this argument is omitted. 

We are interested in conditions under which J'(i)  is identically equal to a 
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(finite) constant J and there exists a computable average cost optimal station- 
ary policy. 

Note that if the process is in state i and action a is chosen, then the expected 
time until a change of state is given by di ,a )  =: l /u(i ,u).  Here is a basic 
assumption. 

Assumption (CTB). There exist constants B and 7 such that 

(10.14) 

0 

Note that CTB stands for continuous rime bounded. If the expected transition 
times were unbounded, then the time to make a winsition could stretch out as 
time progressed, leading to “bad behavior.” Similarly, if the expected transition 
times could be arbitrarily small, then a potentially infinite number of transitions 
could occur in a finite interval, which again is “bad behavior.” 

The following result is the analogue of Lemma 7.2.1 : 

Lemma 10.3.1. Let 9 be a CTMDC satisfying Assumption (CTB), and let 
e be a stationary policy for q. Assume that there exist a (finite) constant Z and 
a (finite) function z that is bounded below in i such that 

Z7(i, e)  + z( i )  2 G(i, e )  + g(i, e)r(i, e )  + P,j(e)z(j), i E S. (10.15) 
i 

then J $ ( i )  5 Z for i E S. 

Pmufr The proof involves some modifications of the proof of Lemma 7.2.1, 
Only the necessary changes in that proof are indicated. To avoid confusion with 
continuous time, let us employ k for the discrete time index. It is proved by 
induction that €,[z(Xk)] 5 ZBk + z(i)  for k 2 0. 

Equation (7.6) becomes 

Add the terms in (10.16) for k -= 0 to n - I ,  and divide by the sum of the 
expected transition times to obtain 
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(10.17) 

where - L  is a (finite) lower bound for 2 and T is from Assumption (CTB). 
We now take the limit supremum of both sides of (10.17). The limit supre- 

n mum of the left side of (10.17) is J: ( i ) ,  and this yields the result. 

The plan is to introduce a (discrete time) uuxiffary Markov decision chain A 
that is closely connected to the continuous time process 9. We may then form 
an approximating sequence (A,) for A and use the computational method intro- 
duced in Chapter 8 to compute an average cost optimal stationary policy for A. 
Under a certain assumption this policy is also optimal for Sr. The development 
may be represented schematically as 

where * is the original continuous time infinite state process, A is the discrete 
time infinite state auxillary process, and (AN) is the approximating sequence 
for & consisting of finite state processes for which computation can be carried 
out. 

Let us now define the (discrete time) MDC A. Its states axid actions are the 
same as those of *. The costs and transition probabilities are given by 

C(i, a) = Gti, u M i ,  a )  + g( i ,  u), 

7u(i, u)Pi,(u), jZ i ,  
1 - 7u(i,a), J = 1. 

. .  P&) = (10.19) 

Note from (10.14) that 7u(i,a) : T / T ( i , u )  c 1. If the process is in state i, then 
in each slot the probability of transitioning t o j  # i is proportional to the prob- 
ability in *. There is also a nonzero probability of remaining in state i. This 
may be contrasted to 9 for which Pjg(a) 

Observe that the sets of policies for A and for Sr are not identical. A policy 
for '4' can only choose a new action when a state transition takes place. A policy 
for A may choose a new action in each time slot, even if the state remains the 
same. However, it is easy to see that the sets of stationary policies are identical. 

0. 

Here is the crucial lemma that makes & useful. 
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Lemma 10.3.2. Let t be a CTMDC satisfying Assumption (CTB), let A 
be an auxillary MDC, and let e be a stationary policy. 

(i) Assume that there exist a (finite) constant Z and a (finite) function w 
such that 

Then Z and z = rw satisfy (10.15). 

that (10.15) holds. Then Z and w = :/T satisfy (10.20). 
(ii) Assume that there exist a (finite) constant Z and a (finite) function z such 

P ~ o Q ~ :  To prove (i), assume that (10.20) holds. Substituting z/r for w into 
(10.20) and using (LO. 19) yields (10.€5) after some algebraic manipulation. The 
proof of (ii) is similar. Problem 10.10 asks you to fill in the details. 

We now make the following assumption linking the minimum average costs 
in Ik and in A. It is assumed that Assumption (CTB) holds and that an auxillary 
MDC A has been formed. 

Assumption (CTAC). We have J’(.) I J’( . ) ,  where J*(.j is the minimum 
average cost in A 0 

Now assume that we have an approximating sequence (AN)N~,v,,  for A. The 
following result is the analogue of Theorem 8.1.1 and allows us to compute an 
average cost optimal stationary policy for P. 

Theorem 10.3.3. Let 9’ be a CTMDC satisfying Assumption (CTB), let A 
be an auxillary MDC such that Assumption (CTAC) holds, and let (A,) be an 
approximating sequence for A satisfying the (AC) assumptions. Note that (8.1 ) 
becomes 

i E S.V, N 1 No. (10.21) 

Then: 
(i) The quantity J *  :: lim, - J” is the minimum average cost in A and 

(ii) Any limit point e* of a sequence eN of stationary policies realizing the 
9. 

minimum in (10.21) is average cost optimal for A and P. 
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Proofi Since the (AC) assumptions hold for (A,,,) and A, the proof and 
conclusions of Theorem 8. I .  1 hold for (A,v) and A. Hence from thft result we 
conclude that the quantity J *  is the minimum average cost in A, e is average 
cost optimal in A, and (8.3) becomes 

It follows from Lemma 10.3.2 that 2 = J *  and z = TW satisfy (10.15). 
By (AC3) it i s  the case that w (and hence zlis bounded below in i. Lemma 

10.3.1 impliesthatJ;(.)IJ*.ThenJ$(.)IJ =JA(.)IJ'C.)i;Jz(.), where 
the second to the last in uali follows from (CTAC). Hence these terms are all 
equal. This proves that e IS average cost optimal for 9 with constant average 9. tY 
cost J *. a 

The development in this section allows us to replace 0 by the auxillary MDC 
A, obtain an approximating sequence for A, compute average cost optimal sta- 
tionary policies in the AS, and know that any Limit point of these is optimal 
for Q. In carrying out this program, we already know how to verify the (AC) 
assumptions. The problem, of course, is the verification of Assumption (CTAC). 
We will not be able to fully explicate its verification here. Rather we now indi- 
cate how it can be shown. 

Remurk 10.3.4. Assume that we have been able to come up with a (finite) 
constant Z that is a lower bound for the average costs in q, a stationary policy 
f, and a (finite and bounded below) function 2 satisfying (10. t5). This may be 
accomplished by emulating, for 4, the development of the (SEN) assumptions 
in Chapter 7. It will then follow from Lemma 10.3.1 that f is average cost 
optimal for * with constant average cost 2. 

Now asume that Assumption (CTB) holds and that an auxiilary MIX A is  
given. It follows from Lemma 10.3.2(ii) that 2, w = Z/T, andf satisfy (10.20). 
But it then follows from Lemma 7.2.1 that J f ( i )  I Z. Hence J A ( . )  I J$i)  5 

iJ Z 3 J'(.>, and Assumption (CTAC) holds. 

Remark 10.3.5. Assume that Assumption (CTB) holds, and let e be a sta- 
tionary policy. Then e induces a MC in A We cal1 this MC. Similarly e induces 
what is known as a continuous time Markov chain (CTMC) in q. We call this 
CTMC. This method uses some results from the theory of average costs for 
continuous time Markov chains. We will give the idea but omit the background 
material. 

The communicating classes of MC and CTMC are the same. Let R be a 
class. Then R is positive recurrent in MC if and only if it is positive recurtent 
in CTMC. In fact it may be shown that 
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(t0.23) 

The denominator on the right of (10.23) is a normalizing constant, which we 
denote by y. 

Using this, we may show that the average cost on R is the same for MC and 
CTMC. This follows since 

The second line follows from (IO.19) ,  and the third line from (10.23). The Iast 
line follows from CTMC theory. 

Now let us a.sume that J"(.)  is a constant J *  and J * ( . )  is a constant J'. 
Moreover assume that there exists an average cost optimal stationary policy f 
for 

J~ 5 ~t~ = J ! ~  = J ?  

inducing a CTMC with a positive recurrent class R. Note that 

(10.25) 

Hence Assumption (CTAC) holds. 0 

10.4 SERVICE RATE C0"I'ROL OF THE M/M/l QUEUE 

It is time to do some computation! In this section we compute an average cost 
optimal stationary policy for Example 10.2.1. 

Assumption (CTB) is satisfied with B =- 1 f A  and T = 1/[2(X + a ~ ) ] .  We may 
then define the auxillary MDC A. Its costs and transition probabilities ate given 
bY 

C(0) = 0, 

C(i,a) = c(n) + H ( i ) ,  i 2 1, 
* * Pol = T X ,  P(m 1 - TX, 

* 
P:, 1 (u)  = ?A, PI, *- i (a)  = ?a, P:(a) = I - ?(A + a), i 2 1. 

(10.26) 
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Equation (10.26) follows from (10.11-12) and (10.19). Note from (10.3) that 
the transition probabilities may be interpreted as arising from a discretization 
with step size 7,  in which terms that are o(7) are ignored. 

We operate under the following basic assumptions (BA): 

(BAI). We have A < U K .  

(BA2). The holding cost rate H ( i )  is increasing in i ,  and there exists a 
(finite) constant D and a nonnegative integer n such that W(i)  S Din for i 2 0. 

The approximating sequence (A,) is defined by letting SN = (0, I ,  . . . , N }. 
Note that there is excess probability only in state N, and we send this probability 
to N. 

It is possible to use previously derived results to verify that the (AC) assump 
tions hold for (AN) .  In particular, we will fit A into the structure treated in 
Example 7.6.4 and apply the results developed there. Consider Example 7-64 
under the assumption of a Bernoulli anival process with P(a single customer 
arrives) = rh. Under action a, the probability of a service finishing in a slot is 
TU. Then the mean customer arrival rate 7h is less than the maximum customer 
service rate 7 0 ~ .  Hence the basic assumptions in Example 7.6.4 hoid. It then 
follows from Example 8.3.2 that the (AC) assumptions hold for Example 10.2.1 
and that an average cost optimal stationary policy for A may be computed using 
value iteration. 

Assumption (CTAC) may be shown to hold using Remark 10.3.4, and we 
will assume that this has been done. 
We will compute an optimal policy under the assumption that H(i) =- Hi, 

for a positive constant H. It is likely (unless there are ties) that the optimal 
policy computed using (AC) will be increasing in i and eventually choose q. 
The optimal policy may be given as a sequence of K - 1 intervals, with the 
interpretation as in Section 8.5. 

The expressions for the VIA 6.6.4 are given by 

~ ~ ( 0 )  = ( 1  - TX)U,(O) +TXU,*(I),  
wn( i )  = Hi + min{c(u) +mu,& - I )  + [ 1 . 7(X + a)]u,(i) 

U 

+7hu,(i+ I)} ,  1 S i S N -  1, 
w,(N) = HN+ min{c(a) + ~uu,,(N - 1) + (1 - 7a)u,(N)},  

u,+ ~ ( i )  = w,,(i) - wn(0), 

U 

0 S i 5 N .  (10.27) 

The second and third equations in (10.27) may be evaluated in the same loop 
by introducing an auxillary variable that equals i+ 1 for I 5 i I N .. 1 and equals 
N for i = N. Note that the equations in (10.27) are almost the same as those 
in (8.11) with changes in the costs and transition probabilities. Programseven 
gives this computation. 

We would like to have a benchmark policy to compare with the optimal 
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policy. Assume that rate a satisfies X < u. Then the policy d(a) that always 
serves at rate a has finite average cost and can be implemented with open-loop 
control. Our benchmark policy d serves at the rate a that minimizes J&,. That 
is, under d we serve at the constant rate that yields J z  = min,,x { J & ) } .  

Proposition 10.4.1. Assume that a satisfies h < a, and let d(a) be the policy 
that always serves at rate a. Then letting pa = X/a, we have 

(10.28) 

Pmofi It is well-known from the theory of M/M/I queues that ry(d(n) )  = 
(1 - p,)ph, where po < 1 is the utili~ationfactor; in other words, the probability 
the server is busy (e.g., Gross and Harris 1998). The cost rate is in effect when- 
ever the server is busy giving the first term. The second term i s  the expected 
holding cost and is  easy to derive from C ir:(d(a)). a 

Remark 10.4.2. It I s  intuitively clear and may be proved by induction on 
(10.27) that if H and c(a) are multiplied by a positive constant, then the optimal 
average cost is multiplied by that constant, and the optimal policy is unchanged. 
For this reason we assume that H = 1 in all our scenarios. In all scenarios we 

0 used the weaker convergence criterion (Version I )  of the VIA. 

Checking Scenarios 10.4.3. For the first check, we let X - 3.0 and H SL 0.0. 
The service rates are 4.0, 5.0, and 5.5 with respective cost rates 2.0, 5.0, and 
6.0. Because there is no holding cost, it is optimal to always use the smallest 
rate, and (10.28) yields J' = 1.5. This is born out by the program. 

For the second check, we let X r 5.0 and H = 1.0. The service rates are 6.0, 
8.0, and 10.0 with cost rates identically equal to 4.0. Because the cost rates 
are the same, it is optimal to always use the largest rate, and (10.28) yields 

El J' = 3.0. This is born out by the program. 

Scenarios 10.4.4. Table 10. I gives the results. Recall that the optimal pol- 
icy is given as two intervals, with the interpretation that for queue levels above 
the maximum shown, it is optimal to serve at the fastest rate. A dash in the 
table means that entry is identical to the corresponding entry in the previous 
column. 

In Scenario 1 note that c(n) I 20 + 5.  It is optimal to Serve at the fastest rstte. 
This is similar to an effect discussed in Proposition 7.6.7(ii). We might try to 
prove a similar result for this model. 

In Scenario 2 we have an unstable slowest rate and a very expensive fastest 
rate. It is optimal to serve at the slowest rate when there are one or two cus- 
tomers in the queue. Then it is optimal to switch to the middle rate and serve 
at this rate until a queue Ievel of at least 80. We suspect that for sufficiently 
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Tabk 10.1 Results for Scenarios 10.4.4 
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Scenario 1 2 3 4 5 6 7 8 

x 
Service 

rates 

costs 

N 
Jds 
J* 

OptiRKtl 
Savings 

3.0 
2.0 
4.0 
8.0 
9.0 

13.0 
21.0 
4% 
a = 8.0 

8.475 
8.475 
0.0 
00 

policy 

2.0 
1 .o 
4.0 
7.0 
1 .o 

50.0 
500.0 
84 

a - 4.0 
26.0 
21.091 
4.909 

[ l .  21 
13. >801 

2.0 
I 

1 .o 
50.0 

100.0 
- 
- 

20.97 1 
5.029 

il. 21 
r31 

5.0 
5.0 
5.5 
5.8 
0.0 

10.0 
100.0 

a = 5.5 
19.01 
17.043 
2.048 

- 

[ I .  71 
[8, A01 

5.0 
5.1 
5.3 
6.0 
0.0 

10.0 
25.0 

a - 6.0 
25.833 
15.193 
10.640 
11, 121 
0 

- 

10.0 
10.2 
10.6 
12.0 
0.0 

10.0 
25.0 
- 
- 
- 
- 
- 

20.0 
24.0 
27.0 
30.0 

1 .O 
1.5 
5.0 
- 

a = 27.0 
3.968 

3.902 
0.066 
0 [ I .  81 

large queue level, it is optimal to serve at the fastest rate, but this level was not 
located for an approximation level of 84. 

Scenarios 3 and 4 explore the effect on Scenario 2 when the cost of the 
fastest rate is backed off. In Scenario 3 it is reduced to 150. Here the break 
point to switch to the fastest rate is 39. In Scenario 4 it is reduced further to 
100. The break point is reduced to 4. These are interesting results that you are 
asked to explore further in Problem 10.1 I. 

In Scenario 5 there is a free rite equal to the amval rate, and a quite expen- 
sive fastest rate. The break point to switch to the fastest rate was not located 
for an approximating level of 84. 

In Scenario 6 all the rates are stable with modest increases in cost. In this 
interesting example, the optimal policy switches from the slowest rate to the 
fastest rite at a queue level of 13. Note that in Scenario 7 the anival rate and 
service rates have been doubled, while the cost rates are the same. The optimal 
policy and minimum average cost are identical to those in Scenario 6. You are 
asked to explore this in Problem 10.12. 

In Scenario 8 we have f d y  Iarge amval and service rates. Note that it is 
never optimal to Serve at the slowest rate, even though the queue is stable under 
this rate. 0 

10.6 M/M/K QUEUE WITH DYNAMIC SERVICE POOL 

In this model customers arrive to a single queue according to a Poisson process 
with rate A. There is a (finite) pool of K independent servers, each capable of 
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serving a single customer, and the service time of that customer is exponentially 
distributed with rate p. 

The action set A = (0, I , .  . . , K}. If action k i s  chosen, the interpretation is 
that k servers are available for service (i.e., turned on), while K - k servers are 
turned off. If there are currently i customers in the queue with 1 I i 5 k, then 
ail these will be serviced. If k < i, then only k customers will be serviced. Note 
that k T=. 0 means that all the servers are turned off. 

There is a holding cost rate H ( i )  charged for every unit of time that the queue 
contains i customers (where H ( 0 )  = 0). There is a cost rate c(k) operative for 
each unit of time that k servers are turned on. It is natural to assume that c(k) 
is an increasing function with c(0) = 0, but this i s  not required. 

Now asume that k* servers are presently turned on and a new action k is 
chosen. There is a matrix D(k*, k) of instantaneous charges, where D(k, k) = 0. 
If k > k*,  then D(k*,k) is a one-time activation charge for turning on some 
servers; if k < k*, then it is a one-time deactivation charge for turning off some 
servers. The holding and service cost rates, as well as the instantaneous charges 
are all nonnegative. 

Let's model this as a CTMDC. Let S = {(i ,k)l i  2 0, k E A } .  The state 
(i, k )  means that there are currently i customers in the queue, k servers are 
turned on, and either a service has just been completed or a new customer has 
arrived. [See Fig. 10.1 for an M/M/5 system in state (7,4). Note that all 7 
customers are considered to be in the queue.] The action set is A in every state. 
The costs are 

G((i, k*), k) = D(k*, k), g((i, &*), k) -: N(i)  + c(k). (10.29) 

Note that the cost rate is charged on the number of available servers, whether 
or not they itre actually serving. 

@ @  
X X 

3 Q O  X X 

\ 
X 

X 

\ h i s  P(X) 

Figure 10.1 M/M/5 dynamic service pool systcm in state (7, 4). 
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The transition rates are given by 

v((i .  k*), k) = A + min{i, k } p ,  i ,  k 2 0. 

The transition probabilities are given by 

min{i, k } p  

X + min{i,k}p 
, i,k 2 0. P ( i , k * M i  I,k)(k) = 

253 

(10.30) 

(10.3 1) 

This completes the specification of this example as a CTMDC 9. 

and we may set 7 =: 1/[2(A + K p ) ] .  
We now develop the auxillary MDC A Clearly Assumption (CTB) holds, 

The costs in A are given by 

This follows from (10.19) and (10.29). The transition probabilities are 

This follows from (1  0.19) and ( I  0.3 1 ) and completes the specification of h 
We operate under the following basic assumptions (BA): 

(BAl). We have A c Kp. 

(BA2). The holding cost rate H ( i )  is increasing in i ,  and there exists a 
(finite) constant I) and a nonnegative integer n such that H ( i )  S Di" for i 2 0. 

An approximating sequence for A is obtained by not allowing more than N 
customers in the buffer. Hence SN = { ( i , k ) / O  5; i 5 N, 0 5 k I K}. In A the 
only possible transition from a state in S,v to the outside occurs if the system 
is in state (N, .), Suppose that action k is chosen. If an arrival occurs, then the 
system would transition to (N + 1, k). The probabitity of this event is given to 
state (N, k). This defines the ATAS (AN). 

It may be argued that the (AC) assumptions hold for (AN) and that the VIA 
is valid. In the interest of brevity and because this argument is similar to ones 
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presented previously, it is omitted. Assumption (CTAC) may be shown to hold 
using Remark 10.3.4, and we will assume that this has been done. 

We will compute an optimal policy under the assumption that H ( i )  :: Hi and 
D(k*,k) = Dlk* - kl for positive constants H and D. The base point for the 
calculations is (0, K). The expressions for the VIA 6.6.4 are given by 

* The auxillary variable z equals i + 1 for i < N and equals N for i = N. The 
auxillary variable I* equals i - 1 for i > 0 and equals 0 for i = 0. ProgrdmEight 
gives the computation. 

Remar& 10.5.1. It is easy to prove, by induction on n, that if H, c(k), and 
D are each multiplied by a positive constant, then the optimal average cost is 
multiplied by that constant and the optimal policy is unchanged. For this reason 
we may assume that H = 1 in all our scenarios. 

Let d(k) be the stationary policy that always has k servers turned on. For 
X,/F < k I; K the queue is stable under d(kk Note that if the process starts 
in a transient state ( i , k * ) ,  k" Z k, it will reach the positive recurrent class 
under d(k) in one step and with finite cost. From the theory of continuous time 
queueing systems, we may obtain a formula for the average cost under d(k).  
We then use as our benchmark the policy d(k)  with the smallest average cost. 
The next resuk gives the details. 

Proposition 10.5.2. Let k be a positive integer satisfying X/p  < k 2 K, and 
let d(k)  be the stationary policy that always has k servers turned on. Let 

L 1  

and q(k)= K. x 7' - 
CL n !  

I1 I 0 

Then 

Pruofi Because k servers are constantly turned on, the average cost 
includes a term of c(k) per unit time. The second term is H times the average 
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steady state number in the system. An expression for the average number in 
the system is given in Gross and Harris (1998), and the second term in (10.35) 
follows from that after some algebraic manipulation. For the interested reader, 
Problem '10.14 asks you to derive (10.35) from the expression in Gross and 
Hams (1998). As a check on (10.35) note that the second term reduces to the 

0 second term in (10.28) for k - 1. 

It is difficult to optimize (10.35) analytically. Hand calculations may be done 
for the appropriate values of k and the one yielding the minimum value then 
defines the benchmark. Alternatively, a short program to perform the optimiza- 
tion can be written. 

Checking Scenarios 10.5.3. For the first check, we let K = 5, X = 3.0, 
p r 1.0, H = 1.0, D = 0.0, and c(k)  5 2.0. Because the service cost rate is 
constant, it is clear that the policy d(5) is optimal. we calculate J&,  = 5.354 
from (10.33, and this is born out by the program. The computed optimal policy 
turns servers off as customers depart and turns them on as customers enter. 
Because I) = 0.0, there i s  no penalty for doing this, and the program is set up 
in such a way that it will be done. Note that (10.35) still applies to calculate 
the minimum average cost under the computed optimal policy. (Why?) 

For the second check, we let K = 4, X = 5.0, p = 2.0, H = 1.0, D = 5.0, and 
c(k) 3 1.0. Because the service cost rate is constant, it is clear that the policy 
4 4 )  i s  optimal. We calculate J:,, = 4.033 from (10.35), and this is born out 
by the program. n 

Scenarios 10.5.4. Table 10.2 gives the results. In all scenarios we have 
H = p 1.0. Scenarios 1 through 4 explore the situation with K :: 5,  c(k) = 
2k, X = 3.0, and D increasing. Note that in these scenarios the benchmark is 
constant. As D increases, we expect the minimum average cost to approach the 
benchmark, and that is what happens. 

The determination of an optimal policy requires some explanation. Let us 
begin with Scenario 2, since it is most representative of the method. The pro- 
gram output gives the optimal pool size k for any number in the system and 
current value k*. Thus, if the current state is i = 0 and k* 2 1, then the optimal 
choice is k = 1 ; that is, do nothing. We claim that state (0, 1) is transient under 
the Markov chain induced by the optimal policy e. 

To verify that (0, 1) is transient, let us identify the positive recurrent class in 
the MC induced by e. Here is the method. Begin with a larger state in which all 
servers are turned on, say (6, 5). Then the printout yields e(6, 5) = 5. Assume 
that a service completion occurs so that the new state i x  (5, 5). Then e(5, 5) 
-- 5. If a service completion occurs, the new state is (4, 5), and we see that 
4 4 ,  5) = 4. This means that if the queue length decreases to 4, then it is opti- 
mal to turn off one server. If a service completion occurs in (4, 4), then the 
new state is (3,4) and 4 3 ,  4) = 4. We continue to work our way down in this 
fashion. If a service completion occurs in (3,4), then the new state is (2,4) and 
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e(2,4) = 3. So, if the queue length decreases to 2, it is optimal to turn off another 
server. If a service completion occurs in (2, 3), then the new state is (1 , 3) and 
e( I ,  3) = 2. So, if the queue length decreases to 1, it is optimal to turn off 
another server. If a service completion occurs in (1, 2), then the new state is 
(0, 2) and e(0, 2) = 2. This means that no change is optimal. 

We now begin to work our way up. If the process is in state (0, 2) and an 
arrival occurs, then the new state is (1, 2) and c(1, 2) = 2. We continue until 
it is seen that e(4, 2) = 3. This means that if the queue length increases to 4, 
then another server should be turned on. Continuing, we see that yet another 
will be turned on when the queue length reaches 6. Finally all 5 servers will 
be turned on when the length reaches 8. Then the process repeats itself. 

Hence it is clear that it is never optimal to have less than two servers turned 
on and that states such as (0, 1) are transient. The positive recurrent class under 
the optimal policy may be given as [2] (4, 6.8.4,  2, I). The first term indicates 
the minimum number of servers to be always turned on. If the queue is empty, 
then 2 should be turned on. When the queue length increases to 4, then a third 
server should be turned on. When it increases to 6, then a fourth server should 
be turned on. Finally, when it increases to 8, then all the servers should be on. 
Similarly, when it decreases to 4, then one server should be turned off. When it 
decreases to 2, then another should be turned off. When it decreases to 1, then 
a third server should be turned off, leaving 2 on. 

Notice that as the queue length increases, the number of servers turned on 
lags behind the queue length. Similarly, when all the servers are turned on and 
the queue length begins to decrease, there is a lag in turning them off. This 
phenomenon is known as hysteresis, and it occurs since D > 0. Note that there 
is no hysteresis in the optimal policy for Scenario 1. The effect of increasing 
D in Scenarios 1 through 4 is to increase the minimum number turned on and 
to increase the hysteretic effect. 

In specifying an optimal policy, it is only necessary to specify its positive 
recurrent class. The reason is that if the process reaches this class in finite 
expected time and with finite expected cost, then its average cost will equal 
the minimum average cost. If the process starts in a transient state. the con- 
troller can immediately turn all servers on, run the system until it empties, and 
then turn off all but the minimum number indicated. From this point on, the 
system will operate within the positive recurrent class. 

The process of identifying the positive recurrent class seems complicated, but 
with a little practice it will be easy (and fun!) to scan the output and identify 
the positive recurrent class induced by an optimal policy. (Notice how easily 
the optimal policy might be programmed into a control mechanism.) ProbIem 
10.15 asks you to run ProgramEight for Scenarios 3 through 7 and identify the 
optimal policies as given in Table 10.2. 

Scenario 5 is the same as Scenario 2 except that the pool of servers has been 
increased to 7. It is conceivable that the benchmark policy cwld change, but 
in this caSe it doesn't. Because we are not charging for having a certain pool 
size, it is clear that the minimum average cost is a decreasing function of K and 
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hence has a limit. Thus the minimum average cost for Scenario 5 must be less 
than that for Scenario 2. Now compare the optimal policies. Notice that they 
are the same on the “ends” but differ in the middle because of the availability 
of servers 6 and 7. 

Scenario 6 explores an example in which the cost rate is nonlinear in the 
ngmber of servers turned on. Scenario 7 explores a situation with a fairly large 
pool of 10 servers. n 

10.6 CONTROL OF A POLLING SYSTEM 

Consider a polling system as in Fig. 1.7. Stations 1, 2, ... , K are arranged 
in a sing. Each station has an infinite buffer, and customers arrive to station k 
according to a Poisson process with rate Xk. The service time of a customer 
at station k follows an exponential distribution with rate ~ ( k .  The server travels 
around the ring counterclockwise from station 1 to station 2, and so on, and 
finally back to station 1. The walking time for the server to get from station 
k to station k + 1 is exponentially distributed with rate wk. Note that station 
K + 1 is station 1. The arrival processes, service times, and walking times are 
all independent. 
We say that the server is walking if it is presently undergoing a walk. If it is 

presently at a station, we say it is stationmy. LRt I = (it,.  . . , i ~ )  be the vector of 
buffer occupanices. The state space for the CTMDC Ik for this model consists 
of all tuples of the form (i, k, z), where z = 0 or 1 and i is the vector of current 
buffer occupancies. The state is (i, k, 0)  if the server is walking fmm station 
k and a new customer has just arrived to the system (it is counted in 1). There 
are no actions in this state. The state is (i, k, I )  if exactly one of the following 
holds: (1) a walk terminating at k has just been completed, (2) the server has 
just finished a service at k (the customer has departed and is not counted in i), 
or (3) the server is stationary at k and a customer has just arrived to the system 
(it is counted in i). The action set in these states is {n,b} ,  where a = remain 
at the current station and b = initiate a walk. Note that a server is allowed to 
initiate a walk whenever it arrives to a new station, completes a service, or is 
stationary and observes a new customer arriving. Also note that the Server has 
the option of choosing to stay at a station even if the buffer of that station i s  
empty. 

One might also assume that if the server has just arrived to a station and 
chooses action a, then an additional setup time is incurred. Our model does not 
treat this elaboration. 

A holding cost rate H ( i )  is charged on the current buffer contents. A walking 
cost rate Wk i s  charged for each unit of time spent walking from station k 
to station k + 1. It is possible to develop more elaborate cost models, but for 
illustrative purposes this will suffice. Note that if H(i) = Cik and Wk I 0, 
then an average cost optimal policy minimizes the expected long run average 
number of customers in the system. 
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The costs in the CTMDC model are 

To develop the transition rates and probabilities, let e, be a K-dimensional unit 
vector with a 1 in the jth position and 0’s elsewhere. Let h I= C XL be the total 
arrival rate. The transition rates are given by 

u((i, k, 0)) = N(i, k ,  l), b) = X + wk, 

The transition probabilities are given by 

(10.37) 

(10.38) 

Here I is an indicator function, enabling us to handle the cases of an empty 
buffer or a nonempty buffer with the same expression. This completes the spec- 
ification of *. 

We now develop the discrete time auxiliary MDC A. Let p =: maxa {pt, wk ). 
Clearly Assumption (Cns) holds, and we may set T =: 1/[2(X + p)]. 

The costs in A are given by 

C((i,k,O)) = C((i ,k,  1),b) = H(i)+ Wk, 
C((i, k ,  l), a)  = H(i). (10.39) 

This follows from (10.19) and (10.36). 
The transition probabilities are 
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(10.40) 

This follows from (10.19) and (10.37-38). 

stationary policy under the following basic assumptions (BA): 
k t  Pk = hk/pk, and let p = C p k .  We will compute an average cost optimal 

(BAI). We have p < 1. 

(BA2). We have H(i) = C H k i k  for positive constants Hk. 

The approximating sequence (AN) is defined as follows: No buffer is allowed 
to contain more than N customers. If a customer arrival would cause a particular 
buffer to overfiow, then the probability of that event is given to the appropriate 
state with buffer content N. Assume, for example, that N = 10, i = (8, 10, 3, 
5), and the server is serving at station 3. Thus the current state is ((8, 10, 3, 5), 
3, I). If there i s  an arrival to station 2, then the system would transition to ((8, 
11, 3, S), 3, 1). The probability of' this event is given to ((8, 10, 3, S), 3, 1). 
Other cases are handled similarly. 

Note that (BAI) is the condition for stability of the polling system under 
a stationary policy known as exhaustive service, denoted d .  This operates &s 
follows: Whenever the server arrives to a station, it serves customers at that 
station until the buffer completely empties, and it then walks to the next sta- 
tion and repeats the process. Upon arrival to a station with an empty buffer, it 
immediately initiates a walk. Note that when the system is empty, the server 
will continually cycle until a customer enters the system. 

One may show that the (AC) assumptions hold for A and (AN), and that 
Assumption (CTAC) holds. We omit this lengthy argument. 

The expressions for the VIA 6.6.4 are given by 

w,{(i, k, 0) = H ( i )  + Wk i- 7 Aju,(i + ej, k ,  0) 
i 
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wn(i, k ,  1) = H(i) + min 7 Aju,(i + ej, k, 1)  + TPkl(i& # 0)u,(i - ek, k, 1) (i 

ProgramNine gives the computation. 
We will develop a benchmark for the special case in which the holding cost 

coefficients equal 1, the walking costs equal 0, and the mean service rates are 
all equal. The benchmark is the average cost under the exhaustive service policy 
d. In this situation the average cost is precisely the expected number of cus- 
tomers in the system in steady state. Note that operating the system under d is 
essentially open-loop control, since implementation of this policy only requires 
the server to know when the currently served queue empties out. 

Proposition 10.6.1. Let d be the policy of exhaustive service, and assume 
that Hk = 1, Wk E 0, and pk s p. Note that pk = hk/p and p = h/p. k t  

1 

be the mean (respectively, the variance) of the total walhng time of one poNing 
cycle (one trip around the ring). Then 

( 10.42) 

*Proof: We will apply a pseudoconservation law derived in Boxma and 
Groenendijk ( I  987). This applies to a polling system with Poisson anivals and 
general service and walking times (first and second moments of these quantities 
must be finite). Some notation is required, which later will be specialized to the 
case in the proposition. 

Let us assume that the system operating under d is in steady state and intro- 
duce the following random variables, which apply to a station k: Let Yk be the 
service time, and note that Pk hkE[Yk]. Let QL be the waiting time (i.e,, the 
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time until service begins) and Tk the system time. Note that Tk = Qk + Yk, and 
hence E[Tk] = E[Qk] + E [ Y k J .  Let Lk be the number of customers. Finally let 
L = xk Lk be the total number of customers in the system. 

It follows from Little's formula (a well-known result in queueing theory) that 
E[Lk] = hkE[Tk]. This expresses the intuitively appealing idea that the average 
number of customers in a queueing system in steady state equals the average 
arrival rate of customers to the system times the averdge time a customer spends 
in the system. Summing over k and using the above relationships yields 

(10.43) 

Let Z be a random variable representing the total walking time in a polling 
cycle. The form of the pseudoconservation law given in Takagi (1990, p. 278) 
is 

Observe that if the mean service times are constant, say E[Yk J = b, then b 
may be factored out of the left side of (1 0.44). Then using (10.43) and a bit of 
algebraic manipulation, we obtain 

In the situation of the proposition, we have E[L]  = J : ,  E [ Z ]  = r, varlZl = 
r , b = I/@, and E [ Y i ]  = 2 / p 2 .  Substituting these quantities into (10.45) and * 
simplifying yields (10.42). 0 

Checking Scenario 10.6.2. The program was run with XI = 0.25, A2 = & 5 

0.5, @ p  = 2.0, ok = 1.0, Wk 12.0, = H3 = 0, and HZ - 1.0. In this case there 
is no incentive to serve customers as stations 1 or 3, and hence the server should 
remain stationary at station 2. The value of J' should be the average number 
of customers in an M/M/l queue with utilization factor Xz/pz = 0.5/2.0 = 0.25. 
This yields J ' = 0.25/0.75 = 1 /3 fmm the second term in (1 0.28). This is born 
out by the program which yields an optimal policy identically equal to 0 1 0. 
Here 0 means walk at stations 1 and 3, and 1 means remain stationary at station 
2. Ci 

Scenarios 10.6.3. Table 10.3 gives the results. In ail scenarios we set 
Hk = 1. The value of p i s  a measure of system loading. The convergence to 
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Table 103 Results for Scenarios 10.63 

Scenario 1 2 3 4 5 6 

0.6 - P 
N 20 20 
J Z  4.125 NA 
J’ 3.95 4.56 

Optimal (0. 0, 0) to, 0,O) 
policy 1 1 1  1 1 1  

(0, 0, 1) 
1 0 1  

(0, 1. 0) 
0 1 1  

( I .  0, 0) 
1 1 0  

X1 = 1.00 
X2 0.25 
X3 = 0.25 

W k  = 1.0 
pk 5 4.0 

wk Io.0 

0.375 
20 
4.275 

3.76 

(0. 0, 0) 
1 0 1  
(0, 0, 1) 

1 0 1  
(0. I ,  0) 

1 1 0  

X I  ~ 0 . 1 5  
x2 = 0.1 
XJ = 0.2 
p1= 1.00 
p2 = 0.5 
p3 - 0.9 
01 = 1-00 
w2 = 0.5 
w3 = 2.0 

0.572 
25 

wk i 1.0 

NA 
3.27 

(0, 0,O) 
1 1 1  

See text 

X k  3 0.25 
p1 = 1.00 
p2 = 2.0 
p3 - 3.0 
W &  1.(x) 
wk f0.0 

0.458 
20 
NA 
2.88 

(0, 0. 0) 
1 1 1  

See text 

the optimal policy is much more rapid than the convergence to J’. It should 
be noted that larger values of N might yield a slightly more accurate value of 
J’. The optimal policy is indicated only for those states where it deviates from 
the exhaustive policy d for at least one station. The deviations are indicated by 
giving the state folIowed by a triple of numbers, with 0 indicating that it is 
optinal to walk and 1 that it is optima1 to remain at the corresponding station. 

Scenario 1 is a symmetric situation with no walking cost rate. The minimum 
long run average number of customers in the system differs from the average 
number under d by a modest 4.2%. When the system is empty, it is optimal 
fo remain stationary. This is the only deviation from d. which would have the 
server cycle until reaching a station with a customer. It might be conjectured that 
there are deviations from d when the system is extremely imbalanced. However, 
a moment’s thought will convince the redder that this is not so. The reason is 
that “a bird in the hand is worth two in the bush.” That is, there is no incentive 
for the server to forsake serving a customer in its present location and begin a 
walk to reach another station where there may be many more customers. Hence 
the optimal policy for Scenario 1 differs from exhaustive only when the system 
is empty. 

Scenario 2 is identical to Scenario 1 except that there is a cost for walking 
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of 2 per unit time. The value of J' suffers an increase of 13.4%. Interestingly 
the optimal policy differs slightly from that in Scenario 1. The optimal policy 
again remains stationary when the system is empty. Note that the three states 
with 1 customer in the system are symmetric images of each other, as is the 
indicated optimal policy. The only deviation from d occurs when the server is 
at an empty station that is two walks away from the station with the customer. 
In this case it is optimal to remain at that station. 

Scenario 3 is identical to Scenario 1 except that the walking rate has been cut in 
half. This means that the expected time to complete each walk is doubled. In this 
case the savings over exhaustive is slight. The optimal policy remains stationary 
both when the system is empty and when it contains exactly 1 customer. 

Scenario 4 is a system with identical service rates but imbalanced arrival 
rates, with station 1 receiving customers at a rite 4 times that of stations 2 or 
3. The savings in the minimum average number in the system over d is 12%. 
The service at station 2 is exhaustive. When there is exactly one customer in the 
system and that customer is at station 3, then the optimal policy behaves exhaus- 
tively at 3 but is stationary at I. See Fig. 10.2. This i s  because it anticipates 
the next customer arriving there rather than at station 2. A similar explanation 
holds for the remaining exception to d. 

Scenarios 5 and 6 consider situations in which the service rates m unequal. 
For unequal service rates there will typically be ma,sive deviations from d ,  and 

Setvice rate p = 4.0 at 
each station 

Station 1 

1 
h, = 1.0 

Minimum average number 
of customers 3.76 

Figure 10.2 Scenario 4 from Table 10.3. 
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one should not attempt to print the output. Instead, it can be readily scanned to 
identify the pattern of deviation. For these cases more work should be done to 
obtain a “user friendly” form for the output. 

In Scenario 5 the arrival rates, service rates, and walking rates are all unequal. 
It costs 1 per unit time when walking. It is optimal to remain stationary when 
the system is empty. We will indicate the other deviations from d for buffer 
occupancies up to 10. There are deviations with optimal actions 0 0 1. These 
occur in states (0, 1 or 2, 2 9), (0, 3 or 4, 2 lo), (0, 5 or 6, I Il ) ,  (0, 7 or 8, 
2 12), (0, 9 or 10,2 13). Notice that the deviation occurs only at station 2. Its 
buffer is nonempty, but it is optimal to walk to station 3 when the imbalance 
reaches a certain level. The reason is that the service rate at 3 exceeds that at 
2. So does the arrival rate, but we suspect that this is a smaller factor. 

All other deviations (except one) have optimal actions I 0 1, and these occur 
in states for which station I is nonempty and the imbalance between 2 and 3 
exceeds a certain amount. The deviation occurs only at station 2. These states 
are (1, 1 or 2, 2 8), ( I ,  3 or 4, 2 9), (1, 5 or 6, 2 10). ( I ,  7 or 8, 2 111, (1, 
9 or 10, 2 12), and continuing in a similar fashion as the occupancy of buffer 
1 increases. For example, when its occupancy is 4, we have (4, 1 or 2, 2 5),  
(4, 3 or 4, 2 6) ,  (4, 5 or 6, 2 7). (4, 7 or 8, 2 81, and (4, 9 or 10, 2 9). When 
the state is ( 10, 1,O). the actions a~ 1 0 0, which again is a deviation at station 
2. Last we have action 1 0 1 in state (10, 1, 1). 

Scenario 6 has equal arrival rates and unequal service rates, and again we 
see substantial deviations from d. Actions 0 1 I are optimal in states ( I ,  0, 
2 9), (1, 1, 2 X), ( 1 ,  2, 2 7), (1, 3, 2 6), (1, 4, 2 S),  (1, 5 to 7, 24), (1, 8, 2 2), 
( 1, 9. 2 l), and (1, 10, 2 0). In state ( 2 , O .  2 9) action 0 0 1 is optimal. In state 
(2, 1, 2 8) action 0 1 1 is optimal. It continues in this fashion until state (9, 0, 
2 12) in which 0 0 1 is optimal and state (9, 1,2 11) in which 0 1 1 is optimal. 

The interesting conclusion is that we may see substantial deviations from d 
under unequal service rates, but less deviation when the service rates are equal 
and the arrival rates are unequal. The intuitive reason is that unequal arrival rates 
induce only “potential differences” between the stations and cause the optimal 
policy to exhibit a mild anticipatory effect. However, unequal service rates are 
“real differences” between the stations and cause much more of an effect. 

Much additional work remains to be done to understand the optimal control 
of polling systems. 0 

BIBLIOGRAPHIC NOTES 

The subject of uncontroiled continuous time queueing systems is a vast one. 
KIeinrock (1973, Gross and Hams (19981, Cooper (1981), and Wolff (1989) 
are some standard references. 

Jewel1 (1963) contains foundational material on the control of continuous 
time systems. The approach we have followed of introducing an auxillary MDC 
for the CTMDC i s  due to Schweitzer (197 1) who developed it for the finite state 
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space case. Our approach of applying the (AC) assumptions to the auxilfary 
MDC and assuming Assumption (CTAC) is new. Sennott (1989b) develops an 
existence theory for CTMDCs that may be used to verify Assumption (CTAC) 
as in Remark 10.3.4. 

See also Ross (1970), Lippman ( I  975b), Serfozo (1979), Puterman (1994), 
Bertsekas (1987) and (1995, Vol 2), Spieksma (1990), and Kitaev and Rykov 
(1995). Stidham and Weber (1993) contains a summary of recent results as 
well as a valuable bibliography. The focus of most of this work is on obtaining 
structural results for optimal policies rather than on computing optimal policies. 

Tijms (1994) presents some material on stochastic dynamic programming, 
including some computational results. In particular, the model in Section 10.5 is 
mated. The Schweitzer transformation is applied to obtain an auxiliary MDC. 
The computation is performed by truncating the state space and assuming that if 
20 or more customers are present in the system, then all the servers will be turned 
on. A computation is done with K = 10, X TI 7.0, p = 1 .O, H = 10.0, D = 10.0, and 
c(k) = 30k. The computation produces an upper bound on the minimum average 
cost of 3 19.5 and a lower bound of 31 9.3. According to our theory, H, D, and c(k) 
may be divided by 10 without affecting the optimal policy. Note that this produces 
our Scenario 7 with an optimal average cost of 3 1.937. Agreement is sweet! 

The literature on polling models is voluminous, and we mention only a few 
references. A seminal work is Takagi ( I986), where the stability criterion under 
exhaustive service was derived heuristically. It is shown rigorously in Altman 
et al. (1992) and Georgiadis and Szpankowski (1992). See also Fricker and 
Jaibi (1994). Takagi (1990, 1997) are useful survey articles containing many 
references. 

The pseudoconservation law employed in Proposition 10.6.1 is due to Boxma 
and Groenendijk (1987). An equivalent form of this result is in Takagi (1990, 
p. 278). It is possible to derive the average number in the system under general 
service rates. This may be done using Little’s formula and results giving the 
expected waiting time at each station. These quantities may be calculated recur- 
sively, See Takagi (I997), Cooper et al. (1996), and Srinivasan et al. (1995). 

Some results on the control of polling systems are beginning to appear, and 
a few papers are discussed in Takagi (1997). We mention Browne and Yechiali 
(1989) and Kim et al. (1996). In the former paper, the control problem is for- 
mulated as a semi-Markov decision process and some heuristic rules for min- 
imizing the cycle time are given. In the latter paper, various algorithms are 
compared for the optimization of a polling system identical to ours except that 
the buffers are truncated. The control of polling systems is a subject wide open 
for further research and discovery. 

PROBLEMS 

10.1, Prove that the exponential distribution is the only continuous distribution 
with the memoryless property. Hint: Use the fact that the only real-val- 



PROM .EMS 261 

ued monotonic function r satisfying r(x + y )  
with r(0) = 1, is r(x) = ear for some constant a. 

r(x)r( y) for x, y 2 0, and 

10.2. The random variable X has a I'(n,A) distribution, where A > 0 and n is 
a positive integer, if its density (the derivative of F x )  is given by 

f x ( x >  = - e-Xn(Ax)n-', x 2 0. 
(n - l)! 

Let XI, X2, . . . , X, be independent exp(X) random variables. Prove that 
X - Xi + X2 + . . . + X, has a I'fn.h) distribution. Hint: Prove this by 
induction on n. Use a conditioning technique similar to that in ( 1  0.9) to 
obtain an expression for P(X > y) .  Then differentiate P(X I y )  to obtain 
the density. 

10.3. Let W, be the waiting time until the nth arrival in a PoisP(X). Show that 
W, has a r(n,A) distribution. 

10.4. Assume that customer arrivals to a system follow a PoisP(X). Show that 
the number of customers arriving in [O,  I] has a Poisson distribution with 
parameter XI. Hint: Calculate the probability of n customers arriving by 
conditioning on the value of \%',t from Problem 10.3. It is also the case 
that the number of customers arriving in any interval of length t has the 
same distribution. Argue informally why this should be true. 

10.5. Develop a CTMDC model for Example 10.2.1 if there i s  an instanta- 
neous cost for initiating a service at rate a. Assume that if a new cus- 
tomer arrives, then another rate may be chosen and another instantaneous 
cost incurred Ceven if the same rate is selected). 

10.6. Develop a CTMDC model for Example 10.2.1 if there is an instanta- 
neous cost for changing the service rate. Assume that the action set A 
also applies to state 0 so that a rate may be chosen (or remain in effect) 
in anticipation of the next arrival. 

10.7. Consider an M/M/l queue with service rate p and controllable arrival 
rate. All customers are admitted. Just after a new customer arrives or 
just after a service completion, the controller chooses from action set 
{ 1,2,. . . , K }, where action k means that the time until the next customer 
arrival follows a PoisP(Ak) process. Assume that there is a nonnegative 
instantaneous cost C(k) associated with action k as well a9 a cost rate 
c(k) and a holding cost rate H ( i )  as in Example 10.2.1. Model this system 
as a CTMDC. 
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10.8. Model the continuous time version of the routing to parallel queues 
example treated in Section 8.6 as a CTMDC. Assume that a holding 
cost rate of H , ( i )  + & ( j )  is charged when there are i customers in the 
first queue andj customers in the second queue. 

10.9. Consider a CTMDC on { 1,2,3, .  . .) with one action in each state and 
Pi, j +  I = 1. Assume that 

I ,  i odd, 
2, i even. g(i) = u(i) = 

10.10. Complete the proof of Lemma 10.3.2. 

10.11. Run ProgramSeven for the following scenarios. Each one i s  as in Sce- 
nario 3 of Table 10.1 except that the cost of fastest service is changed 
to the value indicated. Discuss your results. 
(a) 140.0 
(b) 125.0 
(c) 1 10.0 

10.12. In PmgramSevcn show that if A and each service rate a are multiplied 
by the same positive constant, then the optimal policy and minimum 
average cost are unchanged. Hint: Prove this by induction on n using 
(10.27). What is the relation of the new value of 7 to the old value? 

10.13. Run Programseven for the scenarios below and discuss the results. Each 
scenario has the value of h followed by the three service rites and their 
respective costs: 
(a) A = 1.0; a = 0.9, 1.2, 1.5; c(a) = 1.0, 3.0, 6.0, 
(b) h = 0.5; u :- 0.5, 0.75, 1.0, C(U) = 0.0, 5.0, 10.0. 
(c) X = 8.0; a = 7.0, 8.0, 9.0, c(a) = 0.0, 20.0, 40.0. 

10.14. Derive the expression in (10.35). * 

10.15. Run ProgramEight for Scenarios 3 through 7 in Scenarios 10.5.4, and 
verify the positive recurrent class for the optimal policy in each case. 
Make additional runs of your choice, and discuss the results. 

10.16. Consider the situation in Proposition 10.6.1, and assume that we have 
a second system with the same parameters except that each walking 
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time parameter is cut in half. Let Jp be the average number of cus- 
tomers in the second system. Prove that Jy = UI .- p / ( l  - p).  

10.17. Consider the situation in Proposition 10.6.1, and assume that we have 
a second system with the same parameters except that the arrival rates, 
as well a.. the common service rate, are doubled (so that p remains con- 
stant). Let J f '  be the average number of customers in the second sys- 
tem. Prove that the expression in Problem 10.16 also holds in this case. 

10.18. Run ProgrdmNine for the following scenarios and discuss your results. 
In each scenario except (d) set Hk I 1.0. 
(a) Ak 0.5, Ink 1 3, E 0.75, wk 1.0. 
(b) hi 5.0, T: 0.5, A3 = 1.0, Pk 10, wk 5.0, wk 5 0.0. N be 

25 or 30. 
(c) This system is as in Scenario 5 of Tabfe 10.3 except that Wk = 0.0. 
(a) This system is as in (a) except that H2 = 3.0. 
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Results from Analysis 

Certain results from analysis are used repeatedly throughout the book and are 
collected here for the convenience of the reader. Standard statements and proofs 
of some of these results involve measure theory. However, the material in this 
book does not require that level of generality. For this reason all the proofs 
provided here are tailored to our special case. The proofs are not requisite to 
an understanding of the text and may be omitted. 

Sections A.1 and A.2 contain the most frequently used theorems from analy- 
sis. Section A.3 contains basic material on power series. Section A.4 contains an 
important Tauberian theorem that provides a link between the infinite horizon 
discounted cost criterion and the average cost criterion. Section A S  contains 
an example illustrating this theorem. 

A.l USEFUL THEOREMS 

In this section a collection of useful results is presented. 

Proposition A.l.l. Let ( 9 ( ~ ) ) ~ ~  ,+ be a probability distribution on the finite 
(nonempty) set A. Let u: A * (--,-I be a function. Then z, q(a)u(a) 2 
mihe,.+ { I&) ) ,  and equality occurs if and only if the probability distribution i s  
concentrated on the subset B 7 {b  E Alu(b) .Z min,, { ~ ( a ) ) } .  

Pro<,$ (Recall the convention that 0 . OQ = 0. So any terms with q(u) - 0 
may be discarded. The distribution is concentrated on B if q(a) = 0 for a @ B. To 
simplify notation, the subscripts on the minimum and summation are omitted.) 
If u E 00, then it is easily seen that the claims hold. 

Now assume that min {K(u)}  = w c 00. Then u(a) 2 w, and hence 
C q(a)u(n) 2 w C 9(a) =. w .  This proves the first statement. 

Since the minimization is over a finite set, the set B of minimizing actions 
must be nonempty. If q is concentrated on B, then it is clear that we have 
equality. Now let us assume that there exists a* E A - B such that y(a*) > 0. 
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We show that equaIity cannot hold. Let %(u*) - w + 6, where 6 > 0. Then 
U c q(a)u(a) 2 w 2, f , *  q ( 4  f (w + 1 = w + q(a*)6 > w. 

Let us informally review what is meant by the limit infimum (respectively, 
Iimit supmmum) of a sequence of extended real-valued numbers. The limit infi- 
mum (respectively, supremum) is the smallest (respectively, largest) limit point 
of the sequence. The limit exists if and only if the limit infimum equals the 
limit supremum, and the limit is then this quantity. 

Consider the sequence 0, i, 0, 3, 0, 3.0, :, . . . . The limit infimum equals 
0, and the limit supremum is the limit of the subsequence i, $, i ,  . . . , which 
equals 1. Since 0 c 1, the limit does not exist. For the sequence 5, 00, 5 ,  5 ,  
- 1 ,  5,  5, 5 ,  -2, 5, 5,  5 ,  5 ,  -3, . . . , the limit supremum equals 5 and the limit 
infimum equals --m. 

An alternative definition of the limit supremum of the sequence u, is 
lim SUP,- (u,} = lims,, - supnzM { u , ~ } ,  with a similar definition for the limit 
infimum. It can be seen that the two definitions agree. 

Remark A.1.2. Section A.l and A.2 deal with various functions u( . ,N) .  
These functions are always assumed to be defined for integers N 2 No, where 
NO is some nonnegative integer. We sometimes deal with sequences S, of sets, 
and likewise these are assumed to be defined for N 2 NO. 

The next result shows that a limit infimum may be passed through a mini- 
mization over a finite set. 

Proposition A.13. Let A be a finite (nonempty) set and u(a,N) an 
extended real-valued function of a E A and N. 

(i) Then liminfN,, m i h G ~  { u ( u , N ) }  = minUEA (liminfN,, u ( a , N ) } .  

(ii) If limN -. - u(a, N) exists for every u, then limN - min, ,\ {u(a, N ) )  = 
mirhf A {lim,v . u(u, N)}. 

Prmfi (To simpIify notation, drop the subscript on min and let --t 00 

be understood.) To prove (i), observe that min(u(a,N))  I u(a ,N) .  Hence 
liminf,v min{u(a,N)} S IiminfN u(n,N). This implies that 

liminf min{u(a,N)) 5 min{liminf u(u,N)} .  (A.1) 
N N 

We need to show that (A.l) is an equality. 
Consider two cases. First suppose that liminf,v min{u(a,N)} = -00. T h i s  

means that there exists a subsequence N, such that lim, min{u(a,N,)) = -=. 
Since A is a finite set, there must exist n" and a subsequence of N ,  (call it N, €or 
notational convenience) such that u(n*, NF) = min(u(a, N,)} for all s. This implies 
that lim, u(a*,N,) = -00. This clearly implies that equality holds in (A.1). 
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Now assume that IiminfN mh{u(a,N)) > --oo and that equality fails. This 
implies that there exist a sequence N, and E > 0 such that min{u(u,N,)) + 
E <, min{liminf,v u(u,N)) .  Since A is a finite set, there must exist a* and a 
subsequence N, such that u(u*, N,) ::, min(u(a, N,,)}. This is easily Seen to yield 
a contradiction. Hence equality must hold in (A.1). 

0 The proof of (ii) is omitted. 

Example A.2.4. T h i s  example shows that A. 1.3(i) does not hold with min 
replaced by max. Let A = {ul,az}, and define u(a1.N) to equal 0 for N even 
and I for N odd (whereas u(u2, N) equals 1 for N even and 0 for N odd). Then 
liminfN u( . ,N)  = 0. Hence max {limincv u ( . , N ) )  = 0. Now max { u ( . , N } }  E 1, 
and hence liminfN max{u(.,N)) = 1. 0 

The next result shows that the limit infimum of a finite sum of terms equals 
or e,xceeds the sum of the limit infimum of each term. 

Proposition A.1.5. Let G be a finite (nonempty) set and u(j, N) a function 
of j E G and N with values in (--, -1. Then 

under the condition that there is no indeterminate form in the summation on 
the right of (A.2). 

Proof: (An indeterminate form occurs in a summation if one summand 
equals m and another equals --oo. The notation is simplified by omitting the 
index of summation and --c w.) The condition on u implies that some values 
may be DD but none can be ---A Hence an indeterminate form cannot occur in 
the summation on the left of (A.2). Let limin$ u! . ,N)  = u(.). 

Consider three cases. First assume that u( j ) = -- for some j *. Avoiding 
an indeterminate form on the right means that u ( j )  c for j # j*. Then 
C u ( j )  = -00, and the result holds. 

Next assume that u ( j  *) = 00 for some j *. Avoiding an indeterminate form 
on the right means that u ( j )  > -- f o r j  f j*. Let H = { j l u ( j )  = -}. There 
exists N* such that u ( j ,  N) 2 u ( j )  - 1 for N 1 N *  and j E G - H. Recall that 
IG - H 1 denotes the cardinality of the set. Then u( j ,  N) 
+ & 6 H  u ( j , N )  2 x,EH u ( j , N )  + c,QtI u ( j ) - -  IG -H I .  Taking the limit 
infimum of both sides yields lim infv C u( j ,  N) = 00, and the result holds. 

u( j ) = U and E > 0. There 
existsN* suchthatu(j,N)2u(j)-€/lGl f o r N > N * . T h e n C  u ( j , N ) Z  I/-t 
for N 2 N*. Taking the limit infimum of both sides and using the fact that e 

0 

u( j ,  N )  = 2, 

Finally assume that u is finite-valued, and let 

is arbitrary yields the result. 
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Example A.1.6. This shows that the inequality in (A.2) may be strict. Let 
G = { j , j * } .  Define rc( j .N)  to be 0 for N even and 1 for N odd, while u( j * . N )  
is 1 for N even and 0 for N odd. Then it is easily seen that the right side of 
(A.2) is 0, whereas the left side is 1. 0 

The next result generalizes Proposition A.1.5 for the case of a nonnegative 
function. 

Proposition A.1.7, Let S be a countable set and u ( j ,  N) a function o f j  E S 
and N with values in to,-]. Then 

Proofi Recall that the sum of an infinite series is defined as the limit of its 
sequence of partial s u m  if that limit exists. Since the terms of the series on 
the right of (A.3) are nonnegative, the sequence of partial sums is increasing. 
Hence the limit exists (it may be -)- To prove (A.3), it is sufficient to show 
that 

where G is an arbitrary finite subset of S. 
Now 

The first line follows from the nonnegativity of u 
Proposition A.1.5. This completes the proof. 

The next result is a variant of Proposition A.1.7. 

u ( j ,  N ) ) .  (A.5) 

and the second line from 
0 

Proposition A.1.8. Let S be a countable set and (SN) an increasing 
sequence of subsets of S such that USN 2 S. Let u ( j ,  N) be a function o f j  E SN 
(or o f j  E S) and N taking values in [O, -1. Then 
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P ~ O J  Define the function u* by 

and note that liminfM u*( . ,N)  = IiminfN u( . ,N) .  Then 

(A.8) 

and the result follows from Proposition A.1.7. n 

Example A.1.9. This shows that Proposition A. I .8 may fail if u can take 
on negative values. Let S = { I ,  2, . . .) and S,v = { 1, 2, . . . , 2 N ) .  Let u ( j , N )  
equal 0 for 1 S j  5 N, and equal - I for N c j  5 2N. Then lim infM u(., N) 0, 
and hence the right side of (Ah) is 0. However, CS, u ( j , N )  = -N, and hence 
the left side of (A.6) is -=. 0 

Proposition A.l.lO. Let (u,Jn20 be a sequence of real numbers, and let w, 
. x)- Ukr for n 2 1. Then 

Pro08 We prove the leftmost inequality. Fix a positive integer M. Then for 
n > A4 we have 

M -  I n -  I 

(A.lO) 
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Let us divide both sides of (A.10) by n and then take the limit infimum as n - w. This yields liminf, w,/n 2 i n f k 2 M  {uk}. Then let M + 00 to obtain 
the result. 

c; The proof of the rightmost inequality is similar. 

A 3  FATOU'S LEMMA AND THE MlMINATED CONVERGENCE 
THEOREM 

We use the results in Section A.1 to prove several famous results. 

Proposition A.2.1 (Fatou's Lemma). Let S be a countable set and (P ,  )/ s 
a probability distribution. Let u( j ,  N )  be a function o f j  E S and N, taking values 
in j-L,-] for some nonnegative (finite) constant L. Then 

j s  S j e  S 

Pmufi Recall that 0- = 0. Hence, if any Pj = 0, then that term may be 

Let r( j ,  N )  = u( j, N) + L, and note that t- 2 0. We have 
discarded. So assume that PJ > 0 for all j. 

Then from Propasition A. I .7 it follows that 

j r  5 

(A. 12) 

(A. 13) 

This completes the proof. El 

The next example shows that (A.l I )  may fail if the function is unbounded 
below. 
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Example A.2.2. Let S = { 1, 2, . . .}, and let PI = 1/2’. In a moment we wil! 
need the fact that 1/2j 7 1/2”. Define u ( j , N )  to equal 0 for j 5 N 
and to equai - 2?jv f o r j  > N. F o r j  fixed, observe that lim infN u ( j , N )  7 0 and 
hence that the right side of (A.ll) is 0. But 1/2J) P p ( j ,  N) = - 2” (x,m=N+ 
- -2N.  Hence the left side of (A.11) i s  --. n 

The following result gives a sufficient condition for passing a limit through 
an infinite summation: 

Theorem A.2.3 (Dominated Convergence Theorem). Assume that the 
following hold: 

(i) S is a countable set with probability distribution (P,),E S. 

(ii) u ( j , N )  and w ( j , N )  are finite €unctions ofj E Sand N such that lul I w. 

(iii) Limp, . ul., N) = N(.) and limN., a, w ( . , N )  = wt.)  exist. 
(iv) Lim)Y .- CJES P , w ( j , N )  exists and equals Z,fs f / w ( j )  < -. 

Then IimN-. (o CJE P , u ( j , N )  exists and equals x,& f p ( j ) .  

froqf: Fatou’s lemma may be employed to give a simple proof of this 
result. Let x,E P,w(j)  L W .  Since 1.1 I w, it follows that &f P&j)  = U 
exists and I r / l  I, W. 

Note that w + u 2 0. Applying Proposition A.2.1 to this function yields 

.i 

=w+u. 

But note that 

(A.14) 

(A. 15) 

since the Iimit of the first term on the right exists. Then (A.14-15) impSy that 
liminfN cJ P , u ( j , N )  2 I/. 
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We also have w u 2 0. Applying Proposition A.2.1 to this function yields 

=w-u .  (A.16) 

But note that 

liminf C P .  ,( w ( j  ', N) - u(j, N ) )  
N 

(A. 17) 

Then (A.16-17) imply that iimsup, c, P , u ( j , N )  S U .  This proves the result. 

An important special case of the dominated convergence theorem oxcurs 
when the function w ( j , N )  is independent of N. 

Corollary A.2.4. Assume that the following hold 

(i) S is a countable set with probability distribution (P,),E S. 
(ii) u ( j , N )  is a function of j E S and N such that limN . .,, u ( . , N )  - u(.) 

(iii) w is a finite function on S such that 1.1 5 w and x,e P,w( j )  < m. 

Then limn, -. x,E P,u(j, N) exists and equals CJE P,u(j) .  

exists. 

We now treat the counterparts of Fatou's lemma and the dominated conver- 
gence theorem for the case in which the probability distribution may also be a 
function of N. 

Proposition A.25 (Generalized Fatou's Lemma). Assume that the fol- 
lowing hold: 

(i) S is a countable set with probability distribution (P,),, .y. 

(ii) (SN) is an increasing sequence of subsets of S such that U S N  = S. 
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(iii) (Pj(N)),E ,sN is a probability distribution on S,v satisfying 1imN ._ P,(N)  

(iv) u( j, N )  is a function of j E S,V and N taking values in [- L, -1, for some 
= Pj for j E S. 

nonnegative (finite) constant L. 

Then 

Proof: Let r ( j . N )  = u ( j , N )  + L. Then 

(A. 19) 

The proof follows in a manner similar to (A.13), using Proposition A.1.8. 

Theorem A.2.6 (Generalized Dominated Convergence Theorem). As- 
sume that (i-iii) from Proposition A.2.5 hold, and in addition assume the fol- 
lowing: 

(iv) There exist finite functions u( j ,  N )  and w ( j ,  N)  of j E Sy and N such 

(v) LimN . - u ( . , N )  = u(.) and limN, 

(vi) 

that lul I w. 

w(., N) 7 w(.) exist. 
.- zjeXN P , ( N ) w ( j , N )  exists and equals xJE P , w ( j )  < 00. 

Then limN, - x,E sN P J ( N ) u ( j , N )  exists and equals c,. P,u(j) .  

Proof: A proof can be given using the generalized Fatou’s lemma and fol- 
cl lowing the ideas in the proof of the dominated convergence theorem. 

An important special case occurs when the function w( j ,  N ) is a constant. 

Corollary A.2.7. Assume that (i-iii) from Proposition A.2.5 hold and in 
addition that: 

(iv) There exists a function u ( j ,  N )  of j E S,V and N such that lirnh;, oll u(., N )  

(v) there exists a (finite) constant w such that 1.1 I: w. 

= u(.) exists, and 
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A 3  POWERSERIES 

This section presents some elementary facts about power series. For the proofs 
of these results, the reader should consult a book on analysis such as Apostol 
(l974). 

Let a E [0,-), and let u,, be a sequence of nonnegative terms with 4) < 00. 

The series 

(A.20) 
n = O  

is a power series (about the origin). Note that we consider only power series 
with nonnegative terms. Since the terms are nonnegative, it is the case that the 
sequence of partial sums is increasing and hence the sum V(a) always exists 
(it may be m). (Note that U ( a )  denotes both the series itself and its sum. This 
is a regrettable notational confusion that i s  enshrined in mathematical history.) 

We are interested in determining those values of a for which the sum 
V(a)  < 00; in this case we say that the series converges. It is the case that 
(A.20) converges (to uo < =) for a = 0. The number 

R = limsup & ( n - -  
(A.21) 

is the radius ofconvergence of the power series. I f R  2 0, then (A.20) converges 
only for a = 0. If R = 00, then (A.20) converges for a E [0,-). If 0 < R c -, 
then (A.20) converges for a! E l0.R) and diverges to 00 for (Y E (R,=). Its 
status for a = R must be checked. 

Remark A.3.1. Let us assume that R I 0. Then V ( a )  is a differentiable 
function of a E (0, R). Its derivative is the power series 

(A.22) 

which is obtained by differentiating (A.20) term by term. The amazing result i s  
that the radius of convergence of (A.22) is also R. This can be seen from (A.21). 
Hence this procedure can be repeated on (A.22) as many times as one wishes to 

El find higher derivatives. The radius of convergence never changes. 

RemurkA.3.2. Let U(a) (respectively, "(a)) be a power series with radius 
of convergence R I  > 0 (respectively, R2 > 0). Their product is the power series 
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which has radius of convergence R = min{RI, R2)  and converges to the product 
D of the individual sums on [O, R). 

Remark A.3.3. The best-known and most iniportant power series is the 
geometric series, obtained when un 5 B, for some (finite) positive B. In this 
case the radius of convergence is R = 1, and we have 

ma) = ~ ( 1  + a 2  + ,3 + . . .) 

A useful related formula i s  

(A.24) 

B(Q + 2012 + 3a3 + . . Bff  
.)= ~- a E [O, 1 ) .  (A.25) 

(1 .- f f ) Z  ’ 

This i s  obtained from (A.24) by differentiating the power series and then mul- 
tiplying thraugh by a. c1 

A.4 A TAUBERIAN THEOREM 

In this section we prove an important result for power series. In the theory of 
Markov decision chains, this result provides a crucial link between the infinite 
horizon discounted cost and average cost optimization criteria. The reader need 
only understand the statement of Theorem A.4.2. The rest of the material in this 
section is starred. 

The following lemma is used in the proof of Theorem A.4.2. It involves 
the function r(a)  whose graph appears in Fig. A. 1. This function has a jump 
discontinuity at e-I. Note that 

(A.26) 

*Lemma A.4.1. Given E > 0, there exist continuous functions s(a)  and 
s*(a) for Q E (0.1) such that s* I r 5 s and 

1 

1 - E I. s*(x)  dx  5 s(x )  d x  I 1 + E, (A.27) 



A.4 A TAUBERIAN THEOREM 281 

Figure A.1 Gmph of r(a). 

Proof: The function s is indicated in Fig. A.2, and the function s* in Fig. 
A.3. Clearly we have s* 5 r I s. It is easy to see that (A.27) will hold for 

U appropriate choices of 6 and y. The details are omitted. 

Here is the fundamental result. It is called a Tauberian theorem after the 
mathematician A. Tauber ( I  866-1947), who studied results of this type. 

figure A 2  Graph of .S((Y). 
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Figure A 3  Graph of s*(a) 

Theorem A.4.2. Let V(a) be a power series as defined in (A,20). Let wfl 
= x;-' uk for n 2 1. Then 

(A.28) 

The following statements are equivalent: 

(i) All the terms in (A.28) are equal and finite. 

(ii) Limn , 
(iii) Lim,, 1- ( I  - a)U(a) exists and is finite. 

w,/n exists and is finite. 

*Pro08 We first take care of a special case. Assume that idno : 00 for some 
no. Then V ( a )  = -, and so the middle terms of (A.28) are both -. Moreover 
w, = 00 for n 2 no + 1. This implies that the outer terms are both -. Thus (A.28) 
holds in this case, with all terms equal to 00. 

Now assume that un < 00 for all n. Let R be the radius of convergence of 
U(a) .  We consider two cases. 

First assume that R c 1. Then V(a)  = for cy E (R, 1). This implies that 
the middle terms of (A.28) are both 00. It follows from (A.21) that lim sup, . a, 
6 > 1. This implies that there exist E 3 0 and a subsequence nk such that 
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Then unt 2 (1 + ~ ) ' k .  And hence 

(A.30) 

As we let k 4 m, the term on the left of (A.30) approaches 00. This implies 
that the rightmost term in (A.28) equals DO, and this proves that (A.28) holds. 
Now assume that R 2 1. It follows from Remarks A.3.2-3 that 

= &) + a(uo + UI) + a2(4 + + Ma) + . . . 
m 

(A.31) 

and this power series converges to U(a)/(l - a) for (Y E [0, 1). 
Therefore for (Y E [0,1), and for any positive integer M we have 

M -  I 00 

Wn+ 1 

n -0  n -  0 

(A.32) 

Eq. (A.32) yields lirnsup,, I (I  - cr)U(a) 5 supnzM w n +  I/(N + 1). Then 

It remains to show that the leftmost inequality in (A.28) holds. From the 
letting M - 00 yields the rightmost inequality in (A.28). 

second equality in (A.32), it follows that 
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(A.33) 
M -  1 

1 -. ( 1  - a)2 c (n+ 1)a" 
n=O 

4. (A.33) yields liminf,, I -  (1 - a)U(a) 2 inf,l.,w w,, ~/(n+ 1). Then letting 
M -1- - yields the Iettmost inequality in (A.28). This completes the proof of 
(A.28). 

It is clearly the case that ti) CJ (ii) * (iii). So to complete the proof, it 
remains to show that (iii) implies (ii). We give an elegant but nonelementary 
proof due to Karamatn (see Titchmarsh, 1939). 

Letf(a)  be an integrable function of a E (0. I), and let C/j(a) be the series 

m 

Uf((Y) :I c CY"u,f(a"). (A.34) 
I1 = 0 

Note that this is not necessarily a power series, but for each a E (0,l) it is a 
series of real numbers. Let Iirn-- I ( 1  - cx)U(cr) :: L < -, and consider the 
statement 

1 

lirn ( I  - a)Uf(ar) = L f(x) dx. (A.35) 
u * I -  

We will prove that (A.35) holds for polynomial functions, then for continuous 
functions, and then finally for the function r from Fig. A.1. 

Let p(a) be a polynomial function. Clearly it is sufficient to show that (A.35) 
holds for terms of the form &a) = ak for k a positive integer. Then 

n - 0 

Now let a -+ 1-. The tern in square brackets approaches I/(k+ 1) = xk dx. 
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The term in curly brackets approaches L by assumption. Hence (A.35) holds 
for polynomials. 

Now let s ( a )  be continuous, and fix c r 0. By a theorem of Weierstrauss 
(see Apostol, 1974), there exists a polynomial p such that 

T h i s  implies that 

lim sup ( I  - or)U,(a) 5 L 
a- 1-  

The first inequality in (A.39) follows from (A.35) for p ,  and the second inequal- 
ity follows from the Ieftinost inequality in (A.38). Using similar reaqoning, we 
find a lower bound for the limit infimum. Since c > 0 is arbitrary, this proves 
(A.35) for S. 

The proof of (A.35) for the function t uses Lemma A.4.1 and what has just 
h e n  proved for continuous functions. Because it is quite similar to the reason- 
ing we have just gone through. we omit the argument. 

Let us see how (A.35) for the function r may be used to complete the proof. 
Note that an 2 e ' if and only if n 5 (In a) I .  So we have 

(A.40) 

Here [I denotes the greatest integer function, so [5.3] = 5, [8.9] = 8, and so on. 
The limit of the quantity on the left side of (A.40) exists and equals L for 

any sequence of discount factors approaching 1, Suppose that we let Q = e-'/". 
The right side of (A.40) becomes 
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(A.41) 

As n ---c w, the term in curly brackets in (A.41) approaches 1. Because the left 
side of (A.40) approaches L, it is the case that the limit of the term in mund 

0 brackets in (A.41) must exist and equal L. This proves that (ii) holds. 

A S  ANEXAMPLE 

In this section we give an example illustrating Theorem A.4.2. Under “most 
common circumstances” all of the terms in (A.28) are equal, and hence the lim- 
its exist. Here is how to constmct an example for which some of the inequalities 
are strict. 

Example A.5.1. The example is a sequence of 0s and 1s. Let (qnlnzl be 
a sequence of positive integers, to be specified later. Figure A.4 shows the 
sequence, which consists of blocks, with first 41 Is, then q1 0s. and so on. 
Let id, be the nth member of the sequence. If we begin the indexing with 0, 
then we have un = 1 for 0 I n  I q1 - 1, and so on. 

Then w,,/n = (# of 1s in first n terms)/n. It is readily seen that this propor- 
tion is minimized by taking the subsequence n = 2ql, 2(qI + q2), . . . , and the 
minimum proportion is :. This implies that lim inf, - oo w,/n = T. 

The proportion is maximized by taking the sequence n = ql ,  2q1 + qz ,2(q1+ 
42) + q 3 ,  and so on, and for this subsequence we have the following values for 
wJn: 

I 

YI +42+Y3 41 +Y2 1, --.-__I- . -.- 
2(4l + 42) + q 3  

..... 
241 + 42 ’ 

(A.42) 

Let s, =- cE=, q k .  Then for n 2 2 the sequence in (A.42) becomes ( I  + 

Our task now is to find values of q/; that make this quantity approach a 
number greater than 5-  Neither of the simple choices of qk = q or q k  = k will 
work. In each case the resulting sequence has a limit equal to {. 

Let Choice One be 41 = 1 and inductively q k +  I = sk. This implies that s,, 
= 2s,- I and yields a limit supremum of 2/3. Let Choice Two be q1 = 1 and 
inductively q k +  I 2 (k+ 1 ) ~ .  This implies that s, = (n+ I)sn- 1 and yields a limit 
supremum of 1. 

sn - I/SJ~. 
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in either case the equivalence of (ii) and (iii) in Theorem A.4.2 implies that 
the middle inequality in (A.28) is strict. It i s  much more difficult to construct 
an example for which the leftmost inequality, say, is strict. Such a construction 
is given in Liggett and Lippman (1969), and we do not present it here. Li 

BIBLIOGRAPHIC NOTES 

Some of these results appear in any good book on analysis, for example, Apostol 
(1974). Some of the results are modifications of known results, and .some of the 
proofs have been developed for this text. 

The proof of Theorem A.2.3 is an elaboration of a cryptic proof in Royden 
(1968, p. 232). 

The continuous time version of Theorem A.4.2 appears in Widder (1941). 
A proof for the discrete case was given in Sennott (1986b). The proof of (iii) 
a (ii) is due to Karamata and appears in Titchmarsh (1939, pp. 227-229). 

Langen (1991) gives some results in a more theoretical setting similar to 
those in Section A.2. 



A P P E N D I X  B 

Sequences of Stationary Policies 

Thro1:ghout the book we deal with sequences of stationary policies. The con- 
cept of a stationary policy that is a limit poinr of such a sequence is fundamen- 
ul. This idea has two variants, one for the MMJ A and one for an AS (AN). 
The proof of Proposition €3.3 is optional, since it utilizes certain concepts from 
topology. The reader who desires to pursue this proof should consult a general 
topology text such as Pcrvin (1964) for the relevant background. The proof 
of Proposition €3.5 depends only on the statement of Proposition 8.3. Finally 
Proposition B.6 is a related result for functions. Its proof is also optional. 

A sequence af stationary policies for A is a map from the natural numbers 
{ 1.2.3,. . .) to the set of stationiq policies for A. Thus f 1, f?, f 3, . . . is a 
sequence of stationary policies. where 1 is mapped to f 1, 2 is mapped to . f2.  

and so on. These policies do not have to be distinct. We could havef ,  z,f. 
We could also have the sequence €2, €4, €6, . . . , where 1 is mapped to ez, 

2 is mapped to e,j, and so on. Or we could have the sequence dlj2, d2/3, d3p. 
. . . , where 1 is mapped to dlp,  2 to d2/3, and so on. InformaHy, a sequence of 
stationary policies is just a list of them, with the proviso that there be infinitely 
many policies in the list (although the policies do not have to be distinct). 

Now suppose that we have a sequence f of stationary policies. Then a sub- 
sequence of this sequence is a selection, in order, of policies from the list that 
also forms a sequence. For instance, if  f r  , f 2,  f 3, f 4, f 5 ,  f 6 ,  f7, f 8, fg, . . . is 
the original sequence, then f 2, $4, f6, fx, . . . is a subsequence. Moreover there 
can be subsequences of subsequences. Note thatf4,f8, . . . is a subsequence of 
the subsequence. Every subsequence of a subsequence is a subsequence of the 
original sequence. And every subsequence is a sequence in its own right. 

What about notation? I f f ,  is the original sequence, then a subsequence is 
denotedf, , where rk denotes an appropriate selection from the original indexes. 
If we need to consider a subsequence of a subsequence, we denote it byf,, or 
some other appropriate notation; triple subscripts are not employed. 

Here is the definition of a limit point of a sequence of stationary policies. 

Definition B.l. Let f ,  be a sequence of stationary policies for A The sta- 
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tionary policy f is a limit point of the sequence if there exists a subsequence 
f r k  such that given i E S, it is the case that f , ( i )  = f ( i )  for sufficiently large 
index rk (how large may depend on i). We denote this by limk f , L  = f or by 

f r t  -f. U 

This says that for a given state i ,  the policies in the subsequence choose the 
same action at i as the policy f ,  as long as we have gone “far enough out” in 
the subsequence. The amount necessary to go out may vary with i .  Here is an 
example to clarify this concept. 

Example B.2. Let S = (0,1,2,. . .}, and assume that there are actions a and 
6 available in each state. The transition probabilities and costs are irrelevant and 
are omitted. 

Let f be the policy that always chooses u. Let en be the policy that chooses 
u in state 0 5 i I n, and b in states i 2 n + 1. Then e, --f. To prove this, fix i 
and choose n so large that i I n. Then e,(i) = a =f(i) for n 2 i. 

Let d be the policy that always chooses b, and consider the sequence el, d, 
e2. d ,  e3, d ,  , , . . Then el, ezr (33, . . . is a subsequence converging to f, and 
d, d,  d, . . . is a subsequence converging to d (a “trivial” subsequence). Notice 
that this sequence has two limit point.. . Can you construct a sequence with two 
nontrivial converging subsequences? 0 

Here is the first result. 

Proposition B3. Every sequence of stationary policies for A has at least 
one limit point. 

*Yroo$ For each i the finite action set A, may be considered a compact 
metric space in its discrete topology. Consider the topological product space 
A* = IIi, .,A,. There is a one-to-one correspondence between the points of A* 
and the stationary policies for A This comes about through the identification 
of a stationary policy d with the element {d(i))de s in A*. 

Since the topological product of compact topological spaces is compact, 
it follows that A* is a compact topological space. It is known that a countable 
product of metric spaces is metrimble. That is, it has a metric compatible with 
the product topology. By means of this result it follows that A* is a compact 
metric space. 

In a compact metric space it is the case that every sequence of points has a 
convergent subsequence. So, iffr is a sequence of stationary policies, then there 
exist a stationary policyf and a subsequencef,, converging tof in the product 
topology. This means the following: Given i ,  we havef,(i) converging to f ( i )  
in the topological space A,. But since this is a finite discrete space, convergence 
implies that f ,k( i )  = f ( i )  for sufficiently large index rk. But this is precisely the 

n notion of convergence in Definition B.l, and hencef,, --f. 
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The fact that S is countable is used crucially in this proof. If S is uncountable, 
then A* is still a compact topological space, but it is not metrizable. It is the case 
that every net in a compact topological space has a convergent subnet, where 
the notion of net generalizes that of a sequence. However, it is not necessarily 
the case that every sequence has a convergent subsequence. The finiteness of 
the action sets is also crucial to the proof. Do you see why? 

It i s  necessary to have a similar result involving an AS for A. 

DejiniLion 8.4. Let (AN) be an AS for A. For each N let e N  be a stationary 
policy for AN. The stationary policy e for A is a limit point of the sequence 
eN if there exists a subsequence eNr such that given i E S,  it is the case that 

0 eNr( i )  = e(i) for sufficiently large index N,.  

Note the difference between Definitions B.l and B.4. In the first case the 
stationary policiesf, are defined on S, while in the second case the stationary 
policy eN is defined only on S N .  Here is the second result. 

Proposition B.5. Let (AN) be an AS for A Every sequence e N  of stationary 
policies for (AN) has a limit point. 

Proof: For each i E S choose and fix an arbitrary a, E A,. Define the 
stationary policyf~ for A by 

ThenfN is a sequence of stationary policies for A, and by Proposition B.3 it has 
a limit point. Hence there exist a stationary policy e for A and a subsequence 
N, such that f Nr --+ e. Then, given i E S, we have f ~ , ( i )  = e(i) for N, 2 s. 
Here s is an index dependent on i .  Now choose and fix N* such that i E S, 
for N 2 N*. Then for N, 2 max(s,N*} we havefN,(i) = eNr( i )  = e(i). This 
proves the result. n 

Here is a related result for functions using the same proof technique as that 
of Proposition B.3. 

Pmposition B.6. Let Yi) and M ( i )  be nonnegative (finite) functions on S. 
Assume that u,(i) is a sequence of functions on S with --L I ur I M for all 
r. Then there exist a subsequence rk and a function w, with _- L 5 w I M, 
satisfying limk - oo u,(i) = w(i) for all i E S. 

* Proof:. Note that [-L(i), M(i )J  is a closed interval of the real line and hence 
i s  a compact metric space. The product space II,, .y[-L(i),M(i)] is a compact 
metric space. Moreover there is a one-to-one correspondence between points of 
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the product space and functions y on S with -L 1; y < M. Namely y is identified 
with the point ( y(i)), S. 

Hence ur is a sequence in the product space. Since every sequence in a com- 
pact metric space has a convergent subsequence, there exist a subsequence rk 
and a function w such that urk - .*w in the product topology. But this means 
that pointwise convergence holds. Hence limk,, u,(i) = w(i )  far all i E S. 

D 

BIBLIOGRAPHlC NOTES 

The background in topology appears in any good text such as Pervin (1964). 
Proposition B.3 appears in Sennott (1989a), and Proposition B.5 in Sennott 
(1997a). 
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Markov Chains 

This appendix deals with Markov chains on a countable state space. Section 
C. I summarizes background material on Markov chains and Section C.2 treats 
Markov chains with an associated cost structure. Section C.3 deals with the 
special results that apply when the state space is finite. 

Some of the results in these sections are attributed, some are proved, and 
some are stated without proof. The proofs of the latter may be found in any book 
containing a good treatment of countable state Markov chains. For example, the 
reader may consult Karlin and Tayjor ( I  975). Taylor and Karlin (1 984), Ross 
(7996), or Cinlar (1975). The most advanced treatment is Chung (1967). 

In Sections C.4 and C.5 we present results involving approximating 
sequences for Markov chains. 

Thc: proofs that are given are for the convenience of the interested reader. 
It is not necessary to read these proofs to understand how the results in this 
appendix are applied in the text. 

(2.1 BASIC THEORY 

A Murkov chain (MC) r is a discrete time process defined on a countable state 
space S for t = 0, 1.  2, . . , . Associated with i E S is a probability distribution 
(P,J),e S,  where P1, is the probability that I‘ will transition to state j during the 
next slot, given that it is currently in state i .  We assume that C, PIJ = 1 for all 
i, and hence the process cannot leave S. The characteristic property of a MC 
is the memoryless properr)?. If the chain is currently in state i ,  then its future 
evolution depends only on i and not on the history of the chain prior to that 
time. A more rigorous definition of a MC is found in the references. 

Let P be the matrix of transition probabilities. Let P:: be the probability 
of tiansitioning from i to j in two slots. Then P y  = ck PlkPk,, and these 
probabilities arc the entries of the product matrix p. In general, Pjj’ is the 
probability of transitioning from i to j in t slots and is given by the ijth entry 
of the product matrix P‘. We let P:: = 6,. 
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As r moves from state to state forever, we are interested in classifying the 
types of behavior that a state may exhibit. For states i and j ,  if there exists 
r 2 0 such that P T  > 0, then we say that i leads to j. If i leads to j and j leads 
to i ,  then we say that i and j corntnunicate. Communication is an equivalence 
relation on S (that is, every state communicates with itself; if i communicates 
withj, then j communicates with i; and finally, if i communicates withj a n d j  
communicates with k, then i communicates with k). This implies that S decom- 
poses into disjoint equivalence classes of communicating states. If S is a single 
communicating class, then I" is irreducibfe. 

Let X ,  be the state of the MC at time 1. Given initial state XO = i, let T be 
a random variable denoting the time to return to i .  There are two possibilities, 
either P(T < w) < 1 or P(T < =) 'T 1. 

If P(T < =) < 1, then we have P(T = w) > 0. This means that there is a 
positive probability of never returning to i, and we say that i is transient. Note 
that the chain may well visit i several times. However, after each visit there is a 
fixed positive probability of never returning. Hence the visits form a sequence 
of repeated independent Bernoulli trials that eventually result in never returning 
to i. Therefore a transient state is visited only finitely many times during any 
evolution of the MC. 

If P(T < =) z 1, then state i is visited infinitely many times, and we say that 
i is recurrenr. There are two types of recurrent states. Note that E [ T ]  denotes 
the expected time of a first return (first passage) to i. If E [ T  J = 00, then i is said 
to be null recurrent. In this case the chain returns to i infinitely many times 
but the mean time for any return is infinite. If E [ T ]  < 00, then i is said to be 
positive recurenf. In this case the chain returns to i infinitely many times, and 
the mean time between any two visits i s  finite. As notation we set E [ T ]  = m,i. 

These properties are class properties; that is to say, every state in a com- 
municating class is either transient, null recurrent, or positive recurrent. A null 
recurrent class must be infinite. Positive and null recurrent classes are closed, 
since no state in such a class can lead to a state outside the class. 

Example C.1.1. To facilitate understanding of these concepts consider the 
MC whose structure is shown in Fig. C.1. It is seen that S consists of three 
copies of the nonnegative integers. We choose the distribution (p, > O), I such 
that A 7 CJp,  c 00 and the distribution (4, > 0), I such that Cjq -. =. 

Each row forms a communicating class. From any middle state i 2 1, there 
is a probability of 4 of transitioning to O*. From O* there is a probability of 4 
of never returning io the middle row. Hence the middle row is a transient class-. 

It is clear that the other two classes are recurrent. Conditioning on the first 
state visited shows that m<n, = I + C jp, I + A  < 00, and hence the top row i s  a 
positive recurrent class. Similarly we have tq)#(~ = I + Cjq, = w, and hence 
the bottom row is a null recurrent class. U 

J i  

Let 
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41 

Fig. C.1 Example C .  1. I .  

and note that this i s  the expected number of 

i , j e  S (C. 1) 

visits to state j per unit time in 
[0, n - 13 when starting in state i .  

It is the case that rl = iim, - - Q:;’ exists. me quantity rJ is the steady state 
probability of being in state j .  Assuming that XO = j ,  it may be thought of as 
the limiting average number of visits to j per unit time, or alternatively as the 
probability that a random observer finds the chain in state j after a long time 
has elapsed. 

If j is transient or null recurrent then T, = 0. If j is positive recurrent, then 
nJ > 0. It is the case that rl = (m,,)-‘, where for j transient or null recurrent we 
have mJj = 00 and the quotient is interpreted as 0. 
Now let Ti, be a random variable denoting the first passage time to go from 

i to j ,  namely the number of transitions required to first reach j from i. Then 
Chung (1967) proves that limn - - Q$) = P(Tj, < oo)nJ. This will be 0 unless 
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both j is positive recurrent and i leads to j. If R is a positive recurrent class, 
then limn - Q:) = uj, for ail i ,  j E: R. 

Proposition C.1.2. Let R be a positive recurrent class. 

(i) We have uJ = El rJ = 1. The nonnegative 

(ii) For i, j E R let etJ be the expected number of visits to j during a first 

P,u, for j E R and x, 
solution to these equations is unique. 

passage from i to i .  Then uJ = e,,/m,, = ate , .  (See Chung, 1967.) 

Example C.1.3. In Example C.l.l recall that the top row is a positive 
recurrent class. We have ?ro = (mu)-’ = (1 + A)-1. For i 2 I it follows that 
u, = XO~(J, = (1  + A)-’ x , y i p j .  The steady state probabilities for states in the 
second and third rows are 0. We have P(T,*, < 00) = 5 and P(T,=,# C m) = for 
all i’, j ,  j’. 0 

Now assume that R is a positive recurrent class. Then R is uperiodic if rJ = 
limn- oo P:;) for i ,  j E R. Note that this is a stronger convergence requirement 
than the one introduced above, which involves averaging. A sufficient condition 
for R to be aperiodic is that P,, > 0 for some i E R. A necessary and sufficient 
condition is the following: There exist an element i E R and positive integers 
n and m, with greatest common divisor equal to 1, such that Pj:’ and P::) are 
both positive. The requirement of aperiodicity of a positive recurrent c1a.s rules 
out “penodic” behavior. 
Now fix a state i and a nonempty set G c S. We introduce some important 

concepts. The taboo probability is the probability of transitioning from i 
to k in t slots while avoiding the t a b  set G. The initial state i and the terminal 
state k may lie in G, but none of the intermediate states are allowed to be in 

Let TtG be the first passage time from i to C, namely the number of transi- 
tions required to first reach G from i. If i E G, then the chain must make at least 
one transition hefore returning to G. Thus it i s  always the case that T,G 2 1. 
Let ($ilk be the expected number of visits to k in a first passage from i to G. 
For k E G we have Gtd,k = 0 if i g G, and (;tdlk = b f k  if i E G. Note that lu,J 
generalizes the quantity e , ,  which was introduced earlier for i and j elements 
of a positive recurrent class. 

Let m,G = E[T,GJ be the expected first passage time. If P(Tlc; c -) = 1, then 
the chain eventually reaches G and m , ~  may be finite or infinite. If P(T,G. < 
-) < 1, then m,C; L m. If G = { j}, then the expected first passage time is 
denoted m,. 

(0) G. Note that cPI~’ = Ptk and GP,k - 6ix. 

Proposition C.1.4, Let G be a nonempty subset of S. 
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(ii) We have mic = xtE C;U,L.  

(iii) It is the case that 

GPli+‘I = c P,, GP$ i , k  E S,r 2 1. 
J 6 G  

(iv) If G is contained in a positive recurrent class R, then 71-, - c, 
(v) If R i s  a positive recurrent class, then m,, < 00 for all i ,  j e R. 

a, GU,] 
forje Rand ~ I E G z t m l ( ; =  1. 

Proof: It is easy to see that the expressions in (i-ii) hold. Equation (C.2) 
follows by conditioning on the first state visited. For k E G it is easiiy seen 
that (C.3) holds. For k $ G we sum both sides of (C.2), for t - 1 to =, add 
and subtract appropriate terms, and employ (i) to obtain (C.3). Equation (C.4) 
follows by summing (C.3) over k and employing (ii). This verifies (iii). 

The first equation in (iv) follows from Crassman et al. ( I  983,  and we omit 
the proof. The reader may note that if G = (i). then this equation reduces to 
the one in Proposition C. 12(ii). The second equation follows by summing both 
sides of the first equation over j E R. 

Let us prove (v). Equation (C.4) yields 

k + j  

We know that m,) c 00. Fix i f j .  Since j leads to i, there exists t > 0 such that 
Pji’ > 0. By choosing the smallest such t ,  we have JP):’ > 0. Employing the 
expression in ((2.4) allows us to iterate (C.5) t - I times to obtain 

k + j  

Here some nonnegative terms have been discarded from the right side. It follows 
U that we must have mjj < 00. 

Proposition C.15. Let G be a nonempty subset of S. Assume that there 
exist a (finite) nonnegative function y on S and E > 0 such that 
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Then for i g G we have P(Tic; c -) = 1 and mic I y ( i ) / e .  

Pro08 Using the fact that y is nonnegative, (C.7) implies that 

297 

(C.7) 

Iterating this n times yields 

As a shorthand let T = T,u. Since T 1 1, we have P(T > 0) = 1. Then we 
see from (C.9) that y ( i )  2 e xlo P(T t) ,  where the last term on the right 
of (C.9) has been dropped, since y is nonnegative. Now P(T > I) 2 P(T = -), 
and hence y( i )  2 ~ ( n  + 1 )P(T = -). Letting n ---c 00 yields a contradiction unless 
P(T = m) z 0. Thus P(T c m) = 1 .  Using a familiar property of nonnegative 
random variables, the inequality yields E [ T ]  = cLo P(T > ?> 5 y ( i ) / e .  D 

Corollary C.1.6. Assume that there exist a distinguished state z ,  a (finite) 
nonnegative function y on S, and t > 0 such that 

Then P(Tiz c m) = 1 for all i. Moreover m,, S y ( i ) / s  for i f z. Finally m,, < 00, 

and hence z is positive recurrent. 

Proufi Choosing G = ( z }  in Proposition (21.5 proves the claims concerning 
i # z. 

NowP(TI ,<m)- -  & P , , P ( T , : € ~ ] X g  = j ) = P : 2 + C , + - P : J P ( T j : < m )  - I .  
0 Then ni,, = 1 + X, + P:jmj; 5 1 + (cj +: PZJ y ( j ) ) / t  c 00. 

The function y in the two results above is called a Lyupitnovfinction and the 
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use of such functions is crucial to the results in the book. If S = {0,1,2,. . .}, 
then a particularly useful choice is y( i )  = z. In this case we say that yi =: cj PG( j - i )  is the drift at i. It measures the expected movement of I’ in one 
transition. The following result is proved in Sennott et al. (1983): 

Proposition C.1.7. Assume that r is positive recurrent on S = (0, 1,2,. . .} 
and that Pij = 0 for i 2 2 andj < i- 1. That is, the chain can transition downward 
ody one state at a time. Then xi xjyi = 0. 

C.2 MARKOV CHAINS WITH COSTS 

Assume that to each state i is attached a (finite) nonnegative cost C(i). In this 
section we discuss the important idea$ related to a Markov chain with costs, 
which we continue to refer to as the MC I’. 

Let 

(C.11) 

be the expected cost incurred per unit time in [O, n- 11 when starting in state i .  
Given that m , ~  < DO, we let c i ~  be the expected cost of a first passage from 

i to G. Since costs may be 0, it doesn’t make sense to talk about the expected 
cost of a first passage without knowing that the expected first passage time is 
finite. 

Proposition C.Z.l. Let R be a positive recurrent class. 

(i) For i E R, limn . J:”’ exists and equals the (finite or infinite) constant 

(ii) For i f R we have J R  = clt/m,,. 
(iii) J R  = C,. R ~ , E I C ( X , ) j X o  =j] for tt 2 0. 

Proof: 
that J R  - 
c,, = QQ. 

A.1.7 it then follows that lim inf,, 
exists and equals 00 for every i. 

J R  =: c,E xr,Cc(j). 

We first prove (ii). Fix i E R. It follows from Proposition C.l.2(ii) 
C(j)e,,/m,, = cll/mt,. Observe that m,, < ~0 but we may have 

To prove (i), note that Qr) --t z, for i E R. From (C.11) and Proposition 
J r ’  2 J R ,  Thus, if J R  = 00, the limit 

Now assume that JR = c,,/m,, c =. Then (i) follows from the renewal reward 
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thmrem. For example, see Ross (1996). A MC proof is given by Chung (1967, 
p. 93). The lengths of successive first returns to a state i in a positive recurrent 
class are independent and identically distributed, and hence these successive 
first-passage times constitute a renewal process. In renewal theory the length 
of such a first passage is called a cycle. The renewal reward theorem says that 
the average cost, namely the limit of JF’,  is given by the expected cost incurred 
during a cycle (which is el l )  divided by the expected length of a cycle (which 
is m,,). 

We prove (iii) by induction on n. It holds for n = 0 by definition. Now assume 
that it holds for n. Then 

j E  R k s R  ;€ R 

k E  N .P E K 

= J R .  (C. i 2) 

The first line follows by definition of the expectation. The interchange of the 
order of summation is justified. since all terms are nonnegative. The second line 
follows from the basic discussion in Section C.1. The third line follows From 
Proposition C.l.2(i). The fourth line follows by a rearrangement of the terms 

D and an application of the induction hypothesis. 

The next three results are the cost counterparts to the expected first passage 
time results in Section C.1. 

Proposition C.2.2. Let G be a nonempty subset of S. 

(i) Assume that ntjc < m for some i. Then c i ~  r. Ck C(k) GUj t .  

(ii) Under the hypothesis of (i), we have 

(C. 13) 

(iii) If G is contained in a positive recurrent class R, then J R  = c,, Z,C,G. 

(iv) If R is a positive recurrent class with I R  < 00, then c,, < - for all i ,  
j e  R. 
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Pmu8 It is clear that (i) holds. Part (ii) follows by multiplying both sides 
of (C.3) by C(k),  summing over k, and applying (i). 
Part (iii) foHows by multiplying the first equation in Proposition C. 1.4(iv) 

by C ( j )  and summing over j  E R. 
To prove (iv), observe that from Proposition C. 1.4(v) it follows that mi, < 00. 

Moreover c,, c -. The proof is now similar to the proof of Proposition C. 1.4(v). 
u 

Proposition C.2.3. Let G be a nonempty subset of S such that t n i ~  c - for 
all i g G. Assume that there exist a (finite) nonnegative function r on S and a 
finite subset H c S - G such that 

i 

(C. 14) 

Then there exists a (finite) nonnegative constant F such that c , ~ ;  5 rti) + Fm,c; 
for i B G. If H = 0, then cic 5 r(i) for i B G. 

Prooj Let C - max, H C(i) and D = maxi H s, P,r( j). These are both 
finite constants. Let F = C + D. 

Let Xo -- i ,  XI, ... , X,, E G be a first passage with XI 6 G for 0 I t < 
n. If X, g H, then from the first inequality in (C.14) it follows that C(X,) + 
E[r(X,+ t)lX,J I r(X,). If X (  E H, then CCX,) S C, and the second inequality 
in (C.14) yields E[~(X,+I)IXJ I D. Hence in either case we have C(X,) + 
E [r (X,  + 1 )IX,l S C + D + r(X,)  = F + r(X,). Taking the expectation of both sides 
of this inequality yields 

Note that it follows from (C.15) by induction that E[r (X , ) ]  c - for 0 5 t I; t z .  

We now add the terns in (C.15) to obtain E[xi=d C(X,)] 5 r(i)+Fn. If this is 
multiplied by the pmbability that the first passage is of length n and summed 
over n, then we obtain the first result. The proof for H = 0 is an obvious 
modification of this proof. CI 

Corollary C.2.4. Assume that mi? < 03 for some distinguished state z and 
all i. Assume that there exist a (finite) nonnegative function t on S and a finite 
subset H * containing z such that 
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Then there exists a (finite) nonnegative constant F such that ciz 5 r(i) + Fm,, 
for i Z z. If H* = (z}, then ciz 5 r(i)  for i # z. Finally we have cZr < 00, 

Proof: We apply Proposition C2.3 with G = {z) and H - H* - (z) to 
obtain the first two claims. 

We have assumed that m?: < 00, and hence it makes sense to talk about c::. 
We have czr = C{z) + x, + ~ P, ,C,~  5 C(z) + x, ~ P:, [t(j) + Fm,, J = C(z) - F + 
F w Z  + E, pz,r(j) 4 00. n 

The following type of MC is frequently employed in the text: 

Definition C.2.5. Assume that there exists a distinguished state z such that 
0 m,, < 00 and cir < 00 for all i E S. Then the MC is z standard. 

This definition entails the following powerful implications. 

Proposition C.2.6. Assume that I' is z standard. 

(i) The state space S decomposes into a positive recurrent class R contain- 

(ii) The average cost J R  on R is finite. 
fiii) Limn I, 

ing z and a set U of transient states. 

J:"' exists and equals J N  for all i .  

Proof: By assumption m,: < 00, and hence the communicating class R con- 
taining z is positive recurrent. Clearly any state in U = s-- R must be transient, 
since it leads to z. Since c,: < 00 it follows from Proposition C.2.l(ii) that 
JR < 00. This proves (i-ii). 
By Proposition C.2.1(1) it is only necessary to prove (iii) for transient states. 

If the process starts in i E U, then in a finite expected amount of time and with 
finite expected cost, it will be in state z, and the average cost associated with z is 
J R .  The delayed renewal reward theorem then gives (iii). See Hcyman and Sobel 
(1982, p. 184). Intuitively the result follows because there is an initial renewal 
interval with a different distribution, namely the first passage to z, and from 
then on the renewal process behaves as discussed in the proof of Proposition 
c.2. I .  

Remurk C.2.7. (i) If Corollaries C. 1.6 and C.2.4 hold, then I' is z standard. 
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(ii) It follows from Propositions C.1.4(v) and C.2.2(iv) that if r is irreducible 
and positive recurrent with finite average cost, then it is c standard for any 
state :. 0 

C 3  MARKQV CHAINS WITH FINITE STATE SPACE 

The results in &%ions C.1 and C.2 apply when the MC has a countable state 
space, that is, a finite or denumerably infinite state space. However, when S is 
finite, additional results of a special nature hold. 

Throughout this section we assume that I" is a Markov chain defined on a 
finite state space S. Then r has at least one positive recurrent class. Let R ,  , Rz,  
. . . , RK be a list of the positive recurrent classes. Let U be the set of states 
not in a positive recurrent class. Since a null recurrent class must be infinite, r 
has no null recurrent classes and the states in U must be transient. Moreover 
it is the case that from i E U some positive recurrent class i s  reached in finite 
expected time and with finite expected cost. If pk(i) denotes the probability that 
class Rk is reached first, then we have x k p k ( i )  = 1. 

We know from Proposition Ca2.l(i) that the average cost on Rk is a constant 
Jk. Since the costs ace bounded, it follows that J k  < 00. It may be seen that 
J ( i )  = x k p k ( i ) J k .  That is, the average cost at an arbitrary state i is a convex 
combination of the average costs on the positive recurrent classes. It is dear 
that the average cost function is a constant J if and only if J h  = J .  

For S finite we say that the MC is unichain if there is just one positive 
recurrent class R. In this case the average cost function must be constant. If the 
distinguished state z is an arbitrary element of R, then the chain is z standard. 
It is the case that a MC with a finite state space is z standard if and only if it 
is unichain with positive recurrent class containing z. 

C.4 APPROXIMATING SEQUENCES FOR W K O V  CHAINS 

In this section we have a Markov chain I" with costs on a denumerable state 
space S. We are interested in constructing an approximating sequence of finite 
state Markov chains. The following definition is the MC counterpart of Defi- 
nition 2.5.1 : 

Definition C A I .  The sequence (r,v),v 2 ~ , ,  is an appmximating sequence 
(AS) for I' if there exists an increasing sequence ( S , V ) ~ ~ N ~ ,  of nonempty finite 
subsets of S such that US, = S. Each r, is a MC with costs on SN. Given 
i E SN the cost at i equals C(i), and there is a transition probability distribution 

U (P,,(N)),,  satisfying limN . .-., P,,(N) :- Pi, for i ,  j E S. 

Quantities such as first passage times in the AS will be denoted by mic;(N), 
and so on. The next result provides some general relationships. 
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Proposition C.43. Let the AS be given, and let G be a finite nonempty 
subset of S. 

(i) LimN,, ~ P i f k ) ( N )  = G P ~ L  for i ,  k E S, t 2 1. 
(ii) cu,a(N) = G U , ~  = 6 , k  for k E G, i E S, and N sufficiently large. In 

(iii j Lim infhr + o1 r n , ~ ( N )  2 mrG for i E S. 
general, we have IiminfN, c u , ~ ( N )  2 (;urh for i, k E S. 

Proof Since G is finite, we may assume that N is so large that G c SN. We 
prove (i) by induction. Now ,&i'(N) = Pik(N) --+Pi& = &:', and hence the 
statement is true for t = 1. Now assume that it is true for t. Then (C.2) for S, 
yields 

(C.17) 

Taking the limit of both sides of (C.17 j, employing Corollary A 2 7  with bound- 
ing function 1 and the induction hypothesis, yields the result for t + 1 and 
proves (i). 

The first statement in (ii) is clear. To prove the second statement, consider 
the equation in Proposition C.1.4(i) for &. Take the limit infimum of both sides 
of this equation and employ Proposition A.1.7, what has just been proved, and 
Proposition C.l.4(ij to obtain the result. This proves (ii). 

To prove (iii), consider the equation in Proposition C.IA(ii) for SN. Take 
the limit infimum of both sides of this equation and employ Proposition A. 1.8, 
what has just been pmved, and Proposition C.I.4(ii) to obtain the result. El 

Proposition C.43. Let an AS be given. Then the following hold: 

(i) If i E S is transient or null recurrent, then limN, r l ( N )  = T, = 0. 
(ii) Let H be a positive recurrent class in I'. Then given a sequence N,., there 

exist a subsequence N,v of N, and B constant 6, with 0 I b I 1 , such that 
lim, - r , ( N 3 )  = brj for i E R. 

*Prmfi Assume that i is transient or null recurrent. Then mrr = =, and it fol- 
lows from Proposition C.4.2(iii) that rn,,(N) - =. Then r , ( N  j = I/m,,(N j - 0, 
which proves (i). 

To prove (ii), fix the sequence N,. We may assume that the sequence of 
functions r , ( N r )  is defined on all of S by setting r,(Nj = 0 for i f$ SN. Note 
that 0 5 r i (N, )  I 1. By Proposition B.6 there exist a subsequence N, of N, and 
a function 4,. with 0 5 y, 5 i ,  such that r , ( N , )  --+ql for all i. 

If i is transient or null recurrent, then from (i) it follows that y, - 0. If 
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i is positive recurrent, then from Proposition C.4.2 we have l / q ,  = lirn,-- 
m J N , )  2 liminfN -. o1 m,,(N) 2 m,, - l / ~ , .  This implies that q, I q, 

Consider the equation 

(C. 18) 

In Proposition C.l,2(i) we gave this equation as valid for a positive recurrent 
class in I'N. However, it is easily seen that (C.18) holds in the general case, in 
which there may be transient states and multiple positive recurrent classes. 

We now take the limit infimum through values of N, of both sides of ((2.18) 
and employ Proposition A.2.5 to obtain 

(C.  19) 

Now assume that j E R. On the right side of (C.19), notice that PIJ can be 
positive in only two cases, namely i E R or i transient. If i is transient, then 
q, = 0, and we may omit that term. Hence (C.19) yields (*): qJ 2 X I  P,qr 
for j E R. Since qJ I r,, it follows that xJE RqJ 5 1. If we assume that the 
inequality in (*) is strict for some j*  and sum both sides over j E R, then we 
obtain a contradiction. Hence equality holds in (*I. We then iterate (*) n times 
and average to obtain 

qj Q:;'ql, j E R. 
i E R  

(C.20) 

We wish to take the limit of the right side of (C.20) and pass the limit through 
the summation. To justify this, we may use Corollary A.2.4 with bounding func- 
tion 1. Note that (qJ IJ R may not be a probability distribution, but since 4, 
=: b 5 I ,  a term with the extra probability (multiplied by 0) can be added to 

0 the right side of (C.20). This easily yields q, = blr, for j E R. 

The constant b in Proposition C.4.3 depends on the positive recurrent c l a ~  
and on the sequence N,. Note that b = 1 for all positive recurrent classes and 
sequences, is equivalent to xj(/V)--+~~ for i E S,  and we will use the two 
expressions interchangeably. The next example shows that we may have b < 1. 

Examgle C.4.4. Let S = (0,1,2,. . .} with Po0 = 1 and Pi,- I = 1 for i 2 1. 
Then 1r0 = 1 and rf = 0 for i 2 I ,  We construct two approximating sequences 
with S, = (0, I , .  . . ,N} for N 2 2. 

To define AS,, let P,J&'V) - 1 - W ' ,  P("(N) = N - I ,  P t , - l ( N )  = 1 for 
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1 5 i 5 N - I, and PN,v(N) = 1. This satisfies n;.(N) L 0, 0 I i 5, N - 1, and 
TNI(N)  = 1. In this case b = 0. 

To define AS2, let the transition probabilities be as in AS, except set 
P ~ h r -  I@') = 1. This makes I', into an irreducible MC, and it is easy to see, 
using rea5oning similar to that in ExampIe C. 1.3. that IO(N)  = $ and rl = & 

c for 1 I i I N .  In this case b = f. 

Here is a result related to the cost structure. 

Proposition C.4.5. Let an AS be given, and let G be a finite nonempty sub- 
set of S.  Assume that mic c - for some i and that m i ~ ( N )  < - for sufficiently 
large N. Then lim inf,v -. Cic(N)  2 c ; ~ .  

Proof: From Proposition C.2.2(i) it follows that 

(C.21) 

We then take the limit infimum of both sides of (C.21) and employ Proposition 
0 A. 1.8 and Propositions C.4.2(ii) and C.2.2(i) to obtain the result. 

Proposition C.4.6. Let an AS be given, and let R be a positive recurrent 
class in I'. Then the following are equivalent: 

(i) T , ( N )  - I ,  for i E R. 
(ii) m,,(N) -. m,: for some z d R. 

(iii) mkc(N) - * m , ~  for any nonempty finite subset G of R and i E R. 

Now assume that any (and hence all) of the above conditions hold. Then the 
following are equivalent: 

(iv) J ( i ) ( N )  -+JR for i E R. 
(v) c&V) --., c;, for some z E R. 

(vi) c&V) - c i ~  for any nonempty finite subset G of R and i E R. 

Proof Observe that (ii) is equivalent to r Z ( N )  ---t xz, and if this holds, then 
we must have 6 = I for R. Thus (i) and (ii) are equivalent. Clearly (iii) implies 
(ii), so it remains to prove that (i) implies (iii). 

So let G be a nonempty finite subset of R, and fix a subsequence N,.  Let 
lim inf,, - mi&',) =: w(i) for i E S. 
Part (i) implies that for sufficiently large N, the finite set G is contained in 

a positive recurrent class R ( N )  of I". Then Proposition C.1.qiv) yields 
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We first show that mw(N) -+ mtG for i E G. Take the limit infimum of both 
sides of (C.22) through values N, to obtain 

- 1. (C.23) 

The second line is clear and the third line follows from Proposition C.4.2(iii). 
The fourth line follows from Proposition C.1.4(iv). Hence all the terms in (C.23) 
are equal. This readily implies that w( i )  = mi<;, which yields r n , ~ ( N )  -* mic, for 
i E  G. 
Now consider (C.4) for r,v. Taking the limit infimum of both sides through 

values N, yields 

(C.24) 

Now fix k E R - G. It is easy to see that there must exist i* E C and t 2 1 
such that GPItl > 0. Iterating (C.24) n - 1 times yields 

I! - 1 

The second line follows from Proposition C.4.2(iii). The third line follows from 
((2.4) for r iterated n - 1 times. Since w(i* )  =: m,:G, it follows that all the terms 
in ((2.25) are equal. This readily implies that w(k) = rnkG and proves (iii). 
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Now assume that (i-iii) hold, and fix i E R. It is easily seen that i and L are 
elements of a positive recurrent class R ( N )  for N sufficiently large. It follows 
from Proposition (2.2.1 (ii) that J( i ) (N)  - J ( z ) ( N )  - c , ~ ( N ) / ~ , , ( N )  and that 
J R  L cLi/mzl. From this it easily follows that (iv) and (v) are equivalent. 

Clearly (vi) implies (v). The proof that (iv) implies (vi) is similar to the proof 
above, and we omit it. U 

Exampie C.4.7. Let r and SN be as in Example C.4.4. Define r N  by 
Pw(N) = 1 - N - l ,  P&N) = N-', and P , j - i ( N )  = 1 for I I i I N. This 
makes r N  into an irreducible MC, and it is easy to see, using reasoning similar 
to that in Example C.1.3. that FO(N)  = 1 + N-' which converges to KO. 

Assume that C(i)  = i. Then COO = 0, but 

N+1 1 
2N 2 
- --+ - *  - - (C.26) 

a 

The following definition embodies the idea that the convergence is properly 
behaved: 

DeBnirion C.4.8. Assume that r is z standard. An AS is conforming if the 
following hold: 

(i) There exists N* such that r k  is unichain with z an element of the pos- 

0 
itive recurrent class for N 2 N*. 

(ii) We have mtZ(N) - m,, and c, , (N) - c,; for all i. 

Here are some consequences of the notion of conformity. 

Proposition C.4.9. Assume that r is z standard and that the AS is con- 
forming. 

(i) ?ri(N) --xi for all i .  
tii) J ( N )  -. J R ,  where J ( N )  is the constant avemge cost on rN for N 2 N". 

Proof- If i E U, then the convergence in (i) follows from Proposition 
C.4.3(i). If i E R, then it follows from Proposition C.4.6. To prove (ii), note 
that J ( N )  = cZZ(N) /m, , (N)  --c c,,..nz:: J R .  3 

It is sometimes useful to have the following weaker notion of conformity: 
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Definition C.4.10. Assume that I' has a positive recurrent class R with 
finite average cost J R .  Then an AS is confornzing oti R if, for i E R, we have 
a,") ---L xt and J ( i ) ( N )  - J R .  u 

C.5 SUFFICIENT CONDITIONS FOR CONFORblITY 

The examples in Section (2.4 tell us that achieving conformity requires addi- 
tional assumptions on the approximating sequence. Developing appropriate 
assumptions is the task of this section. These assumptions require the AS to 
be of a special type, namely the counterpart of the augmentation type approxi- 
mating sequence introduced in Definition 2.5.3 for MDCs. For clarity we give 
the definition here for MCs. 

&$inition C.5.1, Assume that we have a MC with an approximating 
sequence. The AS is an augnienlatiun Qpe approximating sequence (ATAS) 
if the following holds: Given i E SN, for each r e SN there exists a probabil- 
ity distribution (qi(i, r ,  N)), s.w, called the augmentation distribution associated 
with ( i , r , N ) ,  such that 

The idea is that the original probability associated with states in SN is not 
changed, but excess probability associated with a transition to a state outside 
of SN is redistributed to the elements of SN according to some probability dis- 
tribution. 

The next result involves an ATAS that sends excess probability to a finite set. 

Proposition C.5.2. Let r be a z standard MC, and let G be a finite 
nonempty subset of S. Any ATAS that sends excess probability to G is con- 
forming. The weaker notion of conformity in Definition C.4.10 aIso holds as 
long as G is a subset of R. 

*PraoJ We first argue that there is no loss of generality in a.suming that 
z E G, since if G does not already contain z, then we may add it in. The 
approximating sequence is still an ATAS that sends the excess probability to 
G. (There i s  no requirement that any excess probability be sent to z . )  

Now assume that N is so large that G c S,. We claim that (*): &(N) I 
G P : ~  for t 2 1, i E SN,  and k E SN-G. Think about why this is intuitively cleat! 
We prove ( ) by induction. For r = I we have cPti ' (N) = P,k(N)  = Plk = 

(;Pf:'. Now assume that the result hoIds for t ,  Then 

* 
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The second line follows from the induction hypothesis and what was just proved 
for c = 1. The third and fourth lines are clear. This completes the induction and 
hence (*) holds. 

It then follows from Proposition C.l.4(i) that (*"): G ~ i l ; ( N )  I G'u;k for k E 

S, - G. Then 

-- tnI(;. (C.29) 

The first and last line follow from Proposition C.l.Yii). The second line follows 
from (**), and the third line from the nonnegativity of the terms. From (C.29) 
we have (***): ~ Z , ~ ( N )  I m , ~  for i E S,. Then Proposition C.4.2(iii) implies 
that m,c(N) - m,c; for all i. 

Since z E G and r is z standard, it follows that mI(; c 00 for all i. Hence it 
follows from (***) that mIG(N) c 00 for i E Sh- This implies that G must inter- 
sect every positive recurrent class in I'K. Moreover it follows from Proposition 
C.lA(ii) that Gu,j(N) < - for i, j E SN. 

Consider the first equation in Proposition C. 1.4(iv). It was stated for a finite 
subset of a positive recurrent class. It is easy to check that under the above 
conditions the equation holds in general for SN. Thus 
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Now let F(N) be the number of positive recurrent classes in r,v, and note 
that F ( N )  2 1. Then adding up the terms in (C.30) yields 

(C.3 1) 

The first line follows from Proposition C. 1.4(ii), and the second line follows 
from (***). 

Given a sequence N,, there exist a subsequence N, and 6, with 0 5 h S 1, 
such that a ; ( N , ) - h ,  for i E R. Moreover .rri(N)--O for i E 0'. This 
follows from Proposition C.4.3(ii). Let H = G fl R, and note that H is 
nonempty. Using these facts, it follows from (C.31) that I 5 lim inf, - - F(N,)  I 
l in sup, F ( N , )  5 b X I ,  r lmlG = b C,.  u,mtfi = 6. The next to last equal- 
ity follows since mlc = m,H for i E H c R. The last equality follows from 
Proposition C.1.4(iv). Hence b = 1. Since this holds for any sequence, it follows 
that x l (N)  ---t rRI for i E R. Then Proposition C.4.6 yields that m , , ( N )  -+ m,Z for 
i E R. 

This also proves that F ( N )  -+ 1. Since F ( N )  is an integer, we must have 
F ( N )  - 1 for sufficiently large N. It fdlows from what has been proved that : 
must lie in the positive recurrent class R ( N )  for sufficiently large N, say N 2 
N*. This verifies Definition C.4.8(i). 

Using Proposition C.2.2(i) and (**), we obtain c,c;(N) 5 C,G for i E SN. Then 
it follows from Proposition C.4.5 that c,&) -+ c , ~ .  For N 2 N , since I', is 
unichain, we see that Proposition C.2.2(iii) may be generalized to give J ( N )  = c,. ti a;(N)c,c;(N). Then this yields J ( N )  -+ CIS 71;c,(; = El ,  T,C,H -= J H .  
It follows from Proposition C.4.6 that c, ,(N) - cIz for i E R. 

It remains to verify Definition C.4.8(ii) for i transient. We reason, in general, 
for initial state i # z. Let T , ( N )  be the time to first reach either z or S - 
SN (call this first passage 1). and let TI  be the first passage time to z (call 
this first passage 2). Note that both first passages take place in I'. Let u : ~ ( N )  
(respectively, u 3 )  be the expected number of visits to k during first passage I 
(respectively, first passage 2). Clearly it is the case that ufk(N) 5 u : ~ .  Summing 
both sides over k yields E[T,(N)I  I m12. 
Now asume that i E S,V, and consider m,:(N) .  Note that I'N operates just as 

r until either i is reached (and the first pasage is completed) or until S - S,v 
is reached. If the latter occurs, then the process i s  reset to an element of G 
according to some probability distribution and then begins anew an attempt to 
reach z (unless it is reset to z). Let us define y i ( N )  =: P(r reaches S- S,V before 
it reaches z lX ,  = i). Then we see that 

* 
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+ ,?[additional time to reach ~ ( X T , ( N )  = T]P(XT,(N)  = r )  
r e  S-Sht 

where M ( N )  is defined to be the summation in brackets in the second line. Note 
that M ( N )  < 00 for N 2 N+. 

Now let us sum both sides of (C.32) over j E G - ( 2 ) .  Solving for M ( N )  
yields 

(C.33) 

Then substituting (C.33) into ((2.32) yields 

We now prove that .v-(N) - 0. This will imply that lim sup, --r ~ mi,(N) 5 mgz, 
and hence by Proposition C.4.2(iii) it follows that mi,(N) -. m,:. 

Observe that y i ( N )  is decreasing in N, and hence limN, , y , (N)  =: y, exists. 
Now 

Take the limit of both sides of (C.35) as N+-. The first term on the right 
approaches 0. We may apply Corollary A.2.4 to the summation (with bounding 
function 1) to obtain y I  2 ck +; Pfkyk. Iterating this yields 
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k f i  

k f . ;  

= P(Tj > n). (C.36) 

The second line follows, since f k  I 1. The finiteness of rniz implies that P(T, > 
n) - 0 

We now deal with the first passage costs. The above argument may be 
easily modified to yield the analogue of (C.34) for the expected costs. This 
yields lim SUP, - c I i ( N )  I ctz, and hence by Proposition C.4.5 it follows that 
C A N )  - CIZ. 

It remains to prove the second statement of the proposition. To accomplish 
this, we may simply reduce S to the positive recurrent class R (in which case 
it is z standard for any z E R) and apply the first statement. 0 

n 4 OQ. this implies that y1 = 0. 

The next result utilizes an ATAS satisfying a structural property. 

Proposition C.5.3. Let r be z standard. Assume that we have an ATAS 
and a nonnegative integer N * such that the augmentation distributions satisfy 

and 

Then the ATAS is conforming. 

Pmofi The basic idea of (C.37) is that the convex combination of first pas- 
sage times in I’ corresponding to excess probability Pir cannot exceed the first 
passage time associated with r. This is a type of structural property. A similar 
comment holds for (C.38). 

Observe that 
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= m i z  - 1, i E S N .  (c.39 j 

The first line follows from (C.27). The second line follows from (C.37), and 
the last line From (C.4). 

The hypotheses of Corollary C.1.6 are satisfied for I'N (with y(i) = ~tl,~ for 
i E SN {z) and y($ = 0), and hence it follows that ni<,(N) I m,: for i E 

SN - {z} .  Proposition C.4.2(iii) implies that m,,(N) -mle for i # z. 
Now 

We wish to apply Theorem A.2.6 with bounding function mi:. The hypotheses 
will hold if it can be shown that 

* 
): Iimcv-mZJGs,,,  ( ,)P,,(N)mJ: - C,+:P , ,mJ , .  

If (*) can be shown then Theorem A.2.6 yields m,:(N) - l+cJ f T  P,,m,< 2: mcc. 
So Iet us show (*). It follows from (C.39) and Proposition A.1.8 that 

= m P ;  - 1. 

Hence all these terms are equal, and (*) holds. 
The proof for the costs is similar and is omitted. 

(C.4 1 ) 

a 

We now explore two special results valid when S = (0, I ,  2 , .  . .}. If Pij = 0 
for i 2 2 and j c i - I ,  then the transition matrix is upper Uessenberg. In this 
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case the MC can transition downward at most one state at a time. If PLj : 0 for 
i 2 0 and j > i + 1, then the transition matrix is lower Hessenberg. In this case 
the MC can transition upward at most one state at a time. 

Corollary C.5.4. Let r be a 0 standard MC with upper Hessenberg transi- 
tion matrix. Assume that SN = (0, 1 , . . . , N ) for N 2 1 and that the ATAS sends 
the excess probability to N. Then it is conforming. 

Proof: We apply Proposition C.5.3 with N* = 1. In this case we have 
q k ( . )  = 1, and (C.37) becomes the requirement that r n ~ ~  5 m& for r > N. This 
is equivalent to the requirement that m , ~  be increasing in i for i 2 1. But this 
is clear for an upper Hessenberg matrix because mi() = m,L- 1 + m,- 10- Similar 

rJ comments are true for the expected first passage costs. 

Another proof of this result is given in Sennott (1997a) and is based on 
Gibson and Seneta (1 987). The following result for lower Hessenberg transition 
matrices is stated (for the steady state probabilities alone) in Gibson and Seneta 
(1987) with a proof in Gibson and Seneta (1986). A complete proof, based on 
the Gibson and Seneta proof and including the cost structure, is given in Sennott 
(1997a). We state the result here. 

Proposition C.5.S. Let I' be a standard MC with lower Hessenberg Wan- 
sition matrix that is irreducible on S. Assume that SN = (0 , l . .  . . , N }  for N 2 
1. Let mN be a probability distribution on SN that converges to a probability 
distribution cx on S as N -+ 09. Let the ATAS satisfy q,(N,N + 1, N )  = c u d j ) .  
Then it is conforming. 

Note that there is excess probability only in state N and it is P N N +  I .  This 
probability is distributed to the states of SN according to the probability distri- 
bution c r ~ .  

An example in Gibson and Seneta (1987) shows that conformity may fail 
to hold for a MC with a lower Hessenberg transition matrix and an ATAS that 
sends the excess probability to N. 

BIBLIOGRAPHIC NOTES 

Proposition C.1.S and Corollary C.i.6 are modifications of a result due origi- 
nally to Foster (1 953) and generalized by Pakes (1969). For much additional 
material, see Reedie  (1976, 1983). and for these results and recent develop- 
ments, see Meyn and Reedie (1993). 

For versions of Proposition C.2.3 and Corollary C.2.4. see Sennott (1989a) 
and Meyn and Tweedie (1993). 

Concerning approximating sequences for Markov chains, earlier authors have 
restricted attention to Markov chains without costs. We have developed the sub- 
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ject to include costs, and most of our results and proof techniques are modifi- 
cations of prior work. 

To obtain Proposition C.4.3, we have generalized a result due to Wolf (1980); 
this paper also stimulated other results in Appendix C. Proposition C.5.2 is 
basically due to Gibson and Seneta (1987). Proposition C.5.3 is due to Sennott 
(1997b). Corollary C.5.4 is due to Gibson and Seneta (1987), and see Heyman 
(1991) for another proof. Our proof uses Proposition C.5.3. Proposition C.5.5 
is also due to Gibson and Seneta (1987) with a proof in Gibson and Seneta 
(1986). Based on their proof, Sennott (1997a) gives a proof including costs. 

An ATAS type approximating sequence for Markov chains is studied in Van 
Dijk (1991) and applied to some queueing systems. 
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