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Preface

This text is based on a course given for Ph.D. systems engineers at the
University of Virginia in the autumn of 1987. The approach, and level
of mathematics used, is intended for the mathematically minded post-
graduate students in such areas as systems engineering, industrial
engineering, management science and operations research, and for final
year mathematicians and statisticians.

It is not intended to be a research reference text, although reference
will be given to some key texts and papers for those wishing to pursue
research in this area. It is intended as a basic text, covering some of
the fundamentals involved in the manner in which Markov decision
problems may be properly formulated and solutions, or properties of
such solutions, determined.

There are three key texts influencing the format of this text, viz. those
of Howard (23], van der Wal [53] and Kallenberg [24].

Howard (23], for stationary Markov decision processes, uses what
he calls the ‘z-transform’ method, which is essentially the method of
‘generating functions’. This allows expected total discounted, or non-
discounted, rewards over a residual n-time unit horizon, to be easily
determined from the coefficients of the z-transforms, for any given
policy. It also allows one to see how these performance measures
depend upon the number of time units, n, of the time horizon, and
leads to asymptotic results when » tends to infinity. In principle the z-
transforms may be found for each of a set of policies, and the
appropriate decision rule selected on the basis of this analysis.
However, this can be impracticable, and an alternative approach, based
upon so-called ‘optimality (functional) equations’, is then used.
However, the natural insight gained from the use of z-transform anal-
ysis is very helpful, particularly when the form of the dependence of the
n-time unit performance on # is needed. Thus, Chapter 1 is designed
to be an introductory chapter, based on z-transform analysis, without
any niceties of random variable structure being included, and restricted
strictly to stationary situations.



Xxii PREFACE

Van der Wal [53] develops Markov decision processes in terms of the
primitive random variable structure governing the process, and does
not take for granted, as does Chapter 1 implicitly, that policies may be
restricted, in effect, to deterministic Markov policies. Thus, all possible
history-remembering policies are initially allowed for and then, for
some classes of problem, the validity of this assumption is established.
For some classes of problem the assumption is not a valid one, e.g.
those where mean-variance analysis is of concern. Thus, various classes
of policy have to be considered, and this is the approach of Chapter 2.
This chapter leads, for some classes of problem, to the well-known
‘optimality (functional) equations’, and properties of the solutions of
these equations are studied.

Chapter 3 looks at algorithms, and their properties, for solving the
optimality equations developed in Chapter 2. There is a close relation-
ship between linear programming and the optimality equations
developed in Chapter 3. Kallenberg [24] gives a very complete, and
insightful, treatment of this interrelationship. Chapter 4 provides
merely the rudiments of this relationship. The policy space iteration
algorithm is shown to be a block-pivoting form of linear programming,
and a potentially more efficient algorithm, although the existence of
efficient linear programming algorithms is a point to be borne in mind
when selecting an algorithm.

For many decision situations the interval between successive decision
epochs is not constant, and may itself be a random variable. Chapter
5 deals with this departure from standard Markov decision processes,
as a natural generalisation of these. The title ‘semi-Markov decision
processes’ is used, although, strictly speaking, the latter refer only to
those situations in which decision epochs occur only when there is a
change of state. We take some license here in using this terminology.
This chapter takes for granted all the corresponding random variable
analysis of Chapter 2, and deals solely with the optimality (functional)
equations and algorithms.

Up to this point it is assumed that the state of the system is known
at any time, and that the governing, fixed, parameters of the process
are known. In Chapter 6 we deviate from these assumptions, and con-
sider processes in which the knowledge of the states and/or parameters
is encapsulated in the form of probability distributions. The new state
space becomes a vector space, and this is a departure from the finite
state space framework used up to this point. The random variable
analysis is here taken for granted, and the emphasis is on the develop-
ment of the optimality (functional) equations.
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Chapter 7 deals briefly with, to some extent, some more modern
developments in the Markov decision process area, covering: structural
policy analysis; approximation modelling; post-optimality, parametric
and sensitivity analysis; multiple objectives; utility, probabilistic
constraints and mean-variance analysis; and Markov games.

In teaching Markov decision process material, the author’s experi-
ence has been that, whereas algorithms are most readily digested,
problem formulation has been least readily digested. Chapter 8 is
included as a selection of problem formulation illustrations to assist
with this aspect of learning. They are very much simplified, but may be
useful as a precursor to much more detailed illustrations which occur
in the literature.

Certain points are important to facilitate the reader’s ability to cope
with the style of presentation.

(i) Throughout, the main objective has been to reduce the analysis
to one involving operators of the form 7, and others, which
transform one function into another. This greatly simplifies the
presentation. If u is a real valued function on the state space /,
then the value of the transformed function Tw at i € [ is written as
(Tu] (i).

(ii) Throughout the text, the dual use of ‘function’ and ‘vector’ has
been used. Thus, sometimes u is to be interpreted as a vector, viz.
in those cases where it is expedient to use ‘vector-matrix’ analysis.
Sometimes u is to be interpreted as a function, viz. in those cases
where ‘optimality (functional) equation’ analysis is used. The
same u may be used for these two distinct purposes.

(iii) For any matrix M, its (i, j)th element may be written as [M],
and, for a vector g, its ith element may be written as [g];, with
certain standard exceptions such as pf§-, rk etc.

(iv) Because 7is used to denote the state space, we use U to denote the
identity matrix.

(v) Throughout the text, the format is a ‘maximisation’ one for
Markov decision processes with rewards. Thus, with minor excep-
tions in exercises, all ‘cost minimisation’ problems are converted
to ‘reward maximisation’ problems with the use of a ‘minus’ sign.

(vi) Throughout the text, ‘n’ or ‘n—t’ will be used to denote ‘the
number of time units (or decision epochs) remaining for the time
horizon’, or ‘n’ will be used to denote ‘the last time unit in the
time horizon’, or ‘the iteration number in an algorithm’, and ‘7’
will be used to denote chronological time.
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(vii) Throughout the text we will distinguish between the actual
physical values in a Markov process and the solutions to corre-
sponding equations and inequalities. Thus, {v, v, U7, v7} will be
used to denote actual discounted reward value functions (vectors),
and {w, w,, w", Wi}, {g, gn, €7, gn} will be used to denote ‘actual’
bias (up to a constant factor difference) and gain functions
(vectors), whereas v will be used to denote any ‘general solution’
to corresponding optimisation problems in the discounted case,
and {u, h} for the average expected reward case.

Finally, references are given for follow-up purposes, for the reader
to obtain further details if required. The references are not necessarily
intended to suggest that they are the original sources. Nor do the
references necessarily imply that the cited material is identical with the
material being discussed. Also, the absence of a reference does not
necessarily imply that the material being discussed is original.



CHAPTER 1
Introduction

1.1 AN INTRODUCTORY EXAMPLE

1.1.1 TOYMAKER EXAMPLE—EXPECTED TOTAL REWARD

The following example is taken from Howard [23], which is a useful
companion text to this one. It is used in various places in this text to
illustrate certain points. We introduce this in a non-rigorous fashion
prior to developing the rigour later (see p. 24).

In this problem, a toymaker’s business is described as being in one
of two conditions (states), i =1, 2, at the beginning of any year (see
Table 1.1). He has one of two things he can do (actions), k=1, 2 (see
Table 1.2). If he is in state / at the beginning of a year and takes action
k then he moves to state j at the beginning of the next year with prob-
ability p% (see Table 1.3, where, for the moment, k is restricted to 1 for
each state /), with P = [p%] being the transition probability matrix. If
he moves from state / to state j in the year, having taken action &, then
he receives a reward r,’-§~ (see Table 1.4, again with k=1, for the
moment). Finally, if he is in state / at the beginning of a year and takes
action & then his expected reward in the year is r¥ (see Table 1.5, again
with £ =1 for the moment) with r being the vector (or function) of
expected rewards.

For this problem the action & to be taken is prespecified as k = 1 for
each state /. The essential objective is to determine which action is actu-
ally optimal for each state , and this is the concern of Markov decision
processes to which we will turn later (see p. 20). For the moment we res-
trict ourselves to the fixed decision rule implicit in Table 1.3, i.e. k=1
for each i.

Let us now look at the manner in which such a system will behave
over a number of years, 7. In Figure 1.1, 7 is the number of years to
the end of a specific time horizon and not the chronological year. This
is the form needed later (see p. 26) for the development of our theory.
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Table 1.1 States™
State i Physical condition
1 successful toy
2 unsuccessful toy

Table 1.2 Actions™

State i Action k Physical action

1 1 do not advertise
2 advertise

2 1 do no research
2 do research

Table 1.3 Transition probabilities™

State at beginning
of next year

J
1 2
State at 1 0.5 0.5
beginning i (p¥) = P
of year
k=1
2 0.4 0.6
Table 1.4 Rewards in year®
State at beginning
of next year
J
1 2
State at 1 9 3
beginning i (rf)
of year
k=1
2 3 -7

*Tables 1.1, 1.2, 1.3, 1.4 and 1.5 are reproduced from [23) Howard (1960), pp. 19 and
26-27, by permission of The MIT Press.
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Table 1.5 Expected rewards in year*

State at 1 6
beginning i ré)=r
of year k=1
2 -3
Xn
) Xn1
State
X, Xn -1 X,
Xp 2 Xn -1t Xo
Reward Xn -1 Xn 142 '/\X
Yy Yn Yna_ Yn2 Yn-t Yo ¥ ¢
L e " e o o o "o o o ‘oo

Figure 1.1 System behaviour over n years

On occasion we will have a need to use chronological years also, and
we will denote this by 7. For the moment let us proceed in terms of »
as defined.

In Figure 1.1, in addition to n as defined, X, is the random state at
the beginning of year n from the end of the time horizon, and Y, is the
random reward in this year. In a given realisation (sample path) of the
behaviour of the system, X, will take a particular value / and Y, will
take a particular value r¥, if action k is taken and if X,_,=.

Let us now look at the question of deriving the expected rewards for
each year over a time horizon of length » years. The expected reward
in year n, starting with X, =1, is 6. The expected reward in year n,
starting with X, =2, is —3. In vector terms we have

r,,=[_§)]=P°r, (1.1)

where [ra]; is the expected value of Y, given X, =i, and P° is the
identity matrix which later (see p. 45) we will label as U generally.

The expected reward in year n — 1, starting with X,=1i at the
beginning of year n, is

probability(X,_ = 1 | X, = i)rf + probability(X,_, = 2 | X, = i)r§.
(1.2)
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Thus
fori=1 we have 0.5X6+0.5%x (—-3)=1.5,
for i=2 we have 0.4 X 6+ 0.6 x (—3)=0.06.

For the general / these are equal to [Pr]; where, for any vector ¢, [q]i
is the ith component.

In general the expected reward in year n — /, starting with X, =i at
the beginning of year n, is

probability(X,-; = 1 | X, = i)r¥ + probability(X,-,; = 2| X, = i)r}
=[P'rl;, O0<ig<n—1. (1.3)

Note that if ¢ is the probability that, if the process commences in
state i, it will be in state j after / years then g\’ = [P'];; where, for any
matrix M, [M], is its (/, j)th element.

We will now look at the question of deriving the expected total
reward over n years. Let v,(7) be the expected total reward over n years
if we begin with X, =i. This is well determined by i/ and n, and by the
given transition probability matrix P.

Table 1.6 gives a selection of {v,(/)} values (see Howard [23], p. 19),
where with E being the expectation operator

! !

I=n-1 =n-
v,,(i)=E< 2 Yl X =i>= 2 E(Ynoa| Xa=1)
=0 =0

- [(Zzol P’)r]i. (1.4)

In vector form this is

Un = <1=:;l P')r. (1.5)

]
Formally we define vy = 0.

Table 1.6 Expected total rewards (reproduced from (23] Howard
(1960), p. 19, by permission of The MIT Press)

Number of years to time horizon
n
0 1 2 3 4 S

State at 1 0 6 7.5 8.55 9.555 10.5555
beginning |
of year 2 0 -3 -24 -1.44 -0.444 0.5556
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1.1.2 THE USE OF z-TRANSFORMS FOR FINDING
EXPECTED TOTAL REWARD

We follow a similar line of development to that of Howard [23]. Define
fR)= 2 va2”, 0<z< 1. (1.6)
n=0

We note that:

(i) f(z) is a vector for each z;
(i) f(z) is convergent for some range of z;

and is convergent for 0 < z< 1 because, for n 21, |v,(i)| < 6n
a0
and >, nz" is convergent for 0 < z <1 (D’Alembert’s ratio test,

n=1

see Bromwich [8], p. 39).

We have
I=n-1
n>1 v,,-( > P’>r=r+ Pu,_,. (1.7)
=0
Thus
S vnd"=r X, 2"+ 2P 2 vl (1.8)
n=1 n=1 n=0

Because vp = 0 we have
fR)=W-zP)"'(z/(1 - 2)r. (1.9)

Note that U/ is the identity matrix.
From Howard [23], p. 21 we have

1-0.5z -0.5z]""

—_ —1=
(U=zP) [—0~4z 1-0.6z]

0.4z 1-0.5z]
((1 = 0.5z)(1 - 0.62) — (0.52)(0.42))

_[1-0.6z 0.5z
0.4z 1-0.5z]

(1 -1.1z2+0.1z%)

_ [1 -0.6z 0.5z ]
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_ 1 -0.6z2 0.5z
0.4z 1-0.5z

(1-2)(1-0.12)
:[1—0.62, 0.5z ( v ' )

9 _ 9
1-04z 1-05zjJ\(1-2) (1-0.12)

= (after some manipulation)

4

(1/(1—z))[3 §]+(1/(1—0.1z))[_§

R 9

|
NN
—_—

Then
(U-2zP) 'z/(1 - 2)

o en
£ Ln

=(z/(1—z)2)[ §]+(z/(1—z)(1~0.1z))[

PN

4 10 10

= (z/(l —Z)‘)[E :] + ((1 _;)‘(1 —Z).lz)>[:3 3q]

[ () T ea - enme)

n=0 n=0

‘Dz (1.10)

q

2 ] +<‘:)(1—(0.1>")[_

[

O 4w

n200=(fi Jrena-onn[ 1 7))

9 9 9

1 %] (10 n S
=n[1J+[_?} (1.1 [_4}. (1.11)

Let us now look at the asymptotic behaviour of {v,}.

1.1.3 ASYMPTOTIC BEHAVIOUR OF EXPECTED TOTAL
REWARD

Equation (1.11) takes the form

Uy =hng+ W+ gy (1.12)
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where

1 590 _5«? n
=i} =3 e [Teen

where g is called the gain function (or vector) and w is called the bias
function (or vector). Note that whether {v,, g, w, €.} are seen as func-
tions of the states, or as vectors whose components correspond to the
states, is merely a matter of perspective. Then

Unfn =g+ win+ eqfn (1.13)
and the function of limiting expected rewards per year is

limit [vyfn] = g. (1.14)

n—+ o
We note the following:

(i) In this example, limit [e,] =0. This is so for problems where

n *roc

limit [P"] exists (see Mine and Osaki [34], Lemma 3.6). It is not

N —*coC
so in general.

(ii) In this example, g(1) = g(2) = 1. This is so for problems with one
ergodic state set (uni-chain case), even with transient states. It is not
so in general.

A transient state j is one for which

n-1
limit H(L P’)/n” ~0, vi. (1.15)
"o o =0 171

The left-hand side of (1.15) is the limiting average probability of being
in state ;j at the beginning of each year if the initial state is /.
In our example we see that, from (1.10),

(12;: Pl) ="[§ } + (" —(0.1)")[_§

\
£k O
—

Hence

n—1 4 s
limit [(L P’)M: [3 }
n-sx =0 4 4

This is a uni-chain case, where the limiting probabilities are indepen-
dent of the starting state /, and there are no transient states. In this case,
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the limits for j =1, j =2 are 4/9, 5/9. These are also steady-state prob-
abilities, where a probability vector ¢ is said to be steady state for P if

oP=6. (1.16)

The example we have studied has a single chain and no transient
states. Let us look at multiple-chain and transient-state possibilities.

1.2 MULTIPLE CHAINS AND TRANSIENT STATES

The following example is taken from Howard (23], pp. 12, 13:

_[0.75 0.25
p_[ B ]

Here P" is the coefficient of z” in >, P"z".
n=0

S pan\ _ 7 opy-1_ |1 —-0.75z -0.25z] 7"
<n§0Pz>_(U ZP) _[ 0 l—z]

= (by using a process similar to
that of the toymaker example)

0 1 1 -1
(1/(l—z))[0 1]+(l/(l—0.752))[o 0}.

Thus

and
. [0 1
limit [P]‘[o 1}‘

Thus, whatever the starting state / is, the limiting probability of being
in state /=1 is 0. Also

n-1 —
> P’:n[g }]+4(1;(0.75)”)[(1) 01].



MULTIPLE CHAINS AND TRANSIENT STATES 9

Thus

it (3 #)]=[o 1]

The state j =1 is a transient state.
We make the following notes:
(i) If limit [P"] exists then its ith row will give the limiting proba-

n— o

bilities of being in each state for the specified initial state /.
(ii) The limit [P”"] need not exist, e.g. if

_fo 1
P=[1
then

1 0

O 1] . . n_
P—[ ] 1fr1lsodd,P—[0l

10 ] if n is even.

n-1
(iii) The limit <Z P’/n) always exists, and is the Cesaro limit, P*.
=0

n—+o

(iv) When limit [P"] exists, it is equal to the Cesaro limit.

n—w

(v) The limit [P"];, when it exists, is the vector of steady-state pro-

n— o

babilities for initial state i.

n-1
(P*]; = limit [( D P’)/n]
n— =0 i
is the vector of limiting average probabilities of being in various

states for initial state i.
(vi) We will use the latter in subsequent work for average expected

reward problems.
(vii) PP*= pP*P=P* (1.17)
(viii) The following example is taken from Howard [23], pp. 13-15:

1 00
P=(o 1 of.
; 3

Figure 1.2 gives a graphical representation of the state transitions,
from which, intuitively, one can see that the limiting state probabilities,
and the Cesaro limits, depend upon the starting state, with states 1

[T
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3

i

Figure 1.2 State transitions (reproduced from [23] Howard (1960), p. 14, by
permission of The MIT Press)

and 2 playing equal roles, distinguishable between themselves and from
state 3.
Using z-transform analysis we obtain

[1 0 0] 0 0 0
nzl P'=|01 0ol+®»"] o o o,

1 1 0 1 _1 1
L2 2 J 2 2
[1 0 0]

limit [P"}={0 1 O|=P*

n— o 1 i 0
L3 2 J

[P*];; depends upon i.
[P*] ;> depends upon 1.
[P*] ;3 is independent of i, and state 3 is transient.

There are two chains here, each with one member, viz.

State 1 constitutes one chain.
State 2 constitutes a second chain.
State 3 is transient.

g = limit [vaf/7] (see (1.14))

n— o

= limit [(120' P’)r/n] (see (1.4))

n— o

= P*r (see note (iii)). (1.18)
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Thus
g(l)y=ry, gR)=nry gB)=(ri+r2+r3)f3

and the gains can be different for each state.

Let us now look at how the general form of v, in (1.12) may be used
to give an asymptotic gain—bias equation in the uni-chain case. We will
restrict ourselves throughout this text to this case for ease of exposition,
However, much of what we do will carry over to the multiple-chain case
with consequential increases in complexity of computations.

1.3 LIMITING GAIN-BIAS EQUATIONS IN THE
UNI-CHAIN CASE

From (1.12) we have

n>0 Un=ng+ w+é&p. (1.19)
From (1.7) we have
nz=l Un=r+ Pu,_. (1.20)
Suppose that
l,,er:ot [en] = 0. (1.21)

This holds for our initial example, as will be seen from (1.11).
Substitute (1.19) into (1.20) to obtain

n>zl ng+w+e,=r+ P((n—-Ng+w+e,_1). (1.22)
Then (1.22) gives
w+ng—(n—1)Pg=r+ Pw+ Pe,_| — &,. (1.23)

In the uni-chain case, for our example, g(1) = g(2) = g, say. Thus
(1.21) and (1.23) give

w(i)+ g=r;i+ [Pw]; for each i, (1.24)

i.e. w, g satisfy
u(iy+h=ri+ 2 pyu(j) for each i. (1.25)
J

Equation (1.25) is a fundamental equation which we will use later (see
p. 76) for computational purposes.
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Note thatin (1.19), (1.22) and (1.23), g is a function, whereas in (1.24)
and (1.25), {g, h} are scalars. We have taken some license in adopting
this convention, so that (1.24) and (1.25) will assume the conventional
notational form for the uni-chain case on which we will concentrate.

For uni-chain problems, (1.25) will always have a unique solution
once we have set «(i) equal to 0 for some value of i, e.g. u(2) =0 (see
Mine and Osaki [34], Lemma 3.3, when rank (P*)=1). Such a «
vector will differ from the bias vector

50

_ 9
w= [_40
9

in (1.11) by the same constant for each component.
We make the following notes:

(i) The condition (1.21) holds if limit [P"] exists (see Mine and Osaki
[34], Lemma 3.6).

(ii) If, in (1.7), we let vo = v where u is a solution to equation (1.25),
instead of vy =0 then

n-1
Un = (Z P”")r+ P'u (1.26)
=0
and
Un=ng+ Uu. (1.27)

This corresponds to a terminal value function equal to u« instead
of 0in (1.7).

(iii) For the multiple-chain case the form of (1.19), (1.20), (1.22),
(1.23) will still hold. Thereafter there is a departure because g(i)
is not necessarily the same for all /.

1.4 EXPECTED TOTAL DISCOUNTED REWARD OVER
n YEARS

We have defined Y, to be the random reward in year n from the end
of the time horizon. Let us now introduce a discount factor p for each
year, so that the value of a reward is reduced by a factor of p for each
year of delay in its receipt.

In order to discount we need a time origin. This will be the beginning
of year n from the end of the time horizon. Note that this will then vary
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with n for a fixed terminal chronological year. The reward Y, in year
n —{ (see Figure 1.1), discounted back to the beginning of year n, is

o' Yn1. (1.28)

Following (1.1) and (1.3) we see that the expected discounted reward
function in year n—/is

o' Plr=(pP)'r. (1.29)

The expected total discounted reward function is, analogously to (1.5),
n-1

Un = (2 (pp)’>r. (1.30)
=0

In (1.30) v, is a function of p, but we will not put this in explicitly at
this stage to avoid undue notational problems. The analysis in
(1.6)—(1.9) follows in exactly the same manner to give (replacing P by
pP in (1.9))

Q) =WU-pP) " (zf(1 = 2))r. (1.31)

For the toymaker example we have

f@ = (aja- pz))[§ ] + 0 - 0.1pz))[_§ ‘f])(z/(l — )

From Howard [23], pp. 78,79, when p = 0.5 we obtain (after some
manipulation)

10 1

fz) = ((1/(1 - z))[_ff_ ;z} i —0-5z))[:§ .

19 -

olg ag

+(1/(1—0.05z))[“00/171 100/171])"

80/171  —80/171

Hence, taking the coefficient of z" in f(z) we have, with

=)

138 -2 _ 100
n>0 v,,:[ l;z]+(o.5)"[_ ]+(0.05)”[ ';0].

19 2 19




14 INTRODUCTION

This takes the form, analogously to (1.12),

Upn=10U+ &, (1.32)

where

v= [:] En = (0.05)"[:3] + (0.05)"[“ ‘:;]

19 19

1.5 ASYMPTOTIC BEHAVIOUR OF EXPECTED TOTAL
DISCOUNTED REWARD

Clearly in the above example

138
limit [v,] = [_‘;’2] =v,

"0 19

We make the following notes:

(i) For discounted problems (0 < p < 1) limit [v,] = v will always
exist (e.g. see White [58] Theorem 2.7, restricted to a single
policy).

(1) Let us look at the expression for f(z) in (1.31) for the toymaker
example. We have, when 0 < p < 1,

1 _ 1 (,l,_J*)
(-p2)(1-2) -p)\1 -2 (1-p2)

and

1 _ 1 ( 1 0.1p )
(1-0.1p2)(1-2) (1-0.1p) \(1-2) (1-0.1pz)/"

Picking out the coefficient of z" in f(z) we have, for n > 1,

ve=((1-p")/( —p))[i "]f

]

4
9

+((1-(0.1p)")/ (1 —0.1p))[_§ ‘S]r.
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(iii)

(iv)

1.6

Table 1.7 Expected total discounted rewards

Number of years to time horizon

n
0 1 2 3 4 5
State at ] 0 6 6.75 7.01 7.14 7.20
beginning i |
of year 2 0 -3 -27 -246 -234 -2.32 l

If v=limit [v,] then, for0<p < 1,
-1 g+ 10 w

(1-p) (1-0.1p)
where g, w are as for the non-discounted case p = 1 (see (1.19) and
subsequent calculations). Thus, noting that v is a function of p, we
have

v

limit [(1 - p)v] = g. (1.33)
o~

Equation (1.33) is generally true (see Mine and Osaki [34],
Lemmas 3.2 and 3.4) even for the multiple-chain case.
Replacing P by pP in (1.7) we obtain

n>1 Un=r+pPu,_,. (1.34)

The sequence {v,} may be computed using (1.34). Table 1.7 gives,
analogously to Table 1.6, the values for p = 0.5.
Using (1.34) we see that limit [v,] =v in (1.32), or (1.34),

satisfies uniquely the following equation (see White [58}, Theorem
2.7):

u=r+pPu. (1.35)

ABSORBING STATE PROBLEMS

Consider the example on p. 11 with the reward function

I
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and with no discounting (i.e. p = 1). As soon as the system enters state
i = 2 it stays there. State / = 2 is an absorbing state. We assume that the

process terminates on absorption.
Let us now look at the expected total reward to absorption. The

analysis is similar to that of (1.1)—(1.11) with

P30 -

0 1
Here v, is now the expected total reward function for n years up to
absorption at some time during those » years.
Equation (1.9) still holds. Then

poa-1_ [1-0.75z —-0.25z2]) 7!
(U= Pz) = i 0 1 -z }

_[1-z 0.25;7 _ _

-1 l_0.752]/(1 0.752)(1 - 2)

_[l-z 0.25z ( 4 3

1 0 1-075zj\1 -z 1-0.75z

= (after some manipulation)

0 3 1 -1
(1/(l—z))[o 3]+(1/(1—0.752))[0 0].

Then, with

o
0
f@ =@l - (1 -0750)
_ _ 4] _ 4
=1/ z))[o] 1/ 0.752))[0].
Hence, taking the coefficient of z"” in f(z), we have

nz0 vn = 4(1 —(0.75)")[(1)].
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1.7 ASYMPTOTIC BEHAVIOUR OF EXPECTED TOTAL
REWARD TO ABSORPTION

We see that

limit [vn] = v (1.36)

n— o

-

We make the following notes:

where, in this example,

(i) For problems which have a limiting probability of 1 to absorption,
limit [v,] exists (this is implicit in Mine and Osaki [34]

pp. 42-43; Derman [15], Theorem 1, gives a proof; White [58],
Theorem 1.9, gives a slightly weaker result),
(ii) Using (1.7) and (1.36), v satisfies uniquely (under the conditions in
(1)
u=r+ Pu, (1.37)
u2)=0. (1.38)

(ii1) We have assumed that the process terminates on absorption. If,
however, the process continues in the absorbed state, the results
are merely those for the expected total reward case and, if the
reward in the absorbed state is not 0, (1.36) will not hold (unless
we allow v = ).

(iv) It is possible to use discounting in the absorbing state problem.

1.8 SOME ILLUSTRATIONS

(a) Inventory
We make the following assumptions:

(i) there is a single commodity to be supplied;

(ii) the stock level at the beginning of each time unitis /i, 1 < i< m;
(iii) the cost of ordering y units of stock is c(y);
(iv) no backlogs are allowed;
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(v) the cost of shortage y is /(y);
(vi) the stockholding cost per unit held per time unit is a;
(vii) the stock reorder rule is, for a specified critical level k,

if i < k < m, order quantity kK — i,
if i > k, order quantity 0;

(viii) the probability that the demand in a time unit is s is g(s),
0<s< S, and the demand is identically and independently
distributed in each time unit;

(ix) the demand in any time unit is satisfied from stock on hand plus
any stock ordered at the beginning of that time unit;

(x) orders are placed only at the beginning of each time unit;

(xi) it is required to find, for each value of k, the expected total cost
function over n time units.

Thus we may use the standard formulations in terms of {v,}, where v,
is the expected total reward function for n time units. We simply
identify the forms of the parameters {p%}, {r&} and {r¥}, noting that,
in order to conform with our definition of rewards, rewards are the
negatives of costs.

For the stockholding costs we use an approximation involving one-
half of the sum of the stock level immediately after ordering and the
stock level immediately preceding the next order point (i.e. the
beginning of the next time unit).

For 0 < i,j < m we have the following identifications:

Jj=maxlk,i] —s if s < maxlk,i]

= 0 if s > max[k,i],
0 if j > max [k, ]
. g(max(k,i] — j) if 0 < j < maxlk,/]
Pi= s
LZ At it j=0

rk= - (c‘(max k—i,0D)+ 2 q(s)I(s~k)
s>k

>

+5a<max[k,i]+ 5 q(s)(max[k,i]—s))).

3 < max (k.r]
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The {r¥} are automatically incorporated into {r}}. To record {rf}
explicitly we need to allow j to take nominal negative values. Then

r& = —(c(max [k - i,0]) + /(max[ - j, 0])
+1a(2 max[k,i] + max[/,0])).

(b) Queuing
We make the following assumptions:

(i) there is a single arrival stream and a single service facility;

(ii) at most one customer can arrive in a given time unit, the arrival
probability is p, and arrivals are independently and identically
distributed in each time unit;

(iii) at most one customer can be served in a given time unit, when the
server is occupied, and the probability of the service being com-
pleted in that time unit is ¢, with services being independently and
identically distributed in each time unit;

(iv) arriving customers arrive at the ends of time units, and completed
services are completed at the ends of time units;

(v) the decision rule is to send all customers, in excess of k in the
system, for service elsewhere, where & is a prespecified critical level;

(vi) the cost of sending y customers elsewhere is c(y);

(vii) the cost of one customer waiting in the system for one time unit
is a;

(viii) it is required to find, for each value of &, the expected total cost
function over n time units.

Again we may use the standard formulations in terms of {v,}, where
U, is the expected total reward function for »# time units, and again
rewards are the negatives of costs.

We now identify {p¥} and {r&}, {r¥}. For 1 <i,j < k+ 1, we have
the following identifications. If min[k,i] > O then

J=minimum[k,i] + £ -7y
where

- 1 if an arrival occurs
0 otherwise ’

1 if a service occurs
0 otherwise '
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If minimum [k, /] =0 then

J=£&
If min(k,i] > 0 then
(1 -p)g if j = minimum /i, k] — 1
« _ }pg+(—-p)(l-gq) if j=minimum /K]
Pu= p(l —q) if j = minimum[i, k] + 1

0 otherwise
If min[k,i] =0 then

(1-p) ifj=0
pi={ p ifj=1}.
0 otherwise

Finally
rf = —(c(maximum/[i — k], 0) + @ minimum [/, k]).

We see that r§ = r¥ independently of j.

1.9 SELECTING DECISION RULES

Throughout this chapter we have considered only one decision rule.
The objective of Markov decision process theory is to provide frame-
works for finding a best decision rule from among a given set. For our
toymaker example, Howard (23], p. 28, gives four decision rules with
the {p&}(rsy, (r¥) given in Table 1.8.

We have four decision rules, which we call ', 6%, 8%, 6° These are
given in Table 1.9.

Let us now look at the infinite horizon solutions. These are given in
Tables 1.10 and 1.11 for the average expected reward per year and for
the expected total discounted reward cases respectively.

In Table 1.10 we have replaced w by v and used (1.25) with « in place
of w, setting «(2) = 0. The actual function w differs, for each decision
rule, from « by a function (w(2) — #(2))e, where e is the unit function.
To find w we would need to use the z-transform analysis for each
decision rule g = A4 in (1.25).

Table 1.11 is computed for p=0.9 using (1.35) with u=v. In
Table 1.10 8* produces the maximal average expected reward per year,
with g = 2 independently of the initial state ;. In Table 1.11 6* produces
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Table 1.8 Complete data for toymaker problem (reproduced from {23]
Howard (1960), p. 28, by permission of The MIT Press)

Transition Expected
State Action probability Reward reward
i k pk rk rk
1 2 1 2
1 1 (no 0.5 0.5 9 3 6
(successful advertising)
toy)
2 (advertising) 0.8 0.2 4 4 4
2 1 (no research) 0.4 0.6 3 -7 -3
(unsuccessful
toy) 2 (research) 0.7 0.3 1 - 19 -5

Table 1.9 Decision rules

Decision rule State |
1 2

5! k=1 k=1

52 k=1 k=2

83 k=2 k=1

51 k=2 k=2

Table 1.10 Average expected
reward per year

Decision
rule g u(l)  u(2)

5! 1 10 0
& 13 %
83 12 112
&4 2 10

o oo




22 INTRODUCTION

Table 1.11 Expected
total discounted reward

Decision
rule v(l) v(2)
5! 15.5 5.6
52 18.3 9.1
53 20.0 8.9
&4 22.2 12.3

the maximal expected total discounted reward. The expected total
discounted reward depends upon the initial state.

1.10 EXERCISES TO CHAPTER 1

1. Use the z-transform method to find, in general form, uv,, the
expected total reward function for n time units, for the following
problem data with ve=0:

Transition
State probability Reward
[ Pij Iy

1 2 1 2

—

0.8 0.2 4 4
2 0.7 0.3 1 -19

2. Repeat Exercise 1 for the discounted problem with o =0.9.

3. In Exercises 1 and 2 it is assumed that there is no terminal value at
the end of the nth time unit. Suppose now that there is an expected
terminal value function, if the process terminates after # time units,

of [110]. Now find v, for the conditions of Exercises 1 and 2.

4. Construct a simple three-state example for which, in the expression
for v, given by (1.12), g is a function with not all components equal
(i.e. the gain depends upon the state), and ¢, does not tend to zero
as n tends to co. By selecting the data carefully you may use the
function form v, given by (1.5) without having to use z-transforms.



EXERCISES TO CHAPTER | 23

5. Derive the results given in Tables 1.10 and 1.11 for policy 6*.
6. (a) Prove, first of all, the result for v, given in (1.26); (b) then
assume that limit {P") = P exists, and prove the result for ¢, given

in (1.21). )
Note: limit [P"] = P means that P"= P+ E, where E, is a

n— oo

matrix tending to 0 as »n tends to co.

n-1
7. Assuming that the Cesaro limit P* = limit ( > P’/n) exists, prove

n— o 1=0

(1.17).



CHAPTER 2

A general framework for
Markov decision processes

2.1 PRELIMINARY REMARKS

The development of a general framework for Markov decision
processes may be found in the texts of Derman [15] and of van der Wal
[53]. The reader should be aware of notational differences.

In what follows we will assume that the state and action sets are
finite. This is no real practical restriction of the use of Markov decision
process models, but it does enable simpler proofs to be provided of
some fundamental results. We will later (see p. 131) deal with problems
with infinite state spaces and/or action spaces, but will, in doing so,
take certain results for granted. We will also assume that decisions are
taken at the beginning of each time unit in much of what we do. Later
(see p. 116) we will look at problems involving variable decision
intervals, but again taking some results for granted.

In Chapter 1, for introductory purposes, we have assumed that all
the components of the problem are independent of time. In this chapter
we will allow for some dependence on time. In addition, in Chapter 1
we have assumed that decision rules are specified in terms of the current
state only, and not in terms of the history of the system to date. This
is quite correct for what we have done, and is intuitively obvious.
However, this requires demonstrating rigorously. In addition, for some
situations such as those where the variance of behaviour is important,
history-based decision rules become relevant.

2.2 THE GENERAL FRAMEWORK

Our framework is as follows:
(i) A system occupies one of a finite set of states at the beginning of
each of a set of time units, which we label r =1, 2, ., ., . moving forward
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from some time origin. The reader should not confuse the chrono-
logical time ¢ and time n from the system’s time horizon as defined in
Chapter 1.

(i) We designate the state set by /, to denote the possible dependence
on ¢ for each value of ¢. In the stationary case we will replace I, by 1.

(iii) The random variable X; will denote the state at the beginning of
time unit ¢, and realised values will be denoted by /; for each value of ¢.

(iv) For each state X; =/, there is a feasible action space K, (i;), where
K, (i;) is finite for each value of 7. In the stationary case we will replace
K by K.

(v) The random variable Z, will denote the action taken at the begin-
ning of time unit ¢, and realised values of Z, will be denoted by &; for
each value of 1.

(vi) In each time unit ¢ there will be a reward. Costs or penalties may
be seen as negative rewards.

(vii) The random variable Y; will be used to denote the reward in
time unit ¢, and realised values will be denoted by /,, for each value of
t. Thus each time unit ¢ will be characterised by a triple (X;, Z,, Y,) with
realised values (i, ki, &r).

(viii) The history of the system up to the beginning of time unit ¢ is
a random variable H, given as follows for each value of ¢ (noting that
Y, is determined by X,, Z;, X:+1):

t=2 Hi=(X\, 2\, X2, Z3, .. Xiov, Zi21, X0), 2.1

t=1 H, =(X1). (2.2)

(ix) A realised history will be denoted by A, for each value of z. Thus
122 he= (N, Ky kay oy oy o1y kion, 0r), (2.3)

t=1 hy = (>ih). (2.4

We will now define a decision rule and a policy. These are a matter
of convention. The definitions differ in different texts, and the reader
should be aware of this. The modern convention (e.g. see Derman [15],
p. 3) is the one adopted in this text, and is the one which Howard [23]
uses. The distinction between policy and decision rule is purely conven-
tional in the case of infinite horizon stationary processes with average
expected reward or expected total discounted reward criteria, where a
policy may be a repetition of a single decision rule. In such cases (e.g.
see White [58], p. xii) the distinction is a little blurred.
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(x) A decision rule §,, for time unit ¢, determines a probability distri-
bution of actions over K,(i;) when the history H, = h, is known.

For almost all of our problems we will only require, for each value
of ¢, that a specific action Z, = k, be taken with probability 1 for a given
H, = h;, but we leave the framework general at this stage.

Note that, for each value of ¢, K; is specified as a function of i; and
not of A,. If K, is required to be a function at A, this can be incorporated
by redefining the concept of a state so that i is replaced by A,. In this
case some of the subsequent analysis in this chapter is not needed
because decision rules are then automatically Markov in terms of 4, (see
(xv)).

(xi) A policy is a sequence of decision rules. A policy is denoted by
« and takes the form

T = (815825 50y s e Bty 03 2)- (2.5)

We will use = both for infinite and for finite horizon problems. To
obtain a finite horizon policy from an infinite horizon policy we merely
restrict its operation to a finite number of time units.

A policy tells us how to determine actions for any time unit of the
process.

(xii) Let p(¢) be the discount factor for time unit ¢ with, by conven-
tion, p(0) = 1, and where p(¢) > 0.

(xiii) Let R, be the total discounted random reward over the first n
time units, starting at chronological time unit t =1. Then

n s=tr-1
Re=2 (I o) Y. 2.6)
t=1 s=0

It is assumed that the reward in a given time unit is received at the
beginning of that time unit. Also, for finite n, the total reward is given
by setting p(s)=1,0< s<n—-1, in (2.6).

(xiv) Let vi(i) be the expected total discounted reward over the next
n time units if X, =i and we use policy w, again noting that we begin
at chronological time t = 1; vy () is called a value function (or vector).

Note that, because we begin with ¢t =1, then H, = (X)) = (/1) = (i).
Strictly speaking we should define v, (#:) to be the expected total dis-
counted reward over the next (# — ¢+ 1) time units, using policy ,
beginning with time unit ¢, and given the history A, at this time. In this
case 7 would have to be defined as a sequence of decision rules
6:,6:+1,.,.,.). We wish to avoid the complications which this would
produce but the reader should be aware of this. What we have chosen
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to use is all we need for most of our purposes. We are, in effect, starting
our process at a point where there is no history except the current state
1. It is easy to carry out the subsequent analysis if we begin with H, = A,
for a specified h,. This point is discussed on p. 36. Also, some
consideration of the variable starting time unit ¢ will be given on
p. 40.

We assume that = is such that vy (/) exists. For much of what we do
this will clearly be the case. For more general policies we need to
involve measurability assumptions. We mention this for housekeeping
purposes only. Let us now look at possible policy sets.

(xv) Let Il be the set of all (measurable) policies (in effect this simply
requires that all of our specified expected rewards, discounted or
otherwise, exist); ITxs be the subset of IT which are Markov, i.e. if
x = (1,.,.,0,.,.) then & is a function of i, only and not of the whole
history h,; Ils be the subset of Ilx which are stationary, i.e. if
T = (61,02, .,.,01,.,.) then & = & for some §, and we write such a policy
as w=(8)"; Ilp be the subset of Ils which are deterministic, i.e. if
w=(56)" then for each i €l 3k, €K,(i) such that probability
(Z: = k| X:=1i)=1; IImp be the subset of I1ys which are deterministic.
Note that = € [1pp is not necessarily stationary.

With our definitions we have

Ipcllsc iy cII,
IMpp S Iy 2.7)

We will also let A be the set of all decision rules based on /; at time
unit 7, and K;*(/) be the set of probability distributions over actions in
K. (7). Finally, we will let A, be the set of all non-probabilistic decision
rules based on /; at time unit . We will drop the suffix 7 in the stationary
case.

Later (see p. 42) we will show that, for infinite horizon stationary
problems (i.e. those for which rewards, transition probabilities and
discount factors are independent of ¢), we need only consider ITp for
certain classes of optimality criteria. For finite horizon problems,
optimal policies may not be stationary for these criteria.

Let us now turn to the question of optimality criteria.

(xvi) For finite » we wish to find

v,(i) = supremum [vr(i)], Vi€l (2.8)
x€ll
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We make the following notes:
(a) The supremum &, of a set of scalar quantities {a™} is given by
a"<a, vuwell (2.9
and, given € > 0, 3 w €Il such that
d-e<a<a (2.10)

where @ is a least upper bound of {a"}.
Eventually we will replace ‘supremum’ by ‘maximum’, but not all
sequences have maxima in general, e.g. if [I= {7}, 1 < 5 < o, is
a sequence of policies with ¢™ =1 - (})°, then
supremum [¢"'] =1
mell
but no policy = € IT exists with a" = 1.

(b) For some problems we require infimum/minimum instead of
supremum/maximum, where infimum is a greatest lower bound
defined analogously to (2.9) and (2.10).

(c) Equation (2.8) applies for the non-discounted case (p(¢) =1, V ¢),
and for cases where we might have p(¢) > 1, when n is finite.

(xvii) For infinite n we differentiate between the discounted case, the
non-discounted case and the absorbing states case, which we now
discuss.

(a) Discounting. In this case we assume that there is a p < 1 such that

e <p<l, vi=1, 2.11)
Let
V(i) = limit {v7(i)] (2.12)

where v™ depends on {p(r)}] which we will suppress for notational
convenience. This limit will exist, given our measurability assumptions.
All we need is that E(Y;| X, =1, policy =) exists, where E is the
expectation operator.

We now wish to find

v(i) = suprer{xjmm (v™(D)]. (2.13)

Again, later (see p. 41), we will replace ‘supremum’ by ‘maximum’. For
stationary problems we write p(f) = p for all ¢.
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(b) Non-discounting. In this case
oH)=1, vi>=1, (2.14)

We now need to be careful because {vn(i/)} can increase or decrease
without bound as n tends to . We therefore replace {vr(i)} by {gr(i)]
where

g =uvr)n, viel (2.15)

We also need to be even more careful because limit [gr(/)] need not

n—" o

exist for general Markov decision processes. It will exist for stationary
policies in finite action, finite state situations, however, to which we
restrict much of this text.

Consider, for example, the following problem where the policy =
produces the specified deterministic rewards in each time unit.
Figure 2.1 illustrates the problem, where the time units are grouped in
ever-increasing groups indicated by g.

There is a single state /=1. The following are the {gr(l)] for
1<ng9:

gi() =3, gi(l)= -4, gi(l)y= —}
gi(l)= -3, g5(1) =+, ge(l) =4
g’.;(l)z,léz, gg(1)=17bv gg(l):;
In the general case, for any ¢ we have the following specification:
g=1 If 397" < £ £ 39, then set

Y,=1 if gis even,

= -1 if gis odd.
Set
Y, =1(set 397" =0 for g = 0).
Group' g=g g=1 g=2
F“3‘,,,&(1:!1/2”-1 -1’1 1.1 .1 1 1|
%7 "2"3 " a"5°6"7°8"39 t

Figure 2.1 Time behaviour for example
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Then

for n =39, g even, gn(l) =,
for n =39, g odd, gn(l)= —}

and
-i<en(l) <3, van

Diagrammatically (drawn as a continuous approximation) gn(1) takes
the form given in Figure 2.2.

The upper bounding line is the limit supremum line with
limit supremum ({gna(1)] =). The lower bounding line is the limit

n —+ oo

infimum line with limit infimum {gz(1)] = —}; limit {gn(1)] does not
n— o n —
exist.
Here limit infimum is the limiting worst reward per unit time as n

tends to . When we want to make this as high as possible we use as
our criterion, to be made as large as possible
£g7(i) = limit infimum [gr(i)], Vi€l (2.16)
Similarly, if we want to make the best reward per unit time as high as
possible, we use as our criterion, to be made as large as possible,
£2"(/) = limit supremum ([gr(f)], Vi€l 2.17)

For most of what we will do limits will exist and then (see Bromwich
(8], p- 18)

g"()) = limit [gn (/)]

Figure 2.2 Continuous approximation of system behaviour
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= limit infimum [gn(i)]

= limit supremum [gn(i)], Vi€l (2.18)
We then want to find
g(i)=supremum [g"(i)], Vi€l (2.19)
x€ll

In much of what we will do we may replace ‘supremum’ by
‘maximum’,
(c) Absorbing states. In this case (see our example on p. 15) the process
terminates once a state (say state m) has been entered or, more gener-
ally, once a set of states (say /,) has been entered. Here v™ (/) takes the
form of (2.12) where we may, if we wish, include discount factors
p(t)y<p < 1.

Under certain conditions (e.g. see Mine and Osaki (34], p. 42,
Derman (15], pp. 53—-54) v™(i) will be well defined and finite for all /.
We wish to find

v(i) = supremum [0"()], Vi€l (2.20)
xell

In most of what we will do we may replace ‘supremum’ by ‘maximum’.
We have a boundary condition

v(i)=0, Viel,. (2.21)

It is to be noted that all of our optimisation problems, (2.8), (2.13),
(2.19), involve the optimisation of some variant of expected reward in
some form. As a result of this we will be able to reduce our problems
to optimisation problems over the policy space Iy, and even further
in some cases.

There are, however, some optimisation problems in which history-
remembering policies in IT should be used to avoid suboptimal solu-
tions. For example consider the following problem over three time
units, where the objective is to minimise the variance of the total
reward. The definitions of {p%(1)}, {r&(¢)} will be found in (2.22) and
(2.24) respectively.

I =11,2,3,4}, 1 €1<3,
Ki(1) = {1}, K2(2) = K2(3) = {1},
K3(4) = {1, 2} (we do not need K;(4)).
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pi2(1)=0.5, pia(1)=0.5, P =1, p3a(2) =1,
ph(3)=1, k=1,2,
ri)=1,  ria=-1,  rk@=ru3)=0,
ris3) =1, ris(3)= -1.
This is shown diagrammatically in Figure 2.3.
&1 is fixed, viz. §;(1) = 1.
8 is fixed, viz. 62(2) =62(3) = 1.
If &3 is Markov (non-history remembering) then
53=8303 @) =1) or & =053(63(4=2).

If #'=(81,82,6}) then variance (RT) =1 (see (2.6) with p(s)=1). If
72 =(81,62,63%) then variance (RT)=1.

Now let #°=(8),62,63) where 83 is history remembering and
83(i\, k\, ix, k2, i3) is given by

53(1,1,2,1,4)=2 83(1,1,3,1,4)=1.
Then RY =0 always and
variance(R?Y) = 0.

Clearly, in general, knowledge of the history of a process will enable
future actions to be taken to compensate for earlier rewards if reward
variation is of importance. We will return to this later (see p. 64).
With the implicit exception of our introductory example on p. 1 we
have not yet formally defined our Markov property. Nor have we
defined the terms which we will later use. We will now do this.

State
©

Reward

/'

Probability

Figure 2.3 Possible time behaviour for example
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(xviii) Our system will be said to have the Markov property with
respect to the state structure [.X,} if

prObabili[y (Xr+| = j | Hr = h, Z{ = kE Kr(i))
= probability( X+ = j| Xi =1, Z, = k€ K:(i)). (2.22)

We denote the right-hand side of (2.22) by pX(¢). For stationary
problems we write this as pf. Thus the state transitions depend upon
iy and k, only and not on other aspects of the history. The Markov
property is relative to the state structure {X}.

Consider the inventory example on p. 17. Suppose now that the
random demand €, in time unit ¢ depends upon the demand in the
previous time unit so that, for 1 > 2

probability(Q, = s | Q=1 =r) = q(s, r). (2.23)

Then the process is not Markov in terms of the stock level at the begin-

ning of the time unit but it is Markov in terms of stock level at the

beginning of the time unit, and the previous demand level, combined.
Finally we use the following notational conventions (see (viii)):

Y|[(Xi=i,  Zi=keKi(i), Xini=))
=rk(). (2.24)
E(Y(| Xi =i, Z = k€ Ki(i))
=_z, phorky=rko. (2.25)
Je€l.

In the case of stationary problems we write these as r% and rf
respectively.

2.3 FINITE HORIZON MARKOV DECISION PROCESSES

2.3.1 STATIONARY CASE

For the moment let us assume that our processes are stationary with
parameters {{K()}, I, {pX}, {r%}, (rF}, p} independent of ¢. We will
treat the discounted case (o < 1) and the non-discounted case (p = 1)
together because, for finite horizon problems, these pose no special
problems. Our objective is to find (see (2.8))

vn(i) = supremum [vi(i)], Vie€l. (2.26)
xell
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Eventually we will show that we may replace Il by Ilp (see p. 42)
without loss. In order to do this we need a result which says that, for
the criterion which we are currently considering, we may keep, in the
first instance, to ITys (see p. 36) without loss. This result is a special case
of Lemma 2.1, van der Wal [53]. We need to use the concept of ran-
domised actions at this stage.

Result 2.1. Let X, =i, be fixed and, for each w €I, let xF*(¢) be the
probability that, at the beginning of time unit ¢, the system will be in
state /€ I and action k€ K (/) will be taken (conditional on = and on
X, ={,, where I, is suppressed but understood).

Let

xf)= > xT™@), vz, iel 2.27)
ke K(i)
Let us define a policy 7€Ilx as follows, where r > 1 and the
argument 7 is used in conformity with (2.5):
T:(T]9729'9'9'9-9Th-9') (2'28)

with {7} given by (2.29) following. Also {xI%(¢), xI(1)} are defined as
for {xF*(t), xF(¢)} when 7 replaces .

At the beginning of time unit ¢, if the system is in state /€ / then
action k € K(i) is taken with probability

T,-k<z)=x,-"*<z)/( 5 x}”’(l))

ae K1)
= xT()|xT (1) (2.29)
if the denominator in (2.29) # 0,
Tik (¢) is arbitrary otherwise. (2.30)
Then
xI¥()y=xr¥ @), viezl,iel, keK(), (2.31)
xi@)=xI(), vtzl,iel (2.32)

Equation (2.29) simply gives, for policy 7, the conditional probability
of taking action k given state / at the beginning of time unit ¢, and the
denominator x7(#) is the probability of being in state / at the beginning
of time unit ¢, given policy = and X, =1,.
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Proof. We prove by induction on ¢. Equation (2.31) is clearly true for
t =1 because

Tk (1) = XBX (D)1 = x5 (D), (2.33)
7ik (1) is arbitrary if i # 1. (2.34)

Then, because probability (X, =1i,) =1,
xif (1) = T (1) = 75 (1) (2.39)

and, because probability (X, #/,)=0,
xI¥()y=0=xF* Q) ifi#i. (2.36)

Also (2.32) is then true for = 1.

Assume that (2.31) is true for 1 < ¢ < s. Then (2.32) is also true for
1 €< s. We now prove that (2.31) (and hence (2.32)) are true for
t=s5+1.If xT(s+ 1) # 0 (required in (2.38)) then

xH*s+ D= X xI()phra(s+ 1) (2.37)
jel.aeK(n

= > xJUS)pixT*(s+ DxI(s+ 1) (2.38)
je€laeK(y)

= xT(s+ DxT(s + D[xT(s + 1). (2.39)

The latter equality holds because

xi(s+ )= > xJ%s)phi. (2.40)
jela€eK(y)
Thus
x*s+ D =xT¥ s+ 1), VkeK(). (2.41)

If xT(s+ 1)=0 then from (2.37) and (2.40) we have xT¥(s+1)=0
and hence

x*(s+1)=0, Vv keK(@). (2.42)

Thus, again we have
s+ D=xT*s+1)=0, v keK(). (2.43)
O
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At this point we refer back to our comment made on p. 27 con-
cerning the definition of v, in terms of the current state /, for =1, and
not in terms of the current history A,. It is easily seen that r may be
defined in exactly the way it has been in (2.29) and (2.30) and that (2.31)
and (2.32), and hence Result 2.1, will follow even if i is replaced by
h,. Then we have v;(h) = va(h1). However, vy is simply determined by
i1. Thus we need only record i; in our analysis.

Let us now look at the n time unit total discounted reward (see (2.6))
for policy 7 with p(s)=p for all s.

n s=1-1
Ri=Y. ( I p(s)) Y/
r=1 s=0
=S oYy (2.44)
r=1

Superfix 7is used to denote the dependence of R, on 7. Then, replacing
iy by a general i/, we have

vn()= E(Ry| X1 =1i)= Z} o' TE(Y| X1 =1)
1=
=3 7t 3 xfork, viel (2.45)
=1 JelLkeK())

Thus, from (2.31) of Result 2.1, v, = v and we need only keep to Ila
to find any vy. We thus have Result 2.2.

Result 2.2. For any policy 7 €I1 there is a policy 7€ Iy, with vy = vn.

For a given policy = = (1, 62, ., .,6,, ., .) (1.34) gives ©
nzl  vi=r4pPlufy e, (2.46)

We can write this in the functional operator form
vF = Thpnpde) (2.47)

where, for any #: I — R, and any decision rule
[Tu) () =r? + p[PPu)i, Vi€l (2.48)

The operator T° will be used generally in Chapter 3 for algorithms.
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Now policy = relates to time units r=1,2,3,.,.,.,.. It may be
written as

T=(6,7) (2.49)

where policy 7 relates to time units £ =2,3, ., .,..

In (2.5) we have defined a policy = in such a way that the tth decision
rule corresponds to time unit ¢, and ¢ = 1 corresponds to the first time
unit in the »n time unit horizon. In (2.49) 7 relates only to
(62, 63, ., ., .61, ., .). Thus the first decision rule of 7is §; relating to r = 2.
Thus, in terms of the definition (2.5), formally 7 ¢ ITss in general as we
have defined ITxs on p. 27. However, in the stationary case, taking r = 2
as the first time unit in the remaining sequence of (n — 1) time units, we
may consider Iy as defined on p. 27 to be independent of time and
then 7¢€Ily.

Equation (2.47) is better written as (using (2.49))

=T ). (2.50)

Let us assume that there exists a policy 7€ ITyp which is optimal for
all i € I for the residual n — 1 time units. This is clearly trueif n — 1 = 1.
We proceed inductively.

Now the choice of 8, is equivalent to the choice of k€ K*(i) (see p.
27) for each i€ I. Then, using Result 2.1, and with obvious definitions
of rewards and transition probabilities for 6 € A*, k € K*(i), we have

n>l1 U, (7) = supremum [v7 ()]
— relly

= supremum supremum [r®) + p[P%v;_,]i]
5 €K™ r€lly

= supremum [r,-" +p0 ) pY supremum [v,’._l(j)]]
keK () J€7 7€y

= supremum [r,-" +p p,’»j-vn_l(j)}, viel (2.51

keK*(t)

Jel

In (2.51) k is a probability distribution over K (i), i.e. k chooses a € K (i)
with probability kf. Then

k=3 kirf (2.52)

a€ K(i)
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and

pli= % kiph. (2.53)

a€ K@)

Then (2.51) may be written as

vn (i) = supremum [ > k,"[r,"+p le?jvn-l(j)”
J€

ke K () a€ K(i)

—supre;num [r, +p Z Dvn- 1(.1)] viel (2.59
aeK()

Equation (2.54) follows because we cannot do better on the right-
hand side of (2.54) than take the best of all the values of the terms taken
over all a€ K(i). The right-hand side of (2.54) takes only a finite
number of values. Hence we may replace ‘supremum’ by ‘maximum’.

We then see that if 8, is determined by (2.54), with ‘maximum’
replacing ‘minimum’, then = = (;, 7) is an optimal policy over n time
units for all initial states /€ /. This establishes our initial inductive
hypothesis. It is precisely issues of this kind which make more general
state space—action space Markov decision processes a little more
difficult to handle, although usually producing essentially similar basic
results.

Let us now define, as an extension to (2.48) for any u: I— R, an
operator T as follows:

[Tu] (/) = maximum [r, +p Z p,Ju(_/)} viel (2.55)

keK(i)

which may be written as

Tu = maximum [7T°%u} (2.56)
s€A
where
[T2u) (i) =r? + p[Pu);, viel (2.57)

and A is the set of all deterministic rules for determining actions (see
p. 27).

The reader should be aware in (2.48) and in (2.55)—(2.57), that the
use of u as both a vector and a function is used throughout. Thus in
(2.48) and (2.57) the ith component of u is taken as [«}; for matrix
operation purposes, whereas in (2.55) the ith component of u is u (i) for
function purposes. We have now proved the next result.
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Result 2.3. If vy = uo =0 is specified, then {v,} is the unique solution
set to the equations

n>=1 Un= Tu,- (2.58)

and, for each n > 1, there exists a policy w € [1pp which is optimal for
all initial states i€ 1. O

The uniqueness is trivial because the sequence is determined
completely by up.

We have so far only reduced the set of policies needed to the set
ITxp, the set of all Markov deterministic policies, but not necessarily
to I1p because, in general, non-stationary optima are involved. We
make the following notes:

(i) Any policy obtained by solving (2.58) is optimal, simultaneously,
for all initial states.

(ii) Result 2.3, equation (2.58) is discussed in Howard [23], p. 79-81,
and in White [58], p. 24. No rigorous proofs are given there,
although White gives a partial verbal explanation.

Example (Howard (23], p. 80). The toymaker example, with p =0.9,
n =4 (see Table 1.8) gives rise to Table 2.1.
As an illustration, given {uvo, v1}, let us find {vz(1), 63(1)}. We have

v2(1) = [Tvi] (1)

_ . [k=1: 6+ 0.90.50,(1) + 0.5v|(2))]
= Maximum) e 2. 44 0.9(0.80: (1) + 0.201(2))
— maximum (k=1:6+0.45%x6+0.45 x(-3)
k=2:4+072%x6+0.18x(-3)
_ . (k=1:7.35] _
= maximum k=2 7.78] =7.78,
o3(1) =2.

Note that we want the optimal decision rules, and that = is not
stationary. Note that, in accordance with our convention, =1
corresponds to n =4 and that the process ends after four time units.
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Table 2.1 Expected total discounted rewards and optimal
decision rules for toymaker problem (reproduced from [23)
Howard (1960), p. 80, by permission of The MIT Press)

vn(i) o (i)
i i
1 2 1 2
0 0 0 — — —
n 1 6 -3 1 I 4 1

2 7.78 -2.03 2 2 3
3 9.2362 —0.6467 2 2 2
4 10.533658 0.644197 2 2 1

2.3.2 NON-STATIONARY CASE

In the stationary case, v, can be defined independently of the actual
chronological time at which the nth time unit from the end of the time
horizon begins. For the non-stationary case we need to know not only
how many time units remain but also where we are in chronological
time. We need to redefine v,.

Let v,2(7) be the supremal expected total discounted reward over the
next (n — ¢ + 1) time units, beginning at the beginning of chronological
time unit ¢ with X, =i. We could let n denote the number of time units
remaining, and the approaches are equivalent, but we will proceed as
indicated.

Following a similar line of reasoning as for the stationary case, we
may deduce that {v.,} is a unique solution to the equations

rs<n U= Tt 1,0 (2.59)

where, for any u: I,—R,

(T.] (i) = maximum [r,"(l) +po() > pﬁ(l)u(j)], viel, (2.60)

ke Ki(i) J1€14 .,
r=n+1 Uns1,n=0. (2.61)

Computations follow in exactly the same way as for the stationary case.
Note that (2.61) may be replaced by

r=n+1 Unsln=U (2.62)

if there is a terminal value function «. This applies also to Result 2.3 as
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a special case. Also, for each n > 1 there exists a policy = € [Typ which
is optimal for all initial states i € [.

An alternative approach for the non-stationary case is to use the
stationary approach and to define a new state spacc

I=1x1{1,2,.,.,.) (2.63)

with generic member
i=(,1). (2.64)

The transitions in the ¢ variable are deterministic, viz. f — ¢+ 1. The net
result is (2.59) and (2.60) with u,,(i) replaced by u.(i, t).
Let us now turn to the infinite horizon case.

2.4 INFINITE HORIZON MARKOY DECISION
PROCESSES

2.4.1 THE DISCOUNTED STATIONARY CASE
Our objective is to find (see definition (2.13))

v(i) = supremum [v"(/)], Vi€l (2.65)
rell

Real-life problems do not involve an infinite horizon. However, some
real-life problems involve large sequences of decisions. Thus infinite
horizon models may be useful as an approximation to some real-life
problems where it is easier to solve the former, and use a solution of
this to obtain a solution to the latter. We will return to this point subse-
quently. For the moment we study the, hypothetical, infinite horizon
case.

We note, first of all, that Results 2.1 and 2.2 still hold, and we may
keep to ITa without loss. With n = o (2.45) still holds, because p < 1
and the series converges. The analysis on pp. 36—38 follows in exactly
the same way, replacing both n and n — 1 by o, and replacing both v,
and v,_; by v. We thus obtain Result 2.4.

Result 2.4. The function v is a solution to the equation
u=7Tu. (2.66)

Thus v is a fixed point of the operator 7.
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Here v (i) is defined by (2.65) and not by limit [v,(/)]. They happen

to be the same, but this has to be proved. Howard [23] implicitly takes
this to be so. White [58], Corollary 2.9.1, proves this. Derman [15]
and van der Wal [53] give rigorous treatments.

Derman’s proof that we need only keep to Ilp is somewhat different
(see Chapter 3, Theorem 1) because he goes directly to showing that
optimal solutions in Ilp exist. Result 2.1 is slightly more general.

Eventually we will wish to solve (2.66). For this to be relevant we
need to show that it has a unique u solution, and that all of the decision
rule solutions & giving rise to stationary policies = = (6)* are optimal.
We establish the following results.

Result 2.5. Equation (2.66) has the unique solution ¥ = v.

Proof (this is implicit in White [58], Theorem 2.7). Let v be any solu-
tion of (2.66). We will use the 7'° notation of (2.48).

Let 8,0 be decision rule solutions to (2.66) corresponding to v, u
respectively. Then

v=Tv=Tv2Tv=r"+pP°, (2.67)
u=T°u=r"+pP°u. (2.68)
Thus (see p. 59 for >)
v—uzpP°’(v- u). (2.69)
Because P° > 0 we can repeat (2.69) s times to obtain
v—uzp*((P7)*(v—u)). (2.70)

The right-hand side of (2.70) tends to 0 as s tends to « because p < 1.
Thus

v—uz20. 2.71)

Similarly we can obtain the reverse of (2.71). Thus
u=v. (2.72)
O

Result 2.6. Let 8 be any decision rule solution to (2.66), = = (8)~, and
v” be the expected total discounted reward value function for policy .
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Then v™ > v" for all r€Il, and stationary policies exist which are
optimal for each state simultaneously.

Proof. Let 7 be any policy in I1. Then
v . (2.73)
We also have
V" =T, v=T". (2.74)

The first part of (2.74) is obtained using arguments similar to (2.49) and
(2.50). Thus

VT —v=pP*(V" —v). (2.75)
Repeating (2.75) s times we obtain
vF—v=p ((P*) (V" - v)). (2.76)
The right-hand side of (2.76) tends to 0 as s tends to «. Thus
"=p2v, V7rell 2.77)

O

Theorem 1 of Chapter 3 of Derman [15] and Theorem 5.13 of

van der Wal [53] establish the existence of an optimal, simultaneously
for each state, stationary policy. Result 2.6 is slightly stronger.

Example (Howard [23], p.85). For the toymaker example of
Table 1.8, for n = «, (2.66) has the solution, with p=0.9,

u(l)=222, u(2) =123,
o(1) =2, 6(2)=2.

This should be checked, viz.

22.2 = maximum [6 +0.90.5%x22.2+0.5x% 12.3)] ,

4+0.90.8x222+0.2x12.3)

12.3 = maximum[_3 +0.9(0.4 x 22.2 + 0.6 X 12.3)].

-5+0.9(0.7%x22.2+0.3x12.3)

We will consider solution algorithms later (see pp. 62 and 71).
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2.4.2 THE DISCOUNTED NON-STATIONARY CASE

We follow the format for the finite horizon case on pp. 40—41 and
define v,(i) to be the supremal expected total discounted reward over
an infinite time horizon, beginning at the beginning of chronological
time unit ¢ with X, =i

The analysis for the infinite horizon case goes through in much the
same way as for pp. 41-43 and we have analogous results to those of
Results 2.4-2.6, provided that {| r*(¢) |} are bounded and p(r) < p < 1
for some p.

Resulr 2.7. The function v, is a solution to the equation

t 2 1 Uy = T,u,H (278)
where T; is defined in (2.60). O
Result 2.8. Equation (2.78) has a unique bounded solution. @)

Reference to boundedness is made in Result 2.8 because there is a
countable set of {u,] whereas, in Result 2.6, any real « is bounded.

Result 2.9. Let {6,} be any decision rule sequence solution to equation

(2.78), and « = (64, 82, -, ., & .,.,) be the associated policy. Then v/ > v/

for all r > 1 and for all reIl. O
We make the following notes:

(i) The = in Result 2.9 is, in general, non-stationary.
(i) The conditions on the boundedness of {rf(r)} and {p(¢)} are not
strictly necessary.
(iii) Limited work seems to exist on infinite horizon non-stationary
problems.
(iv) In order to solve (2.78), some asymptotic form of {p5(r)}, {rk ()}
and {p(¢)} is required.

2.4.3 THE AVERAGE EXPECTED REWARD PER UNIT
TIME. STATIONARY CASE

We will deal only with the stationary case. We wish to find (see (2.19)
and (2.15))

g() =supremum [g"({)], Vviel (2.79)
rell
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where (see (2.16))
g"({) = limit infimum [vr({)/n], Vi€l (2.80)

Subsequently we will be able to replace ‘limit infimum’ by ‘limit’.
We will consider only uni-chain cases, i.e. for all 6 € A the process
corresponding to the probability transition matrix P° has only a single
chain plus, perhaps, some transient states. Such processes are some-
times called ‘ergodic’ (see Bartlett [2], p. 33). Definitions are not
always consistent in the literature. Kemeny and Snell [25], p. 37, use
the term ‘ergodic (chain)’ to exclude transient states. A ‘transient state’
i, is one for which the limiting average probability of being in state
i (i.e. limit [(Z q(Pé)')/nD is O for all initial probability vectors
t=0

q of states. This is equivalent to definition (1.15).
The term ‘completely ergodic’ is also in use. Howard [23], p. 6, uses
this term for any transition matrix P?, where limit [(P®)"] exists

(see p. 9). This gives the usual steady-state probability vector, indepen-
dent of initial state, of each row of the limit. White [58], p. 31, uses
the term in the same sense. Bartlett [2], p. 33, uses the term ‘regular’.
Mine and Osaki [34], p. 27, use the term ‘completely ergodic’ simply
to mean that all matrices P° are ergodic in the sense of Kemeny and
Snell [25]. Kallenberg [24], p. 24, defines ‘completely ergodic’ as for
Howard but excludes transient states.

For an ergodic process in our sense (see Bartlett [2], p. 33), we have

rank(U - P?)=m - 1 (2.81)

where U is the identity matrix. Equation (2.81) is important in what
follows. Multiple-chain Markov decision processes are covered in
Derman [15], in Mine and Osaki [34] and in Howard [23].

We will now deal with results analogous to those of Results 2.4-2.6
for the discounted problem. The approach will be slightly different to
the proofs in other texts, to avoid a deeper use of ‘limit infimum’ ideas.
Theorem 2 of Chapter 3 of Derman [15], and Theorem 3.4 of Mine and
Osaki [34], use a ‘limit infimum’ result of Widder [78] which we will
avoid.

Although our main concern is with the uni-chain case, some gener-
ality will be maintained for a while, so that some multiple-chain results
may also be seen. Here g" will always be a function (or vector) in this
section, with components {g"(/)}. In the uni-chain cases (see Result
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2.10 and equations (2.118) and (2.119)), g™ will take the form he, for
some A.

Using the {x7*(¢)] notation of Result 2.1 we can write v%(i) in the
form

nM:

> xM)yrf, viel (2.82)

€lLkeK(y)

ve(i) =

Using Result 2.1 we see that we may assume that « € I1,.

Now consider the following equation, suggested by equation (1.25)
for a specific stationary policy. This will be our optimality equation,
which we will discuss in more detail when we look at algorithms.

u (/) + A = maximum [r, + Z p,Ju(_/)] viel, (2.83)
ke€K(i)

u(m)=0. (2.84)

We write this in function/decision rule form as follows, where e is the
unit function:

u + he = maximum [ + P%u]

b€d
= maximum [7T°%u] = Tu, (2.85)
ded
u(m)=0. (2.86)

In (2.83)—-(2.86) (u, A) is any solution to (2.85) and (2.86). We will use
(w, g) for (u, h) solutions which correspond to optimal policies for our
Markov decision processes. Here w need not be the actual bias function
for the policy, and will differ from this by a constant function. Also,
because we wish to use matrices, « is interpreted as a vector for matrix
operations, although we will still adhere to functional notation u(/),
[Tu] (i) and [T?u] (i) as indicated on p. 38.

As a consequence of (2.81) for all € A, (2.85) and (2.86) will always
have a solution. We will deal with this later on (see p. 84) under the
topic of ‘policy space algorithm’.

The proof of Result 2.10, which we will shortly address, is a different
version of the proofs in Theorems 3.5 and 3.6 of White [58]. The dif-
ference lies essentially in the specification of vy. Lemma 3.6 of Mine
and Osaki [34)] is also related to our proof, but we do not require the
regularity condition of Bartlett [2].
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Let (u, h) be any solution to (2.85) and (2.86) with an associated deci-
sionrule 8. Let 7 = (6)”. Let us now look at the form of 0, when 0o = u,
where U, is v, modified to have a terminal value function 0y = u,
whereas vo = 0 by definition; 0y is a similar modification of vy.

We have (see (2.58) with p=1)

Uy=T0o=Tu=u+ he. (2.87)

Now assume that, for 0 < s n—-1,

Us = u + she. (2.88)
Then
Un=T0,_1 =T+ (n-1)he)
=(n-1)he+ Tu
=(n—-1)he+u+ he
= u + nhe. (2.89)
Also
Un = Un (2.90)
because
Tu=Tou. (2.91)

Now if 7is any policy in IT and if &}, is as for vy, but with a terminal
value function Uy = u, we have

Un <oy, v rTell (2.92)
Hence

limit infimum [0%(/)/n] < limit infimum [07(/)[n], v 7€ll, i€l
noe nee (2.93)

Now if 7= (83, 62, ., 0y ..) = (5],1)) then
n>1 vi=r 4 Phl_, (2.94)

On=r"+ P27 _,. (2.95)
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Thus
vh—Un=PHi-1—0%-1)
- (Hl P“')wo—ao)
1=
= — (H P“‘)u. (2.96)
t=1
From (2.96)
| vr—onll < llull, (2.97)
where
lull = max (Ju@)]]. (2.98)

Combining (2.97) and (2.93) we see that

limit infimum  [(v3(i) — || « ||)/n)

n— o

< limit infimum  [(V() + || u|))fn), v iel. (2.99)

n -

Here || u||/n tends to O as n tends to c, and hence (2.99) gives

limit infimum [vz(§)/n] < limit infimum [vR(i)/n], Vv 7€ll, i€l

n-—+ o

(2.100)

We have thus demonstrated the following result for the uni-chain
case.

Result 2.10. Let § be any decision rule solution to (2.85) and (2.86) and
let #=(5)". Then g™ > g" for all r€Il, and stationary policies exist
which are optimal for each state simultaneously. O

In the discounted case we could replace ‘limit infimum’ by ‘limit’
because limits exist in that case. Limits do not always exist for {v7(i)/n)
(see pp. 29-30). However, if (see p. 27) 7 €I1p (i.e. # = (8)” for some
5 € A) then limits do exist (e.g. Mine and Osaki [34], p. 25, or Derman
[15], Theorem 1, Appendix A). Thus we have Result 2.11.
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Result 2.11. In Result (2.10)
g7 (i) = limit infimum [v;(/)/n], v i€l (2.101)

may be replaced by
g7 (i) =limit [vi(i)/n], Vi€l (2.102)

O
Let us now look at one special relationship between average expected
reward per unit time and expected total discounted reward, for infinite
time horizons. For a specific example (see (1.33)) it was shown for a
given policy that
lim]i_t [(1-pv) =g (2.103)
p -
where, at this point, we put a subscript p to v to show its dependence
on p. Equation (2.103) is true in general for all = € [1p (a consequence
of Derman [15], Theorem 1 of Appendix A, plus the Cesaro limit result
of Bromwich [8], p. 150, or see Mine and Osaki [34], Lemma 3.2) i.e.
for all rellp

limit [(1 —p)v]] = g". (2.104)
o1

Equation (2.104) is true even for multiple-chain cases.

Now select a sequence {ps} = 17. Let 7°*€IIp be an optimal policy
for discount factor p;. Because, for all i € I, K (/) is finite, and [/ is finite,
then I1p contains only a finite number of policies. Hence some policy
7 ¥, say, must repeat indefinitely in the sequence {r°}. Let S be a subse-
quence {s] for the repeated = *.

We know that

v, <UL, ¥ seS, rellp. (2.105)
Thus
limit [(1 - p)vl] < limit  [(1 — p)vT], V¥ 7€llp. (2.106)
s+ 5€S

s+ o,5€S5

Hence using (2.104) we have
g<g”, vrellp. (2.107)

We have thus shown Result 2.12 for the general case.
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Result 2.12. There exists a policy 7= *€IIp for which g*" is optimal,
and which is also optimal for a sequence {p;} of discount factors
tending to 1°. O

A stronger form of this result may be found in Derman [15],
Chapter 3, Corollary 1, or in White [58], Exercise 8 of Chapter 9,
where a sequence {ps] of discount factors tending to 1 ~ may be replaced
by an interval [p*, 1) of discount factors for some p* < 1. The results
are, however, effectively the same in that if p is large enough (for a
given data set) we need not worry about whether or not we discount.
However, there is still the problem of finding the appropriate {x*,0*}.
Howard [23], p. 88, tabulates solutions for a range of discount factors
for a taxi-cab problem which illustrates the above result.

If m =(8)” is an optimal policy for the average expected reward case,
in order to check if it is also optimal for the expected total discounted
reward case for a given p, we need to check that (2.66) is satisfied. Now,
again at this point using the suffix p, for a given policy 7 = (§)* we have
(see (2.74))

vl =TI =r®+ pP%]. (2.108)
Thus
vI=(U—-pP% ', (2.109)
Hence we need to show that

(U=pP) P 2 T°(U-pP*)'r°
=r°+pP°(U-poP%7'r%, vaea. (2.110)

Establishing (2.110) is the same as establishing that
(W=poPHY 'Plizrf+p X phU-pPY ', viel, keK().
jel

@2.111)

White [72] gives an example where two policies are optimal for the
average expected reward per unit time case, but one of which is not
optimal for the total expected discounted reward case for any p € [0, 1).
Also, in White [72] the result of Derman [15] is extended by looking
at the class IT** of all policies which are optimal for some sequence of
discount factors tending to unity in the expected total discounted
reward case, and establishes some properties of IT**.
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One other point needs mentioning. For any policy 7 = (8)*, 6 € A we
have

vt =rd+ Pl _, (2.112)

which by repetition is equal to
n
(ZJ (P”)"')r”. 2.113)
=1
Then, noting that at this stage, g" is a function, we have

g" = limit {L (P”)"‘/n]r‘s (2.114)
noe =1

where (see Mine and Osaki [34], Lemma 3.3) the specified
limit [(}j (P*")"‘)/n] = p**
"o o iI=1
(see p. 9) exists and (see (1.17))
P**pPt = PPpPr = p°*, (2.115)

In the uni-chain case each row of P®*is the same. Let this be 6°. In
the regular case (see p. 45) 6 is also the steady-state probability vector,
independent of the starting state (see Bartlett [2], p. 33). We have

> 6t =1, 6° > 0. (2.116)

iel
We thus have
6° P® = ¢°. (2.117)

For a policy = = (8)” generated by any solution (u, #) to (2.85) and
(2.86) we have

he = g* (2.118)
and
u+g-=r’+ Pou. (2.119)

Equation (2.118) holds for the following reason. From (2.89) we
have

he = limit [0a/n]. (2.120)

n -+ oo
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Also from (2.96), (2.90) with 7 = = we have

g" = limit [v7fn] = limit [07]n]

= limit [J,/n] = he. (2.121)
Hence using (2.117) and (2.121) we have, premultiplying (2.119) by 6°,
g =6%r’e (2.122)

(see Howard [23], pp. 34—36). Equation (2.122) written in full is

(Z 0r ““’) (2.123)

1€l

Example (Howard [23), p.41). For the toymaker example of
Table 1.8, for n=, p=1, (2.85), (2.86) have the solution (setting
u2)=0)

h=g"(1)=g"(2)=2, 7 =(8)%, 6=(2,2),
u(l)=w()=10, u2)=w@) =

Again note that w differs from the true bias function by a constant
function.
It is easily checked that
_ . 6+ 05x10 +0.5x0
10+2= ma’“m“m{u 0.8x10 +0.2x 0]’

O+2=maximum[_3 +0.4x 10 +O.6><O]

-5 +0.7x10 +0.3x0])’
8(1) =2, 6(2)=2
Note that & is the same as the optimal § for the discounted problem on

p. 22. In fact & will be optimal for all p € [0.9, 1) and we will have p*
(see p. 50) £ 0.9.
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To find the limiting probability vector 6° (see (2.117)) we have to
solve

(0.8 0.2] s
6 [0.7 0.3]‘9

with 83 +63=1. Thus 6%=0.78, 63=0.22. Then (checking with
(2.123))

g7=(0.78 x4 +0.22x ~5)e =2e.

2.5 ABSORBING STATE PROBLEMS. THE INFINITE
HORIZON STATIONARY CASE

In this section we will give no proofs but merely quote results. The
objective is (see (2.20)) to find

v(i) = supremum [v"(/)], Vi€l (2.124)
€]l

with
v(i)=0, Vviel,. (2.125)

We will assume either that the rewards are discounted or that for each
ie I, well there is a t = 1 such that

probability(X; € I, | X, =1) =1 (2.126)

(see p. 25 for {X:}, and see Derman [15], p. 30 or Mine and Osaki
[34], p. 42 for (2.126)).

In the discounted case all of the discounted results apply automati-
cally. The analysis is exactly the same. The additional point is that
(2.66) now takes the form

u=Tu, (2.127)
u(i)=0, Vvi€l,. (2.128)

Results 2.4 and 2.6 hold in the case when (2.126) is assumed, using
(2.128) in addition to (2.66) (see Mine and Osaki [34], Lemmas 3.10,
3.11 and Theorem 12). Result 2.5 also holds in the form of (2.127) and
(2.128) (see Derman [15], Chapter 5, Corollary 1, who also establishes
Results 2.4 and 2.6 in Theorem 1, Chapter 5 and Theorem 4, Chapter
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3). White [58], Theorem 1.10, gives condition under which (2.127) and
(2.128) (replacing /n by /,) have a unique solution, and Corollary
1.13.1, together with Theorems 1.10, 1.13 and Corollary 1.13.2, give all
the Results 2.4-2.6 (with (2.127) and (2.128) instead of (2.66)) because
condition (2.126) implies the prerequisites of those corollaries and
theorems.

Let us now look at some illustrations of discounted, average reward
and absorbing state problems. In these illustrations the objective is to
‘minimise” a specific measure of performance. We will conform with
‘maximisation’ by using the negatives of the performance measures,
but one can simply redefine the functions used and use ‘minimisation’.

2.6 SOME ILLUSTRATIONS

(a) Inventory. Infinite horizon expected total discounted reward
In p. 17 we introduced an inventory problem with a stock reorder rule

if i(stock level) < k& < m, order (k — i),
(2.129)
if i > k, order zero.

Here k was fixed. Our problem is to find an optimal & which minimises
the expected total discounted cost. Using our maximisation formula-
tion equation (2.66) becomes

u (/) = maximum [— <c'(k ~ )+ 2, q(s)l(s—k)
s> A

mozh 2

+ a(k + \;/\ q(s)(k — s)))

o2 atomtk-9)+ (L q(s>)u(0>)], 1<i<m.
s <k s 2k
(2.130)
Here & is allowed to depend upon i and an optimal decision rule may
not involve a fixed & for all i. In some cases it will (e.g. see Bellman [4],

Chapter V).
We will return to the analytic solution of (2.130) later (p. 147).
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(b) Queuing. Infinite horizon average expected reward per unit time

In p. 19 we introduced a queuing problem with the following decision
rule:

send all customers in the system in excess of k elsewhere. (2.131)

There &k was fixed. Our problem is to find an optimal & which minimises
the average expected cost per unit time over an infinite tinie horizon.
Using our maximisation formulation (2.85) becomes

1<i<m u(i)+ h=maximum [—(c(i — k) + ak)

o 0 A
+p(l—qui+ 1D +(pg+(—-p)1—-gHhu(i)
+(1 = p)quii - 1), (2.132)
i=0 u(0) + h = pu(l) + (1 — p)u(0). (2.133)

i=m  u(m)+h=maximum [—(c(m - k) + ak)

Ooghgm
+ (1 — q)u(m) + gpu(m)
+q(l — plu(m-1)]. (2.134)

For the case i=/m we only accept an arrival if a service is also
completed. We also have (sce (2.86))

u(m)=20. (2.135)

{c) Defective production. Absorbing state expected total reward
The following is taken from White [57], pp. 114-15.

() A decision-maker has to produce a number / of specialised items
for a client. The items are of no use to anyone else. Because the
job is infrequent and specialised, defective items can be produced.

(i1) If a production run of k is planned then the probability that s good
items will be produced in p(k, s).

(iii) Each production run costs a to set up and each unit in the run costs
b.

(iv) It is required to find a production-run policy to minimise the
expected cost of eventually supplying at least i good items. So
—v(i) will be this minimal expected cost given i. The process is
absorbing state because it stops when /= 0. The maximisation
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formulation for (2.127) and (2.128) is, assuming k& >/ and with
Ia = {O} ’

i>0 ua)=mammum[—(a+bxy+§fpm;gua—s),
- s=0

k=1

(2.136)
u(0) =0. (2.137)

Equation (2.136) is of a ‘directed’ form (i.e. the states never
increase in terms of /) and may be reduced to (if p(k,0) # 1)

@b+ 'S plkyshui- s)J
s=1

>0 u(i) = maximum [ 1= p.0)

k=0

(2.138)
u(0) = 0. (2.139)

Equations (2.138) and (2.139) may be solved by working back-
wards calculating «(0)(=0), u(1), u(2) ., ., u(i), where u = v is the
solution to (2.138) and (2.139).

We have, in all cases, cast the problem into a ‘maximisation’
form by using the negatives of the costs in order to conform
exactly with our maximisation format. However, they may equally
well be cast in a cost ‘minimisation’ form.

2.7 EXERCISES FOR CHAPTER 2

1. On p. 27 we introduced deterministic policies [1p. Later on we will
consider problems involving the variance of the rewards. Let 4, B
be two independent random variables (i.e. A is a sample from a
finite population A with a specified probability p(r) that 4 = r, and
B is a sample from a different finite population B with a specified
probability g(r) that B = r). Suppose that we may (a) select 4 from
A consistent with p(.), or (b) select B from B consistent with g(.),
or (¢) take the sample ‘AaB’, which means that ‘we take action (a)
with probability « and action (b) with probability (1 —«)’. Let



EXERCISES FOR CHAPTER 2 57

C(a), C(b), C(c) be the random variable outcomes of (a), (b), (c)
respectively. Show that

variance(C(c¢)) > min [variance(C(a)), variance(C(b))].

Thus if we wish to minimise variance we need not consider
randomised actions.

. On p. 26 it is assumed that the reward in any time unit is received
at the beginning of the time unit.

(a) How would (2.6) be modified if the reward is received at the end
of the time unit?
(b) How can the form of (2.6) be retained by redefining terms?

. On p. 17 we introduced an inventory problem where the probability
that the demand in any time unit is equal to s is known to be g(s).
Suppose now that this probability is g(s, «), where the value of the
parameter « is unknown but has prior probabilities { p(a)}, a =1, 2.
Confine yourself to the transition probabilities only and give two
ways of representing the new state of the system, in order to keep
the Markov property (2.22), which takes into account any actual
demands up to the beginning of each time unit, and derive the
appropriate transition probabilities.

. Find {v,} and {6,},0< n < 7,1 <t <7 for the following problem:

I= {1s213}v K(l):{192}’i61v UO=O, p:O'75'

i k rk pf‘l P2 Pi3

W HaE OO &

2
3
1
2
3
4
1
3
0
0

W W NN = -
BN — N — N
—

N wNw e OO

1
3
1
2
0
0
1
3
1
2

. For the infinite horizon version of Exercise 4 show that the policy
m=(8)7, where 6(1) =6(2) = 2, 6(3) = 1, is an optimal policy among
all policies and that it is a unique optimal policy among all
stationary deterministic Markov policies.
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6. For the average expected reward version of Exercise 4 demonstrate
that 7 is an optimal policy. You may assume that all the transition

matrices for the Markov decision rules are uni-chain.
7. In (2.90) it is stated that

<
33
I
<
)

Prove this.

8. Derive a corresponding expression to (2.59) if n is now the number

of time units remaining from the beginning of time unit ¢.

9. In Exercise 8 how would you handle the infinite horizon case in

principle, and what would be the resulting optimality equation?



CHAPTER 3
Algorithms

3.1 INFINITE HORIZON EXPECTED TOTAL
DISCOUNTED REWARD

3.1.1 STATIONARY CASE

We need to find a solution (i, §) to the following equation (see (2.66),
(2.55)—(2.57)):

u=Tu 3.1
where for u: I- R
Tu = maximum [7T°%u], 3.2)
ded
[Tu] (i) = maximum [r," +p D pfﬁ-u(j)], (3.3)
ke K() jel

(T () =r! +p 2 Pl ul))
J
=¥ 4 o[ Pu).. 3.4)

Before we tackle the algorithms we need some properties of the
operator 7. For u,u’; I - R define

uzu 2u()yzu'(i), viel 3.5)
with a similar definition for {<, >, <, =} and the norm | - || by
| &) = maximum [|u(i)][]. (3.6)
i€/

Note again that we will treat ¥ both as a function and as a vector from
time to time.
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Resulr 3.1 (Lemma 2.2, Mine and Osaki [34]). If 6€A, u >

T > T%'.

Proof.

Tou—T =r®+pPou—(r*+pPu’)=pP(u—u') >

u' then

3.7)

0. (3.8)

~

N

Resulr 3.2 (Lemma 8.8, Mine and Osaki [34]). If u > u' then

Tu > Tu'.

Proof. From Result 3.1, if u > u’ then
T > T’u', v oe€A.
Then

Tu = maximum [T%u] > max1mum (Tu'l =Tu'.

d€d

Result 3.3. For any u,u’

1 Tu—-Tu'[[ <pllu—u'l.

Proof. Let 6 € A be such that

Tu = T?u.
Then
Tu' > Tu’
and
Tu—Tu' < T%u-Tu
=pP(u-u').

(3.9)

(3.12)

(3.13)

(3.14)

(3.15)
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Similarly, if 7€ A is such that

Tu'=T'u’
we obtain
Tu'— Tu < pP’(u' — u).
Hence
oP (u—-u)<Tu-Tu <pP¥u-u).
Thus

—pllu-u'lle<oP (u~- )

(3.16)

3.17

(3.18)

STu-Tu <pPu—-u)<pllu-u'le,

i.e.
—pllu—u'lle<Tu—Tu <pllu—-u'e.

This establishes the result.

Result 3.4 (Mine and Osaki [34], p. 6). Let

F = maximum [rf],
ie LkeK(i)

r=minimum [rf].
ielLkeK(i)

Then

(] (1~ pNe < V"< (7 (1 -p)e, ¥ =), SEA.

Proof. From (2.74) restricted to a single policy «
VT =r®+pP%" < re+ p PP,
Hence (with U as identity matrix)

S (U-pPH!
=(1 —p)"re.

Similarly

3.19)
O

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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We will now consider two basic methods of solving equation (3.1),
viz. value iteration (often called successive approximations, see
Bellman [4], p. 14, and White [58], p. 111) and policy space iteration.
Value iteration may not give an optimal policy solution unless we carry
out enough iterations, the number of which we will not, in general,
know in advance. Thus value iteration is used to obtain approximately
optimal policies although it may actually give optimal policies. For
policy space iteration, the number of iterations is bounded by the

number of policies, i.e. [] #K(i), where [[ means product, and #
1€l

means cardinality, i.e. number of members.

3.1.2 VALUE ITERATION (Bellman [4], p. 14, White [58],
p. 24, Howard [23])

This considers the limiting form of finite horizon equations (see (2.58)
with uy = u, arbitrary), viz.

n 2 1 Up = TU,,—|. (326)

We will use v to denote the unique solution to (3.1) (see (2.13) and
Result 2.5)). Let

« = maximum [v(i) — u(i)], 3.27)
te ]

8 = minimum [v(/) — u(i)]. (3.28)
¥

Result 3,5 (Shapiro [45]).

n=0 U+ Bpe< v, +ape. (3.29)

Proof.
n>1 v="Tv=T%, (3.30)
Uy = Tu,,_l = T""lln_ 1. (331)

Care should be taken not to confuse o, with 6, as defined in (x) on
p. 26. Here o, is the decision rule obtained from operating on u, | by
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the operator Tin (3.31). If t = 1 corresponds to n time units remaining,
then o, = &6;. Then

v—ty=T - Tu,_,
< TPv-Tu,_,. (3.32)
Now the right-hand side of (3.29) is true for n = 0 because
V—Up=v— U < «ae. (3.33)

Using Result 3.1, with u being replaced by u,_ | + ap” 'e and u' being
replaced by v, if we assume inductively that the right-hand side in-
equality at (3.29) is true, with n replaced by s, forall0 < s<n-1,
then using (3.32) we have
Uty S TPy +ap" 'e)— Touy_y = pPlap" 'e=p"ae. (3.34)
For the left-hand side of (3.29) we have
v—up 2T — T v, . (3.35)

A similar analysis to the above now gives the left-hand side mequallty
of (3.29). .
From (3.29) we obtain the following convergence result.

Result 3.6 (White [58], Theorem 2.7). The sequence {u,] converges to
v as n tends to infinity, with respect to the norm | ||

Proof. If p =0, the result is clearly true. Assume that p # 0. Let

7 =maximum|[|« |, B[] > 0. (3.36)

Set > ¢ 20, and
n(e) = log(e/n)[log(p). (3.37)

Then if n > n(e) we have

ap” <€, (3.38)
Bp" = —e. (3.39)

Then for n = n(e)
—cegv— U, <ee. (3.40)

Because ¢ is arbitrary we see that || v — v, || tends to zero as n tends to

infinity. If 5 =0 the result is trivially true. <
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For some situations the convergence of {u,} will be monotone, e.g.
if rk >0foralliel, keK(@i)and u =0 (see White [58], Theorem 2.6).
We generalise this result as follows.

Result 3.7. Let ug=u and u satisfy
u<x Tu. (3.41)

Then {u,} is non-decreasing in n.

Proof.
nz2 Up =Ty =T Uy, (3.42)
Up_y=Tup_2 =T 'Uy_». (3.43)
Then
Upg—Un-1 2 T Up—1— T 'Up-3. (3.44)
Now
uy—up=Tuo—upo=Tu—-u=0. (3.45)

Assume inductively that
Us=us- = 0, I<sg<n-1. (3.46)
Then combining (3.44) and (3.46) we have, using Result (3.1)
Uy — Uy = 0. (3.47)

Q
As a special case, if r¥ > 0 for allie€ 7, k € K(i) and u = 0 then (3.41)
holds. If we want monotone convergence we may transform the
problem into one in which r¥ > 0 (see White [58], p. 25) and condition
(3.41) is satisfied with u = 0. This gives Theorem 2.6 of White [58].
The inequalities given in (3.29) are prior inequalities giving prior
bounds, i.e. they are known before any computations are carried out.
In practice, convergence may be much quicker (see Scherer and White
[41]) and we may wish to assess how good a solution is in terms of the
computational performance to date at any stage of the computations.
This gives rise to the notion of posterior bounds.
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Let

n>1 an = maximum [u, (i) — un-1(i)], (3.48)
¥

Bn = minimum (4, (i) — up-1(i)]. (3.49)
iel

We then have the following result.

Result 3.8 (White [58], p. 11, with L =1, and Hastings and Mello
(21]).

nxl un+ (p[(1 —p))Bre < v < un+ (p/(1 —p)ane. (3.50)

nzl Un=Tup-1=T"uy-, (3.51)

v=Tv=T%. (3.52)

Then

v—un < T — TPun_,
=T% — TPy + TPun— Toun,_,

=pPP(—un) + p P (tn — tn_1). (3.53)

Thus, with U as the identity matrix
v=tn < (U= pP* 0P (un — tn-1). (3.54)
This gives the right-hand side inequality of (3.50). The left-hand side
inequality of (3.50) may likewise be determined. O

Results 3.5 and 3.8 give us results about the behaviour of {u,}. What
we really want is an optimal, or approximately optimal, policy
7= (6)%, and we need bounds for the value function v™ of this policy.
In particular, if we terminate the computations at stage n with
Tuy-1 = T°uy,- we want to know how good the policy 7. = (g,)" is.
We have the following result.

Result 3.9 (White [58), p. 111, with L =1, and Hastings and Mello
[21D).

nxl Un +(p/(1 - p))Bre < v™ < v. (3.55)
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Proof. The right-hand side inequality (3.55) is obviously true because
v is the optimal value function solution. Now

u™ = T o™, Uy=T"Up_,. (3.56)
Hence
UV — =TV — Tu,_,
= To0™ — TUn + Ty — TOUy -
=pP"(0" —uy) + p P Uy — ty_1). (3.57)
Thus

v — Up = (U - pPa")-lpPu"(un —Un-1)
> (U= pP%) 'pP"Be
= (o] (1 - p)Bue. (3.58)

Resuldr 3.10.

nzl v+ (p[(1 = p))(Br—an)e <™ < 0. (3.59)

Proof. Combine Results 3.8 and 3.9.

Results 3.8, 3.9 and 3.10 are posterior-bound results in the sense that
the error terms are evaluated at the current iteration in terms of the
known wu,, u,-,. For general use we may use the following result:

Result 3.11.
n22  Bn=peBr-1Zp" 'Bi=p""" minimum [[Tu —u] (i)],
1€/
(3.60)
an € pan-1 € p" oy =p" "' maximum [[Tu —u] ())].
1€l

(3.61)
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Proof.
n=?2 Un=T"Upn_1, (3.62)
Un-1 =T 'un_3. (3.63)
Hence
Un —Un_ 1 S T%Uy_1 — T Un_>
=pP% (Un-1— Uun-2). (3.64)

Clearly, (3.61) is true for n = 1. Let us assume it is true with n replaced
by s for 1 € s < n— 1. If we substitute in (3.64) we obtain (3.61) for

=n. A similar analysis applies for (3.60). C

So far we have concentrated on solving equation (3.1) by continued
value iteration. It is of interest to see what would happen if we simply
did one iteration and used the policy thus obtained. We have the
following results the worthwhileness of which depends on how close
ug = u is to v in the first instance. If we are able to guess at a good u
then one iteration will suffice.

For any u: I — R define

span(u) = max1mum [4()] — minimum [u(/)]. (3.65)
el

Result 3.12 (Porteus [37]). Select u: I/ — R. Let
Tu=T%% and ==(5)". (3.66)
Then
v2v"2v-(p/(~-p)span(Tu — u)e. 3.67)

Proof. Clearly v > v™. Then set n=1 in (3.55) and (3.50) to give

U2 ur+ (p[(1 —p))Bie
Zv+ (p/(1 =p))(B1 —ar)e. (3.68)

Now
B1— a1 = —span(Tu — u). (3.69)

Thus our result follows. O
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Example. Let us return to the example of Table 1.8 with p = 0.9. We
retabulate in {u,, 0, form, in Table 3.1, the {v,} given in Table 2.1
with ug=u =0.

The solution in equation (3.1) is given (see p.43) by
u()=v(l)=22.2, u2)=vR)=12.3, 6(1)=6(2) =2. We have F=6,
r= —35. Let us now check Results 3.4, 3.5, 3.7-3.12.

(i) Result 3.4. This requires that, for an optimal = in particular,
—5/(0.1) < v"(i) < 6/(0.1), i.e. —50< v" (i) <60, Vi€l
(ii) Resulit 3.5. This requires that, with o =22.2, 8=12.3

nz0 Un () +12.3(0.9)" < v(i) € ua (i) + 22.2(0.9", v iel.

(iii) Result 3.7. With ug=u =0, (3.41) requires that

0 € maximum [2] ,

0 < maximum [ ~ :;]

This is not satisfied and {uw.} is not non-decreasing in n. In fact,
ll()(Z) =0>u(2)=-3.

Let us tabulate {«n}, {8a} (see (3.48) and (3.49)) given in Table 3.2.

Table 3.1 Expected total discounted rewards and optimal decision rules for
toymaker problem

Un (i) on(i)
State i i

1 2 1 2

0 0 0 - _

lteration 1 6 -3 1 1
number n 2 7.78 -2.03 2 2
3 9.2362 —0.6467 2 2

4 10.533658 0.644197 2 2
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Table 3.2 {an, B2} computations for Table 3.1

Qn 6"
lteration 1 6 -3
number n 2 1.78 0.97
3 1.4562 1.3562
4 1.2974 1.290897

(iv) Result 3.8. This requires that

nx1 Un(i) + 98, < v(i) S un(i) +9%n, Vi€l

(v) Result 3.9. This requires that
nzl Un(D) + 9B < V() S v(i), Viel
From Table 1.11, identifying o, = 8", 02 = §*, we have
v (1) =15.5, v (2) =5.6, v =,

Policy w2 is optimal.

(vi) Result 3.10. In addition to Result 3.9 this requires that

n>1 v()+9(Bn—an) LVU(), Vi€l

(vii) Result 3.11. Requires that

nz2  B,209""'8=-309"",
an < (09" oy = 6(0.9)"",
an < (0.9 an-1,
Br 2 (0.9)8,-1.

(viii) Resultr 3.12. This requires that

v(i) 2 v (i) 2 v(i) = a1 — Br)
—u(i)—81, Vi€l
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Although {u,} has far from converged in Table 3.1 for | < n < 4, we
see that {o,} has apparently stabilised at n = 2. Such a stabilisation
must take place for some finite n, although it is not known how to
compute such an n because it depends on some prior knowledge of v.
We have the following result.

Result 3.13 (White [58], pp. 103—104, Beckmann [3] and Shapiro
[45]). Let o,, as defined in (3.31), satisfy Tu,_ | = T%u, 1. Then there
is an ng such that, for n > ng, 7, = (0,)™ is optimal for the infinite
horizon problem, i.e. ¢v™ = v.

Proof. For i€ I'let N(i) be the set of all kK € K(/) which are not optimal
for state / for the infinite horizon problem. If N(/) = ¢ for all /€ / then
all policies are optimal and the result is trivially true. Assume N(i) # ¢
for some i€ I. Select g € K(/)\N(i). Define

£(i) = minimum [r,"+p 2 phv() - rf o 2 pihv()
A€ N sel sed

= minimum [[T9)] (/) = [T*v] (/). (3.70)

ke
For k€ N(/) and g € K(/)\N(/) we have
[T] () = [Te]l () > [T 0] (). (3.71)
Hence
e(i) > 0. (3.72)
For ke N(i), ge K(I)\N()
(T 1G) = (T un-1] ) = ([Tun 1] G) = [T0] () (3.73)

+ ([T ()~ [T*v] () (3.74)
+ ([T V) () — [T un-11G)) (3.75)
=A+ B+ C, say, (3.76)

where A, B, C are respectively the terms in (3.73), (3.74) and (3.75).
We have

B2 eQ). 3.77)
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Using (3.29) and Result 3.3, restricted to I'lp being as singleton for this
purpose, or using (3.15), we have

A2 -ap",  C2=-pp" (3.78)
If n°(@) is any sufficiently large integer we will have
A2 —e@)3, Cz —¢e()3 (3.79)
for n > n°(@i). Hence
(Tun-1 1) = [T un—1 1 () 2 £()/3 (3.80)

if n > no(i). Hence if n > n°(i), no matter what o, (i) is chosen,

k # an(i). (3.81)
Now let
ng = maximum [ng(7)]. (3.82)
el 2o

Thus if n > ny and k € N(i) then ¢,(i) = k cannot satisfy (3.31). For
n = ng, m, = (0,)* is optimal for the infinite horizon problem .

3.1.3 POLICY SPACE ITERATION (Bellman [4], p. 89, White
[58], p. 25, Howard [23])

The policy space method is as follows:

(i) Select an initial policy 7% = (¢%)".
(ii) Solve the equation

u®=T1"° (3.83)

for u®.
(iii) Find a new policy 7' = (¢')” by finding

o' €arg maximum [T%u"]. (3.84)
S€ A

(iv) Replace ¢ in (i) by ¢' and repeat the procedure.
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The procedure produces two sequences, viz. {¢"}, {t"]). The proce-
dure terminates when at step (iii) we have

o" € arg maximum [T%u" (3.85)
dea

or alternatively when
u =y (3.86)

Equations (3.85) and (3.86) are equivalent termination conditions. We
have the following result.

Resulr 3.14 (White [58], Theorem 2.8, Mine and Osaki [34], p. 8,
Howard [23]). The policy space method produces a sequence {u")
which converges non-decreasing to v in a finite number of iterations,
with an optimal policy given by the terminating policy.

Proof.
n>=0 u"=T"u", (3.87)

uttl= Tyt (3.88)

Hence
WrHY g Tyl _ oty
= (T 'u" - T"u"), (3.89)
+(T7 u™ ' =T Uy = A" +p P (™' - u")  (3.90)
where A"*! is the term in (3.89). Hence
utl—u"=(U-pP7 ) A (3.91)

where U is the identity matrix.
From the generalised step (iii) we have

o"*'earg maximum [T%u"]. (3.92)
dEA

Hence

A" >0. (3.93)



INFINITE HORIZON EXPECTED TOTAL DISCOUNTED REWARD 73

Thus
u™' >y (3.94)

Using the boundedness of {u"} (see Result 3.4 with v" = «") and the
convergence of bounded monotonic sequences (e.g. see Bromwich [8],
p. 409) this is enough to show that {u«”} converges non-decreasing to
some function v* in norm || ||.

If, for termination, we use (3.86) then A4,.; =0 (see (3.91)). Then
o"€arg ma)gimum [T%u"] and (3.85) may be used for termination

€A

purposes equally well.

If, for termination, we use (3.85) then again A"*' =0 (see (3.89)
with ¢” = ¢"*!) and then ¥"*' = 4" (see (3.91)) and we may use (3.86)
equally well for termination purposes. Thus, termination rules (3.85)
and (3.86) are equivalent, i.e.

Wt = ute AT =0, (3.95)
We thus terminate at some n with u” = v*, 0" € arg maximum [T%v*],
ie. i
v*=T"v*=Tv* (3.96)
From Result 2.5 and equation (3.96) we have
v*=v. (3.97)
Clearly =" = (¢")® is optimal. O

We may, if we wish, terminate before conditions (3.85) or (3.86) are
satisfied, with some appropriate stopping rule. In this case we may use
Result 3.12 with u = 1", # = (¢"* "), to determine the potential loss of
optimality in doing so.

Example. We will use the example of Table 1.8 (see Howard [23],
p. 85) with p =0.9.

(i) Select ¢®=(1,1), i.e. ®(1)=06°(2)=1.
(ii) Solve

o [ 6 0.5 057 o
u ‘[—3]*‘0'9)[0.4 0.6]“

o [15.5
“ *[ 5.6]'

to give
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(iii)

(1)
(i)

(iii)

Find

o' (1) € arg maximum[k =1:6+090.5x15.5+0.5x%x 5.6)]’

k=2:4+0.90.8x155+0.2x5.6)

i.e.
1 . k=1:15495|
o (1)earg maxnmum[k: 5 l6.168] = {2].
Thus
a'(l)=2.
Find

k=1 =3+0.9(0.4x15.5+0.6x5.6)

1 .
o (2)carg ma’“m”m[k =2 ~5+0.90.7% 15.5+0.3x 5.6) |’

l.e.
o'(2)earg maximum[llz z ; 2(2)3‘;] = {2}.

Thus

a'(2)=2.
o' =@,2).
Solve

- voofis 22
to give
u' = [22.2].
12.3

Find

o2(1) earg maximum[k =1:6+0.9(0.5x22.2 +0.5x 12.3)},

k=2:44+0.90.8x222+0.2x12.3)
i.e.

k=1:15.525

2 . _
g“(l) € arg max1mum[k: 3. 999 ] = {2}.
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Thus
o?(1) = 2.
Find

k=1: -3+0.90.4x22.2+0.6x12.3)

2 .
o"(2) €arg ma’“m“m[k =2 ~5+0.90.7%22.2 +0.3x 12.3)]’
i.e.

k=1:11.635
k=2:123

02(2) =2. Thus ¢? =o' and we terminate using (3.85) giving an
optimal solution

0?(2) earg maximum[

]z{Zl.

* [22.2

— = _ 2
vV =v= 12'3], 6=0"=(,2).

3.1.4 VALUE ITERATION AND POLICY SPACE ITERATION
INTERRELATIONSHIP

The value iteration scheme (3.26) and the policy space iteration scheme
(3.83)—(3.86) are actually extreme forms of a more general scheme (see
Puterman [39], pp. 91-130).

For the policy space iteration method we have

n=0 Tu"=T" 'u"=r""+p P 'u", (3.98)

un+l — Ta""un+l — ra"“ + pPO""un-fl. (399)

Thus, with U as the identity matrix
un+l ___(U_pPa"")—er""

=(U-pP”" Yy (T-pP" "
=(U—-pP" )y "(T-Uu"+(U—-pP" Yu")

U+ WU—-pP" Yy Y(T-U))u". (3.100)
If we expand (U - pP* ')™' to s terms we have a scheme
s—1
u'=U+ 3 p"(P"HNT - U)u? (3.101)
1=0
with
o*'earg maximum [T%uf]. (3.102)

6ea
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Value iteration and policy space iteration correspond to s=1 and to
s = oo respectively.

3.2 INFINITE HORIZON AVERAGE EXPECTED
REWARD PER UNIT TIME. STATIONARY CASE

In accordance with our earlier assumption we will only consider the
uni-chain case. In this case we wish to find a solution («, A,d) to the
following equations (see (2.85) and (2.86)):

u + he = maximum [r® + Pu] (3.103)
sea

= maximum [7%u]
S€A

= Tu, (3.104)
u(m)=0. (3.105)
Then an optimal policy is = = () and the optimal gain g is equal to A.
As before, with the discounted case, we will look at value iteration
and policy space iteration. Because we deal only with the uni-chain
case, g and g" will be scalar gains in what follows.
3.2.1 VALUE ITERATION
This takes the form

Up = u, arbitrary, (3.106)

nzl Un= Tun_,. 3.107)

Because the discount factor is, in effect, p =1, {u,) may increase
without bound. In (1.12) we showed, for a specific example and policy
7, that the value function, gain and bias function took the form

vh=ng e+ w"+ ¢p (3.108)

with ¢ tending to zero as » tended to infinity.
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We will make a stronger assumption, viz. that for forms (3.106) and
(3.107)

nz0 Un=nge+ w+ &, (3.109)
where
limit [e4] = 0. (3.110)

Conditions for (3.110) to hold are given in White (58], Theorem
3.11, leading to the form (98), p. 44 of White [58]. A more general set
of conditions is given by Schweitzer and Federgruen [42].

In particular, the regular case of p. 45 will suffice, viz.

limit [(P®)"] exists, V §€A. (3.111)

ne+ oo

Let us define {an, 8} as in (3.48) and (3.49) for p =1, viz.

nzl ap = maximum [Un(V) — un-10)], 3.112)
¥

Br = minimum [u,(i) — un-1(i)]. (3.113)
iel

We first of all prove a monotonicity result for {an, 8a}.

Result 3.15. The sequence {«n} converges non-increasing to some limit
« as n tends to o, and the sequence {3.} converges non-decreasing to
some limit 8 as n tends to . Also

nzl B.<B<a<an (3.114)
Proof.
nzz2 Un— Up-1=Tup_1— Tuy_»

= 7‘a"un—l - Tlln_z

< Tun-y — TUup_>

= P%(Un-1 — Un-2)

< Qn-1e. (3.115)
Thus

on < Qn-1. (3.116)
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Similarly
BnZBu-1. (3.117)
Clearly
Br < an. (3.118)
Thus
Br-1 < Bn € an € an-1- (3.119)

Here [«,]) is bounded below by 8, {8.]} is bounded above by «;. Thus,
using the monotone convergence result of Bromwich [8] (see p. 73),
our requisite result follows.

We are now in a position to prove the following result,

Result 3.16 (Odoni ([38]). Under conditions (3.109) and (3.110)

n = 1 6;1 < 14 < (047 (3]20)

a=g=24. 3.121)

Proof. From (3.109) and (3.110) {an}, {8:] tend to g as n tends to
infinity. Because the convergence is monotone the requisite result
holds. B

Result 3.16 only gives us bounds on the value of g. It does not tell
us how good the policy m, = (0,)* might be. We would like a result
similar to inequality (3.55) for discounted problems. We can do this but
its use depends upon the behaviour of {e,} in (3.109). We will give a
result, but only in special cases do we know sufficient about how {e&,]}
behaves for this result to hold (e.g. see Exercise (22) of Chapter 9 of
White {58], under the conditions of Theorem 3.11).

Result 3.17. Under conditions (3.109) and (3.110)
nzl g-2e-il[<g"<e (3.122)

Proof. We have
n>l uy,=Tu, . (3.123)
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Thus, using (3.109) we have
nge+w+e,=T((n—1)ge+w+ e,-1). (3.124)
Thus
w+ge=T(W+en_1)— €n. (3.125)
Using (3.110) we obtain
w4+ ge=Tw, (3.126)

For policy 7, we use (2.118) and (2.119), restricting I, to a singleton
{mn}, and obtain for some u = u™ with h = g™

u".,_*_ g"ne = T"nu"". (3.127)

Note that we are not assuming that «™ takes a similar form to (3.109).
Now

TUn- 1= TUn-1. (3.128)
Thus
T"((n-Nge+w+e,_)=TWn—Nge+w+e,-1). (3.129)
Hence
T(wWw+ée,-1)=T(W+€,-1). (3.130)
From (3.130) we have
Tw>Tw-2]| el e (3.13D
Combining (3.131) and (3.126) we have
w+ge< T W+2|e,-1 ] e. (3.132)

Combining (3.127) and (3.132) we have
W —w)y+(g"—gle=z P"(u" —w)—-2|e.mi|le. (3.133)

From (2.117) we have a vector 67 such that

6P =g (3.134)

with
6 >20 (3.135)

and
> 0=1. (3.136)
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Taking the scalar product of both sides of inequality (3.133) and 6°-
we obtain

g g2 —2|en-1]. (3.137)
Thus
g2 g2 en-1]. (3.138)
In addition, we automatically have
g=g". (3.139)

@

An alternative way of avoiding the possible infinite limit of {uw,} is
to use the relative value approach (see White [58], pp. 39—44).

We will assume that the form (3.109) holds together with (3.110), viz.

n>0 wu,=nge+ w+ ¢y, (3.140)
limit [e] = 0. (3.141)

Then
Un(i) — Un(m) = w(i) — w(m) + e, (i) — ex(m). (3.142)

These relative values {u, (i) — u,(m)} will be bounded and we transform
our equation (3.107).

We make the following transformations which are equivalent to
those of White [58], pp. 39-43:

Un(i) = up(i) —un(m), viel. (3.143)

Equation (3.107) becomes

Un(i) + uy(m) = maximum [r, + Z puun 1(J) + un- l(m)] viel.
ke K()

(3.144)
Equation (3.144) becomes

Un(i) + (Un(M) — Up- (M))

= maximum [r, + Z p,u,, 1(])] viel (3.145)

ke K(i) jel
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This takes the form

n>1 in+ gne =Ty, (3.146)
&n = Un(m) — Un-(m), (3.147)
n(m) = 0. (3.148)
We see that
Un(i)=w(@) —w(m) + en(i) —en(m), Vi€l (3.149)

Hence {#,} converges and (3.146)—(3.148) will solve our problem when
used as an iterative procedure. In the limit we have

limit {i#.} = W, (3.150)
limit {g.} = g, 3.151)
u(m)=0 (3.152)

where (W, g) satisfy (3.103)—(3.105).
Inequality (3.122) also applies for this procedure.

Example. Let us do some calculations for the problem of Table 1.8,
part of which is reproduced in Table 3.3.

Table 3.4 gives the value iterations.

From Table 1.10 we see that g =2, u(1) = 10, u(2) = 0. We have the
following tabulations in Table 3.5 after finding w(l)=4.222,
w(2) = —5.778 using z-transform analysis:

Table 3.3 Data for toymaker problem
(reproduced from [23] Howard (1960),
p. 40, by permission of The MIT Press)

Transition  Expected
State Action probability  reward

i k p§ rk
1 1 0.5 0.5 6
2 0.8 0.2 4
2 ! 0.4 0.6 -3
2 0.7 0.3 -5




82 ALGORITHMS

Table 3.4 Value iteration for toymaker problem

(i) an (i)

State i i
1 2 | 2
- -

0 0 0 — —

lteration 1 6 -3 1 1
niumber n 2 8.2 -1.7 2 2
3 10.22 0.23 2 2

4 12.222 2.223 2 2

5 ’ 14.222 4223 | 2 2

Table 3.5 Value differences and errors for toymaker problem

[teration number

n
1 2 3 4 5
f T —
Wy 6 2.2 2.02 2.002 o 2.000
13n -2 1.4 1.93 1.993 2.000
- B S,
eq(1) -0.222 -0.022 r— 0.002 -0.000 —0.000
€(2) 1.222 0.122 0.012 0.001 0.000
L

The results in Table 3.5 are obtained by noting that, with § = (1, 1),
7=(2,2), then

n>l u, =(TH"'7%0
n-2
— Z (P‘r)lr-r+ (P‘r)n—lpérb.
=0
Although the optimal decision rules have been only demonstrated for
1 < n<S,itis also true that 7 is optimal for all n > 2.
The general form of (P7)’ is given in Exercise 2 of Chapter 1, viz.
N 2 / 2 _ 2
(P)' = [:’ ;] +(0.1) [ ! ?].
9 9 ]

9
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Then

ot neeof L4 {9
(2 e[ ]
o F [
=(n—1)[§]+[Z]Jr('é’)(l—(o-l)"_')[_?/]
+(0.1)”“[_ﬂ

AT B R
=af3) ¢ [ 5] s 00 [T,

2
e,,=(0.1)""[ 2J, n>?2.

9

Thus

A check shows that this is true also for n = 1.
The actual bias function is

[ 4
W‘[—S;]

5; 10
[5;] less than u = [ O]'

We now check our results.

which is

(i) Results 3.15 and 3.16. These hold with
limit [a,] = limit [8,] =2 = g.

n— o n— oo

(i) Result 3.17. This is clearly true for n > 2 because o, = (2, 2) for
n>2 For n=1 it is also easily checked. We have g (1) = —4.222,
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£€0(2) =5.778, g =1. We have not tabulated the results for relative
values (3.146)—(3.148) but they are derivable from the results just
obtained.

Under conditions (3.109) and (3.110) we have an analogous result to
Result 3.13 for the discounted value iteration procedure, which we will
not prove. We simply state it.

Resulr 3.18 (White [58], p. 104, and Beckmann [3], pp. 51-52). Let
conditions (3.109) and (3.110) hold. Let o, satisfy Tun_ = T%u,-, or,

equivalently, 7w, = T%W,_,. Then there is an n, such that for
n=ne, ma=(0,)" is optimal for the infinite horizon problem, i.e.
g =g O

3.2.2 POLICY SPACE ITERATION (White [58], p. 38, Howard
(23]

This is similar to the one for discounted processes given on pp. 71-73
viz.

(i) Select an initial policy #° = (¢°).
(i) Solve the equations

u®+ hle=T"u’, (3.153)
u’(m)=0 (3.154)
for (u°, h°).
(iii) Find a new policy ' = (¢')® by finding

o' € arg maximum [7°u°]. (3.159)
6€Q

(iv) Replace ¢ in (i) by o' and repeat the procedure.

The procedure produces three sequences {a"}, {u#"}, {#"}. The proce-
dure terminates when at step (iii) we have

0" € arg maximum [7°u"} (3.156)
6€1

or alternatively when

h"tl=h" (3.157)
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Equations (3.156) and (3.157) are equivalent as termination rules when
no transient states exist. We have the following result.

Resulr 3.19 (White [58], Theorem 3.9, Howard [23]). If no transition
probability matrix P°, for any & € A, has any transient states then the
policy space iteration method produces a sequence {h"} which
converges increasing to g in a finite number of iterations, and the
terminating policy is optimal.

Proof.
u"+h"e=T"u", (3.158)
uttty e =T um (3.159)

Hence

(un+l _ un) + (hn+l _ hn)e: To""un+l — Ty
— (To""un _ To"un) + Tu"“un+l _ To""un
=B+ P —u) (3.160)

where B"*! is the term in parentheses. Hence, with U as the identity
matrix

(U= P Yu"' —u"+ ("' —h"e=B"*". (3.161)
From (2.117) we have a vector °""' such that
e P =g (3.162)
with
367 =1 (3.163)
iel

and, because we have no transient states,

89"'>0, viel. (3.164)
Combining (3.161)—(3.163) we obtain
A" g =97 B, (3.165)

Because 8% > 0 (see p. 59 for >), we see that

A" l'=h"e2 B! =0, (3.166)
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This gives the equivalence of (3.156) and (3.157) as termination rules.
From (3.165) we see that

A" > p” (3.167)

and {h"] is increasing until the termination point.

Policies cannot repeat, as a result of this monotonicity property.
Hence {h"} converges in a finite number of iterations to some value, #*
say, because we have only a finite number of policies 7 = (6)%, §€ A.

At the terminal value of n we have, for some («*, h™)

h"=h*, u"=u* (3.168)
and
u*+h*e=T"u*=Tu* (3.169)

by virtue of (3.156).
For the optimal gain g we have for some u' (see Result 2.10)

u'+ ge=Tu'. (3.170)
Thus, if § € arg maximum [T%u’] then
S€A
w*—uY+Hh*—gle=Tu* - Tu'
=Tu* - Tu’
> Tu*— T
= Po(u* - u'). (3.171)

Following an analysis similar to that giving (3.165) and (3.167) we
have

h* > g. (3.172)
Then, because #* = g™ < g we have

h*=g" =h"=g. (3.173)

Let us now look again at (3.165), viz.
hu+l_hn:00""Bn+l. (3174)

We have assumed that 67 > 0.
However, it is possible to have, without this restriction

B ' #0, 0 xB"'(>i)=0, viel (3.175)
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It is then possible to continue the iterations if we use termination rule
(3.156), but have A"*' = h" and g~ = h" not optimal.

Let us now use only termination procedure (3.156) and, in addition,
not allow any policies to be repeated except at a termination iteration.
We then have Result 3.20 which we will not prove.

Result 3.20 (White [58], Theorem 3.10). Under the modified
algorithm, the results of Result 3.19 hold without the no-transient-state
condition, with {A"] non-decreasing rather than increasing. Z

Result 3.19 uses the no-transient-state condition in order to cater for
terminating conditions (3.156) or (3.157) as equivalent conditions.
However, Result 3.19 is valid, without the no-transient-state condition,
if only terminating condition (3.156) is used. This is given by Blackwell
[7], Theorem 4. The analysis is carried out by looking at the behaviour
of v, (see p. 49) in the region of p=1". The proof is a little compli-
cated and hence we have included Result 3.20, which is more easily
demonstrated.

We may terminate the procedure at any iteration, and we have an
analogous result to that of Result 3.12, If we terminate with 7" = (¢™)™
and if we set #"~ ' = u in the following result we obtain a bound on the

loss of optimality if #” is used.

Resuit 3.21. Select u: I— R. Let
Tu=T%% and 7=(6)". (3.176)

Then if arg maximum [7°u4] is a singleton
beA

g=2g" 2 g-span(Tu — u). (3.177)

Proof. Inequality (3.67) for the discounted problem gives (using suffix
p for v, T and =)

v, 2 U 20, — (pf (1 —p))span(T,u — u)e. (3.178)
Now use (2.104) in a similar manner to obtain

limit [(1 - ps)un] = g, limit [(1 — p)vi~] = g"  (3.179)

§ T

where {p;] is a sequence tending to 1. The second equality in (3.179)
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arises from the fact that =,, may be taken to be fixed if s is large

enough. It then has a limit #*=(§) with 6 € arg maximum [7°u].
§€a

Because the latter is a singleton by assumption, this limit is the same

as .
We then obtain the requisite result if we combine (3.178) and (3.179).
Q

Example. Let us do the example given in Table 3.3 which we repeat as
Table 3.6 (Howard (23], p. 40).

(i) Select 6®°=(1,1), #°=(0"™.
(ii) Solve

W)+ h°=6+0.54"(1) + 0.54°(2),
w2 @2)+h%= =3 +0.4u°(1) +0.6u°(2),
u°2)=0.

We obtain 4% =1, x°(1) = 10, u°(2) = 0.
(iii) Find

1 . k=1:6+0.5x10+0.5%x0
o' (1) € arg maximum )

k=2:4+0.8x10+0.2%X0
i.e.

1 . k=1:11] _
g (1) €arg max1mum[k=2: 12] = {2}.

Table 3.6 Data for toymaker problem
(reproduced from [23] Howard (1960),
p. 40, by permission of The MIT Press)

Transition  Expected
State Action probability rew:kzrd
k

i k Dij ri

1 1 0.5 0.5 6
2 0.8 0.2 4

2 1 0.4 0.6 -3

2 0.7 0.3 =5
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Find

k=1 —3+O.4><10+O.6><O]

1 .
G(Dea@ﬂm“mm“h:z;—5+07x10+a3x0

i.e.
1 . k=1:1 _
g (2) €arg max1mum[k: 5 2] = {2}].
Thus
o'=(2,2).
(ii) Solve

W' +h'=4+08xu'(1)+02xu'Q),
W@ +h'=-5+0.7xu'(1)+03xu'Q),
u'@)=0.

We obtain #' =2, u'(1)=10, u'(2) = 0.
(iii) Hence u'= u° and we see that

o' €arg maximum [T%u'(=T%u%)].
se

Hence from (3.156) we terminate with

6=1(2,2), g=h=2,
u(l) =10, u(2)=0.

3.3 ABSORBING STATE PROBLEMS. STATIONARY

CASE
We wish to solve the equations (see (2.127) and (2.128))
u=Tu, (3.180)
u(i)=0, Vvi€l,. (3.181)

We will not deal in detail with this. Under the condition (2.126) the
value iteration and policy space iteration results given for the dis-
counted problem all hold, viz. Results 3.6, 3.7, 3.13 and 3.14.
Detailed analyses may be found in Derman [15], Chapter 5, Mine
and Osaki [34], pp. 42—44 and in White [58], pp. 9—16, under various
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conditions. The rates of convergence depend upon the nature of the
transition matrices. For discounted absorbing state problems all the
discounted results apply.

3.4 ELIMINATION OF NON-OPTIMAL ACTIONS.
INFINITE HORIZON STATIONARY CASE
(White [58], pp. 114—118)

In each of the cases considered we need to solve certain equations. Let
us consider the following infinite horizon equations.

(a) Expected total discounted reward (see equation (3.1))

u=Tu. (3.182)

(b) Average expected reward per unit time (see equations (3.104) and
(3.105))

u+ he=Tu, (3.183)
u(@m)=0. (3.184)

We will assume no transient states for any decision rule.

(c) Expected total reward to absorption (see equations (3.180) and (3.181))
u=Tu, (3.189)
u()=0, viel,. (3.186)

The T operators in (3.182), (3.183) and (3.185) are essentially the same,
differing, in some cases, by a discount factor.

For each state i € / an action k € K (i) is optimal if and only if, using
u as v or w, as the case may be

[T*ul (i) = [Tul () = [Tu] (i), V¥ q€K(@). (3.187)

Any k which does not satisfy (3.187) cannot be optimal.
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Now suppose we have upper and lower bounding functions {u, v}
for u, so that

uuu. (3.188)

Suppose now that for some pair {k,i], k€ K(i) we have, for some
(g, 1], g€ K@)

[T*u] (i) < [T9] (). (3.189)
Then using Result 3.1 we have
(T u] (i) < (T al () < [T7) () < [Tl (i) (3.190)
Thus
(T*u] (i) < [Tl (). (3.191)

Thus & cannot be optimal for /.

Suppose now that we wish to operate a similar scheme to value itera-
tion scheme (3.26) but using action elimination. Let R,(i) now be the
non-eliminated actions for state / with n iterations remaining. Then
(3.26) takes a new form

n>1 fin = Tulin-1 (3.192)
where, for u: /— R.
(TAul Gy =ri+p 2 Phu(j), viel, (3.193)
gel
[(Tau] (i) = maximum [([T*u] ()], v i€l (3.194)
ke R.(1)

We cannot get an exactly analogous result to that of Result 3.11
because of the fact that although R,. (/) € R.(i) we need not have
R (i) € R, (i), and the corresponding {3.] inequality (3.61) may fail.
We do, however, have an analogue of inequality (3.50). The analogue
of (3.50) becomes

ln+ (o] (1 —p)Bre S U ln+ (pf(1 - p)dtne  (3.195)

where
nzl Op = maximum {&,(/) — d,- ()], (3.196)
1€/
B, = minimum [d,(7) = fn-1()]. (3.197)
€17

We also have the obvious analogue of (3.59).
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Thus in inequality (3.188) we may set, varying with each iteration n
in general in (3.192), using (3.189) for elimination purposes

nz? gn:an-l“"(p/(l"p))&n-ley (3.198)
Un=ln-1+ (o[ (1 = p))Bn-1e. (3.199)

Example. Let us take the example of Table 3.6 with p = 0.9, repeated
as Table 3.7.

n=0 ﬁo_—‘o,
n=1 a,(1) =6, 4;(2)= -3, Ri1(2)=R,(1)={1,2},
n=2  #=(60,51), w2=(-21,-30),

[Tuz] (1) = maximum[k: 1: 6+0.5 X (~21) +0.5 (—30)]

k=2:4+08x(-21)+0.2x(-30)

= —18.8,
[T'72]1(1)=6+0.5x 60+ 0.6 x 51 =61.5,

(T?;](1)=4+0.8x60+0.2x51=62.2.
Hence we cannot eliminate k=1 or k=2 fori=1.

k=1: -3+04x(-21)+0.6 x(-30)

(Tu212) = ma"im”m[k =2 —54+0.7%(-21)+0.3x (- 30)

= -28.7,
[T'%:] ()= —3+0.4%x60+0.6x51 =516,

[T?2]2)= -5+ 0.7x60+0.3 x51=52.3.

Table 3.7 Data for toymaker problem

Transition  Expected
State Action probability  reward

i k Py rk
1 1 0.5 0.5 6
2 0.8 0.2 4
2 1 0.4 0.6 -3
2 0.7 0.3 -5




FINITE HORIZON MARKOV DECISION PROCESSES 93

Hence we cannot eliminate k =1 or k =2 for i = 2. Thus 4,(1) = 7.78,
42(2) = —2.03, Ra(1) = R2(2) = {1, 2}.
n =3 If the analysis is carried out we see that we get no elimin-
ation. Thus #3(1) = 9.2362, #3(2) = —0.6467, R:(1) = R3(2) = {1,2}.
n=4 We find that

us(1) = 22.3420, us(2) = 12.4591,
us(1) = 21.4420, ua(2) = 11.5591.

We find that

[T'as] (1) < [T?us] (1),
[T'as] ) < [T?us] ().

Hence k = 1 is eliminated for both i =1 and i = 2. Thus we need do no
more calculations.

In performing computations it is to be noted that (3.189) is
equivalent to

[T*a] (i) < [Tu] (). (3.200)

3.5 FINITE HORIZON MARKOV DECISION PROCESSES

For the general, inclusive of non-stationary, case we have the iteration
procedure given by (2.59) and (2.61) viz.

Isn Un = Teldy +1,m, (3.201)
t=n+1  tnpr1,n=0. (3.202)

We may, of course, replace un+1,»=0 by any appropriate terminal
value function. Equations (3.201) and (3.202) may be solved by policy
space iteration also, by redefining the states (see (2.63) and (2.64)).
Action elimination approaches are also possible.

Now let us turn to a fundamental point concerning infinite horizon
processes, which we discussed on p. 41. Real-life problems have finite
horizons, albeit uncertain in duration. However, if the durations are
large (i.e. there is a large number of decision epochs) we may consider
the horizon to be effectively infinite.

Now it may be easier to solve infinite horizon problems than it is to
solve the corresponding finite horizon problems. The latter involve, in
general, non-stationary solutions even for stationary processes, €.g.
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see Tables 3.1 and 3.4 for discounted and non-discounted illustrations
respectively.

We may be able to solve the infinite horizon case, for stationary
parameters, more easily than solving the finite horizon case if we use
policy space iteration or if we use linear programming. We will discuss
the latter in Chapter 4. Alternatively, the value iteration method with
an appropriate initial value function, for the infinite horizon case, may
converge satisfactorily in less iterations than the number of time units
in the finite horizon case.

Let w = (8)~ be an optimal policy for the stationary infinite horizon
case. The question is: how good is « for the finite horizon case? We
have the following results.

Resulr 3.22. Discounted case. If we set vp = vj =0 then
n=0 vh S U< Un+p" spanfv]e. (3.203)

In (3.203) v is the optimal infinite horizon expected total discounted
value function, =« is an optimal infinite horizon policy and v, the
optimal » time unit expected total discounted reward function with
Up = 0.

Proof. We have
v=20", (3.204)
Then

U= Ul + p" (PO, (3.205)

Identity (3.205) just says that, for each /€ [/, the infinite horizon
expected total discounted reward using policy = = (6)~ is the sum of the
expected total discounted reward over n time units and the expected
total discounted reward for the remaining infinite horizon. It is also
clear that v™ is at least as good as one obtains using any policy 7, and

hence, in particular, when 7= (o, 0n-1, ., ., 01, (6)7) where
o, € arg maximum [T%vs-1], 1<s<n (3.206)
bEN
and hence

Un = Un. (3.207)
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Then
V> vnt p"(H P‘S') o, (3.208)
t=1

Combining (3.205) and (3.208) we obtain

Un = v,,+p"<H P“‘—(P‘S)")v". (3.209)
s=1
Now
Un 2 Un. (3.210)
Thus we obtain our requisite result. o

Result 3.23. Average reward case. If vg =0 then
nzl gn < & < gn + (span(u)/n)e (3.211)
where (see (2.15))
gn="Un[n, gn=Un[n (3.212)
and u is a solution to (2.85) and (2.86).

Proof. We follow a similar analysis to that of p. 47. Let Jp = u, and 0,
be the optimal » time units expected total reward function for this case
(see p. 47). Then

n=s>| U,=To,_1=T%,_1, (3.213)
Vs = Tus- (3.214)

where 6 is defined on p. 47.
Combining (3.213) and (3.214) we have inductively.

H_Z‘I Un 2 Un+ P (0n-y —Un-1)

> oo+ (n P"‘)u. (3.215)
s=1

Clearly we also have, with # =(6)”

Ur = Un= —(P%)"u. (3.216)
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Combining (3.215) and (3.216) we obtain

VE > vnt ((H P"*) - (P“)")u. (3.217)
s=1
Also
vn < Un. (3.218)
Hence our requisite result follows. O

Note that (3.211) is a function result.

3.6 EXERCISES FOR CHAPTER 3

1. For the data of Exercise 4 of Chapter 2 state and check Results 3.4,
3.7, 3.8, 3.10-3.12. In Result 3.4 restrict = to optimal policies.

2. For the same problem in Table 1.8, with p = 0.9 carry out an action-
elimination exercise using (3.195)—(3.197), (3.198), (3.199), estab-
lishing first of all that (3.195) is valid in general.

3. Explain why, for the action-elimination scheme of (3.192)—(3.199),
the analogue of Result 3.11 might not completely hold. Explain
which part will hold and which will not.

4. Prove Result 3.18 under the conditions (3.109) and (3.110). Refer to
other results needed to prove this.

5. Result 2.10 says that all stationary policy solutions to (2.85) and
(2.86) are optimal. Give a simple example of an optimal stationary
policy which does not satisfy (2.85) and (2.86) and explain intuit-
ively why this arises.

6. Give an example to show that the converse of Result 3.13 does not
hold, i.e. a policy which is optimal for the infinite horizon problem
need not be optimal for any finite n in the value iteration scheme
(3.26).

7. The optimality equation for a certain infinite horizon expected total
discounted cost Markov decision process is as follows:

u(1) = minimum [90 +0.45u(1) + 0.45u(2) ]

100 + 0.45u(1) + 0.454(3)
190 +0.63u(l) +0.27u(2)
u@) = m‘”‘m”m[m +0.63u(l) + O.27u(3)]’
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90 + 0.27u(1) + 0.63u(2)

u(3)=m1mmum[140+0‘27u(1) +0.63u(3)]

Note that this is in minimisation form.

With careful explanation of your calculations, and statements of
any theoretical results you use, determine whether or not the policy
7 = (8)°, where 6 = (1, 2, 1), is a uniquely optimal policy among the
stationary deterministic Markov policies.

. The data for a two-state, two-action Markov decision process is as
follows:

Transition
State Action  probability Reward
i k pf rh
1 1 0.5 0.5 20 10

-
2 0.8 0.2 18 8

2 1 0.25 0.75 15 8

2 0.5 0.5 13 6

Consider the problem of maximising the infinite horizon average
expected reward per unit time, and the policy 7 =(8), where
6 = (2, 2). Determine whether this policy is optimal, explaining care-
fully, with reference to appropriate results, how you obtain your
answer and formally stating the equations used. You may assume
that the problem is uni-chain.

. For action elimination determine {i.} for n =1, 2, and the optimal
decision rules, using the data of Exercise 7 carefully explaining the
analysis.



CHAPTER 4

Linear programming
formulations for Markov
decision processes

4.1 INTRODUCTORY REMARKS

Kallenberg [24] gives the most comprehensive linear programming
treatment of Markov decision processes. Derman [15] and Mine and
Osaki [34] contain some material. This chapter is based on White [58],
Chapter 7. As with our earlier treatment our problems are put in a
maximisation form, whereas White [58] uses a minimisation form. The
principles are exactly the same. We first of all give the result concerning
the minimal elements of a set of functions which we will use.

Let V< {u: I = R). Then u™¢€ V is said to be a minimal element in
V with respect to < if whenever u€ V and u < u* then u = u*, i.e. no
point in V can dominate u*.

Our conventions are as follows with u,u’ € V (see (3.5)):

usu' 2ul)y<u’'(i), viel, 4.1)
u=u'2ul)y=u'(l), Vviel, (4.2)
uzu' 2u()yzu'(i), viel, (4.3)
u>u'2u(iy>u'(i), viel, (4.4)
u<u'2u(@@)y<u'(i), viel. (4.5)

Result 4.1. Let e R™, x>0 and let «* minimise {)\uz > )\,-u(i)J

e
over V. Then u* is a minimal element of X with respect to <.

Proof. If u™ is not a minimal element then there is a u’ ¢ V with
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u' <u* u' #u* Then, because A >0, we have A\u' < Au™ contra-

dicting the assumption that »* minimises [\u] over V. o

4.2 INFINITE HORIZON EXPECTED TOTAL
DISCOUNTED REWARD. STATIONARY CASE

We begin with our basic equation which we need to solve (see equation
(2.66))

u="Tu. (4.6)

Let v be the unique solution to equation (4.6). Now consider the set of
functions S < {u: I — R} given by

S = {u: I— R satisfying the following inequality (4.8)}: (4.7)
u> Tu. (4.8)

The function u €S is said to be a superharmonic (Kallenberg [24],
p. 52).
Inequality (4.8) is the same as

u(@) = [T u] (i)
=rf+p 3 phu(y), viel, keK(). (4.9)
je !

Treating {u(/)] as variables, (4.9) is a set of >, # K (/) inequalities in
1el

m variables where # I =m.
We now prove the following result as a precursor to our main result.

Resulr 4.2, The function v is a unique minimal element of S with
respect to <.

Proof. Let u be any member of S. Then

uzTu. (4.10)
Also

v=Tv. (4.11)
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Hence
u—vzTu-Tv. 4.12)
Let
Tv = T®. (4.13)
Then

u—v2Tu—-T%
=pP6(u—U). (4.14)
Repeating (4.14) s times we obtain
u—v2p(PH’(u-v), Vs (4.15)
Letting s tend to infinity in (4.15) we obtain
uzv. 4.16)
If weS and u < v then
u=uv. (4.17)
Hence v is a minimal element. It is also unique, for let ¥’ be another
minimal element. Then from (4.16) and the fact that ' is a minimal
element we have u' = v. O
The function v is often called a least element, or a perfect solution,
or a feasible ideal solution of § with respect to <.

We may now use Results 4.1 and 4.2 to obtain our first linear
programming result.

Result 4.3 (White [58], Theorem 7.4). Let N€ R™, x>0, >, \i=1.

€/
Consider the following linear programme.
LPI
minimise [Au] (4.18)
u
subject to
u> Tu. (4.19)

Then v is a unique solution to LP1. The optimal actions for each i€ /
are given by those k € K(i) in equalities (4.9) for which, in the optimal
solution, the inequalities are realised as equalities.
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Proof. With V= Sin Result 4.1 any solution to’LP1 must be a minimal
element. From Result 4.2 this must be v.
Because v satisfies

u=Tu (4.20)
an optimal § satisfies, with & = 8(J)
u(@)y=[T°Pu) (), viel (4.21)

and this gives equality in (4.9) for (k, i), for all i€ I, k = 8(i). O
We may now dualise LP1 to obtain the following dual linear
programme. We first of all lay (4.19) in LP1 out in full for this purpose.

M- pP r
M= ebrl s 2 (4.22)
My - me I'm

M, has ones in the ith column and zeros elsewhere, Vv i€, (4.23)

pi
pt K_ ok ok K ,
Pi= : s pi = [p“’piZa'Hpim]a VIGI’ (4'24)

m

Pi

ri= ||, viel (4.25)

DLPI (White [58], p. 80, Mine and Osaki [34], p. 10)

maximise[ > r,"x,"] (4.26)
x i€ [,keK(i)
subject to
S oxk—-p 3 phixf=N, viel, (4.27)
k€ K(i) J€ LkeK{j)
xk>0, viel, keK(). (4.28)

We have the following result relating basic feasible solutions of DLP
1 and Ilp (the set of stationary deterministic Markov policies (see

p. 27)).
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Result 4.4 (Mine and Osaki [34], Theorem 2.9). There is a one-one
correspondence between I[1p and the basic feasible solution set of
DLPI1 and the latter are all non-degenerate.

Proof. DLP1 has m main inequalities and hence a basic feasible
solution contains m members. Because A > 0 and x > 0 we must have

> xk>0, viel (4.29)

AeN(n)

Hence for each i€l at least one x/ is positive for some k€ K(i).
However, we Lan only have m positive {x}} values and, for each i € /,
exactly one x/ is positive for some k€ K(i). Thus basic feasible
solutions are non-degenerate.

Now we need to look at the meaning of {xF}. In order to do this let
us use the formulation {x7¥(s)} (see Result 2.1) where, for a given
policy 7, xT*(¢) is the probability, for a given starting state X = /1, that
at the beginning of time unit ¢ we will be in state i € I and will take
action k € K(i).

Let us generalise {x7¥(s)] to be conditional on prior probabilities
{\,] where

A = probability(X,=j), v jel. (4.30)

We then have the following equations:

SoxMy=N, Viel, (4.31)
KeN()
> > oxMn= 3 pkx™u-1), viel (4.32)
- A€ A JelLkeR(s)
Now define
=3 o' X% (). (4.33)
=1

We then see that {x""] satisfy the dual constraints (4.29) and (4.30).

Now for any policy = = (6)*€Ilp, for each i€ I only one x for
some k € K(i) can be positive, because a definite & is chosen for each
i. Thus {x™} is a basic feasible solution of (4.27) and (4.28).
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Conversely, suppose that {x}} is a basic feasible solution of (4.27)
and (4.28). Consider the policy 7 = (6) where

s()y=k if x>0, viel (4.34)
Using (4.31) and (4.32), {x¥}] will be given by (4.33) with 7 = (§).

Numerical example. Let us look at our example of Table 1.8 with
p = 0.9, retabulated as Table 4.1.

LPI
mini“rnise [Nu (D) + hau(2)] (4.35)
subject to
=1 u(l) 2 6 +0.45u(1) + 0.45u(2), (4.36)
u(l) 24 +0.72u(1) + 0.18u(2), (4.37)
i=2 w2 2 -3+036u(l)+0.54u(2), (4.38)
u(2) 2 -5+0.63u(l) + 0.27u(2). (4.39)

The solution is (see p. 43)

u(l)y=uv(l)=22.2, u2)=v(2)=12.3. (4.40)

Table 4.1 Complete data for toymaker problem

Transition Expected
State Action probability Reward reward

i k Pl rk rk
1 1 0.5 0.5 9 3 6

2 0.8 0.2 4 4 4 J

|

2 1 0.4 0.6 3 -7 -3 \

2 0.7 0.3 1 -19 -5 |

i il




104 LINEAR PROGRAMMING FORMULATIONS

Inequalities (4.37) and (4.39) are realised as equalities. Therefore
6(1) = 6(2) = 2. The solution is independent of (A, N\2) providing A > 0.

The optimal objective function value is

2220 + 1231,
DLPI
maximise [6x}+ d4x? —3x}—-5x3)

subject to

xi+ x}-0.45x1 —0.72x3 - 0.36x3 - 0.63x% = \y,

T~
M

x3+ x3-0.45x} -0.18x3 — 0.54x} - 0.27x} = \,.

T~
.

Equations (4.43) and (4.44) become

0.55x} +0.28x% - 0.36x3 ~ 0.63x3 = \,,

i

I

~0.45x1 - 0.18x% + 0.46x}3 + 0.73x3 = ).

L]

In addition we have

\"
o

xt>20, xiz0, x3>0, «x

The solution is

The objective function value is
2220 + 123,

Expressions (4.41) and (4.48) are identical.

4.3 INFINITE HORIZON AVERAGE EXPECTED

(4.41)

(4.42)

(4.43)
(4.44)

(4.45)
(4.46)

(4.47)

(4.48)

REWARD PER UNIT TIME. STATIONARY CASE

We will only consider the uni-chain case (see p.45). Our basic



INFINITE HORIZON AVERAGE EXPECTED PER UNIT TIME 105

equation is then (see (3.103)—(3.105))
u+ he="Tu, (4.49)
u(m)=0. (4.50)

We will not be able to use a result similar to that of Result 4.2. It is
possible to use a least element approach (see p. 100). For example (see
Denardo [14] and Kallenberg [24], Chapter 5 on bias optimality) for
the optimal value of the gain g, a least normalised (equivalent) bias
function w of the linear programming inequalities which we will use
does exist. For the multiple-chain case the optimal gain function g will
also be a least element of the corresponding inequalities. Our approach
will be simply aimed at finding the optimal gain g.

Result 4.5 (White [58], Theorem 7.7). Consider the following linear
programme:

LP2
minimise [A] (4.51)
u,h
subject to
u+he> Tu, (4.52)
u(m)=0. (4.53)

If no policy = =(8)™ has transient states then LP2 and (4.49) and
(4.50) have the same unique solution (w, g). The optimal actions for
each i€ I are given by those k € K(i) in (4.52) for which, in an optimal
solution, the inequalities are realised as equalities.

Proof. If (w, g) is a solution to (4.49), (4.50) and (v, k) is any optimal
solution of LP2 we have for some &

w—uy+(g-he<Tw-Tu
=T%w—Tu
< Tw- T

P¥(w—u). (4.54)
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If 6° (see p. 51) is the limiting average state probability vector for P?,
from (4.54) we have by premultiplying everything by 6°

(g-h)<O. (4.55)
Because (w, g) is feasible for LP2 we have the converse of (4.55). Thus
g=h. (4.56)
Now let g = h. Then (4.54) takes the form
w-u=d+ P'(w-u) (4.57)
where
d<0.
Premultiplying (4.57) by 6° we have
9°d =0. (4.58)
Because P° has no transient states we have
6:>0, viel. (4.59)
Hence
d=0, viel (4.60)

Then (4.57) reduces to
w—u= P'w—u). (4.61)
From (2.81) (i.e. rank(U — P®) = m — 1), (4.50) for w and (4.53) for
u, the solution to (4.61) is
w=u. (4.62)

Thus (w, g) is an optimal solution to LP2 and is uniquely defined.
Because (w, g) satisfies (4.49) and (4.50), so does (u, h).

An optimal 6 satisfies, with k = 6(i)
w(i)+ ge= [T°POw) (), viel (4.63)

Thus with (4, #) = (w, g) the optimal action &k for a given / is such that
we have equality in the corresponding inequality in (4.52). O

In Result 4.5 we have assumed that no policy has any transient states.
This was only required to prove that d =0 in (4.60) in order to show
that (w, g) is also a unique optimal solution to LP2. Result 4.5 holds
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even without the no-transient-states condition. If we drop the no-
transient states condition we obtain the following more easily proved
result.

Result 4.6. Any solution (w, g) to (4.49) and (4.50) is also a solution
to LP2. For such a solution the actions are given by those k € K(i) in
inequality (4.52) for which, in this solution, the inequalities are realised
as equalities. Any such decision rule solution generated by LP2 is
optimal.

Proof. The first part follows up to (4.56) as for the proof of Result 4.5.
The second part follows as for Result 4.5 from the fact that (w, g) satis-
fies (4.49) leading to (4.63). The last part follows after noting that, by
setting 6(/) = k in the places where equalities occur in inequality (4.52),
with (u, h) = (w, g), we generate a policy = = ()™ with an optimal g"
value. C

Let us now turn to the dual problem for LP2. For ease of use note
that (4.52) may be laid out as for (4.19) in (4.22)—(4.25), setting p = 1
and adding he to the left-hand side of (4.22) for each i€ /.

DLP2 (White [58], pp. 83—84, Mine and Osaki [34], p. 32)

maximise { >, r,"x,"] (4.64)
x i€ lLkeK)
subject to
> oxk- 3 pkxf=0, viel, (4.65)
kER) Je LKEK)
Xm + Z an - Z p_;(mx_/k = 0, (466)
keKim) jeLkeK()
xk= 1, (4.67)
i€ lkeK{)
xk>0, viel keK(i), xm unsigned. (4.68)

Equality (4.66) corresponds to u(m) =0 in LP1 and is redundant.
We have a result corresponding to Result 4.4 for the discounted
problem, i.e. there is a one-one correspondence between ITp and the
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basic feasible solutions of DLP2 (see Kallenberg [24], Theorem 4.6.1
plus Remark 4.7.4). We have the following more simply proved result.

Result 4.7. To each «w € Ilp corresponds to a basic feasible solution x"
of DLP2. To each basic feasible solution x of DLP2 such that for each
i€el, x¥>0 for exactly one k¢ K(i), there corresponds a policy
7 €Ilp. To each optimal policy w € ITp satisfying (4.49) and (4.50)
there corresponds an optimal basic feasible solution x™ of DLP2. Each
optimal basic feasible solution x to DLP2 corresponds to an optimal
policy n* € Ip.

Proof. Let us define for 6¢€ A (see 1.17)

P®* = limit [(,Z (P“)“')/n]. (4.69)
n - o =1
This limit exists (see Mine and Osaki [34], Lemma 3.3) and all the rows
of P®* will be the same as 6° (see p. 51) where, for i€ I, 6¢ is the
limiting average probability that the system will be in state 7 if policy
7 =(8)~ is used.
From (2.117) we have

6° =6°P°. (4.70)
Let

xk=0% ifk=6(),iel,
=0, otherwise. (4.71)

Then (4.70) and (4.71) give exactly the set of equalities (4.65) of DLP2.
Because (see (2.116))

Z, 6?=1, 6°>0 (4.72)
1€
we see that (4.65)—(4.68) are satisfied. Thus, each = €Ilp gives a
feasible solution x™ of DLP2. It is a basic solution because DLP2 has
(m + 1) main constraints, excluding the redundant equality (4.66), and
the rank of (U— P%)is (m — 1) (see (2.81)). Here x can be degenerate,
i.e. x} =0, for some i€ I and all k € K(i) with i corresponding to a tran-
sient state.

Now consider any basic feasible solution of DLP2 for which x¥ >0
for exactly one k € K(i) for each i€ 1. If x} > 0 set 6(i) = k.
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Because {x}] satisfies (4.65)—(4.68), if we use (4.70) and (4.71) in
reverse we see that 6° satisfies (4.70) and (4.72). Thus 6° is the limiting
average state probapbility vector for policy 7* = (8).

Now let = be any optimal policy in ITp which satisfies (4.49) and
(4.50) (see Result 2.10). Then (4.56) still holds and it gives rise to a solu-
tion (w, g) to LP2 and, in turn, to a basic feasible optimal solution x™
to DLP2.

Finally, consider any optimal basic feasible solution x to DLP2 with
exactly one x¥ > 0, k€ K(i) for each i ¢ I. By construction, and using
duality complementary slackness conditions, we see that its corre-
sponding policy =* satisfies (4.49) and (4.50) and hence, from Result
2.10, is optimal in Ip. O

Example. We consider the toymaker example of Table 1.8, reproduced
here as Table 4.2.

LP2
minuirhnise (A (4.73)
subject to
i=1  u(l)+h>6+0.5u(1) +0.5u(2), (4.74)
u(l) +h=24+0.8u(l)+0.2u(2), (4.75)
i=2 u)+h =2 -3+0.4u(1) +0.6u(2), (4.76)

Table 4.2 Complete data for toymaker problem

Transition Expected
State Action probability Reward reward
I k pfj- rfj— rk
1 1 0.5 0.5 9 3 6
2 0.8 0.2 4 4 4
2 1 0.4 0.6 3 -7 -3
2 0.7 0.3 1 -19 -5
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u)+h > —5+0.7u(l) + 0.3u(2),

u2)=0.

4.77)
4.78)

The solution is (see p. 52) h=g=2, u(1)=w(1) =10, u(2) = w(2) =0,

8(1)=6(2) = 2.

The decision rule 6 is obtained from the realised equalities in (4.75)

and (4.77).

DLP2

minimise[6x] + 4x] — 3x) — 5x3]

subject to

|
I

Il

|

X3+ x3-0.5x)-0.2x3 ~0.6x)—0.3x3

X+ 51 -05x —0.8x1-0.4x1-0.7x3=0

Ov

I

xlexi+xi+xi=1,

xi =0, x1 >0,

The solution is

xi=0.778,
x1=x3=0.
The objective function value is

X320, x3120.

x3=0.222,

g=2.

Also (1) = 5(2) = 2 because x>0, x1 =0, x3>0, x}=0.

4.4 ABSORBING STATE PROBLEMS. STATIONARY

CASE

(4.79)

(4.80)
(4.81)
(4.82)
(4.83)

The results for this case are similar to those of the discounted case
under the assumptions made in (2.126).
The primal and dual linear programmes are as follows. Let A€ R™,

A>0, D Ni=1.

1€l
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LP3 (White [58}, p.78)

minimise [Au) (4.84)

subject to
u>Tu, (4.85)
u(i)=0, vie€el,. (4.86)

DLP3 (White (58], pp. 78-79, Mine and Osaki [34], p. 43)

maximise [ > r,"x,-"} (4.87)

X te ] 1, ke K@)

subject to
Soxk— S pkxk=N, vieNL, (4.88)
keN()) 1eLkeRN ()
xi— 2 phxf=N, Viel, (4.89)
ATIN

xk>0, viell, k€ K(i), (4.90)
x, unsigned, v i€ I,. (4.91)

Equalities (4.89) are redundant in view of (4.91) which corresponds to
u(i)=0, viel, in LP3.

4.5 POLICY SPACE ITERATION METHOD AND
SIMPLEX BLOCK PIVOTING (Kallenberg [24], p. 132)

The policy space improvement step (see step (iii) in (3.84) for the dis-
counting case, and in (3.155) for the average reward case) are equiva-
lent to block pivoting in the dual problems DLP! and DLP2
respectively.

Let us look at the discounted problem first.

4.5.1 DISCOUNTED CASE

n+1

Let 7", #"*' be two successive policies with value function u”, u
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respectively. Then from (3.91) we have, for a prior probability vector
A for the initial states

AT = A"+ AU - pPT )T A (4.92)
where (see (3.89))
A" =(T" 'u" = T u"). (4.93)

Now

p! T (PTTH (4.94)

M8

NU=pP” )=\
!

The right-hand side of (4.94) is equal to the vector x™ as given in (4.33)
where 7 = (¢"*")*, adjusted for the prior probability vector A.
For k # ¢"*'(J)

x™=0. (4.95)

At iteration n + 1, 7 is to be freely chosen. Thus A"*' may be written
as A™ where

AT = [T*u" — T u™ (i), viel, keK(). (4.96)
Thus the right-hand side of (4.92) may be written as
a0 S xTkar, (4.97)
i€ LkeK()

We are free to choose = to maximise the summation in (4.97). We
replace {xF*, AT} by {x/, A}}. Then the {A}} in (4.97) are just the
shadow prices if we use the linear programme DLP1. We apply the
usual linear programming improvement step, but we are free to choose
k for each i. Hence we can change up to m variables {x/} at a time.
This is block pivoting.

Let us now look at the average reward case.

4.5.2 AVERAGE REWARD CASE
From (3.165) we have
A"l =h"+ 67 B""! (4.98)
where (see (3.160))
B" ' =T""u"— T7u". (4.99)
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If #=(""")* then
x =97, ifiel, k=ad"""'(}), (4.100)
=0 otherwise. (4.101)

The block pivoting result now follows as for the discounted case.

4.6 FINITE HORIZON PROBLEMS

The relevant equations are (see (3.201) and (3.202))
tsn Un = Tyt ,n, (4.102)
t=n+1 Unir1n=0, (4.103)

where the solution u,, is equal to v, the maximal expected total dis-
counted reward value function over the next n — ¢ + | time units begin-
ning at the beginning of time unit . We allow the parameters to be time
dependent.

The easier formal way to handle this is (see (2.63) and (2.64)) to
define a new state set /= Ix T, where '=1{1,2,.,.,.,.n+ 1}, and to
consider the problem as an absorbing state problem with an absorbing
state set

L=1x{n+1). (4.104)

We may then use the LP3 and DLP3 formulations, with the same
properties derivable from the stationary discounted problem.

Let A€ R™*" X>0, S Ay=1.

iellgegn

LP4 (see White [58], p. 89)

minimise [)\u= > )\,u,] (4.105)
u =1
subject to
1<tgn u 2 Tiu, (4.1006)
t=n+1 Uns1 =0, (4.107)

MER™, 1Kt <n, u= Uz, .,.,., U, u: I= R, 1<t<n.

(4.108)
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DL P4 (White [58], p. 89)

-1
maximise { > ( p(s))x,"(t)r,"(t)} (4.109)
X 0

el ke Nyl €r<n \s=

subject to

> xke+D- Y phxF@) =N,

Aeh 1) JelkeN.( )

viel, 1<r<n-1, (4.110)

S oxkMy=w,, viel, (4.111)

A€ )
xk()=0, viel, keK.(), 1<t<n—-1. (4.112)

In (4.112) we do not need r=n, because ¢t =n is not in (4.110).
However, we can cater for different terminal values.

It is possible to put ;=0 for any i€/, t > | in LP4 and in DLP4.
This will have the effect of possibly producing decision rules for time
unit ¢ which are not optimal for that /, but optimal rules will be given
forie I, t = | for which A\; > 0. In the dual DLP4, setting A\;; = 0 may
result in state i € I, for time unit ¢ having zero probability, in which case
whether or not a rule is optimal for this / for time unit ¢ is irrelevant.

If we use LP4 or DLP4 to solve our problem, the variables are func-
tions of ¢, even in the stationary case. However, in the latter case we
may consider the infinite horizon case, n = «, and solve LP1 or DLPI
to produce solutions in terms of the state space /. We may then use
Result 3.22 where now {vy, va, v} are defined on the state space I (see
p. 113).

Similar comments apply for the average reward case, via Result 3.23.

4.7 EXERCISES FOR CHAPTER 4

1. For the data of Exercise 4 of Chapter 2 for an infinite horizon
expected discounted Markov decision process

(i) state the primal linear programme;
(ii) state the dual linear programme;
(iii) using the linear programming formulations in (i) and in (ii),
separately show that the policy = = (8)™, where 8(1) = 8(2) = 2,
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5(3) =1, is optimal, carefully explaining why the policy is
optimal and obtaining the form of the optimal objective
functions as functions of the initial state probabilities.

2. Formulate the inventory, queuing and defective product problems,
given at the end of Chapter 2, as linear programmes using the dual
formulation, making due reference to the appropriate parts of the
text, and to defining your decision variables. You may assume a
uni-chain structure where needed. The {r}}, {p%} must be explicitly
put into your equations as functions of the random variables of the
problems.



CHAPTER 5

Semi-Markov decision
processes

S.1 INTRODUCTORY REMARKS

So far we have assumed that decisions are taken at each of a sequence
of unit time intervals. In this chapter we will allow decisions to be taken
at varying integral multiples of the unit time interval. The interval
between decisions may be predetermined or random.

We will call these processes ‘semi-Markov decision processes’.
However, strictly speaking semi-Markov decision processes are more
restrictive (e.g. see Mine and Osaki [34], Chapter 6). Strictly speaking
they relate to situations where decisions are taken when a change of
state occurs. We wish to allow decisions to be taken even if the state
does not change at successive decision epochs.

5.1.1 ILLUSTRATION. QUEUING

On p. 55 we discussed a simple queuing problem where decisions were
taken at each of a succession of unit time intervals, and this gives us
a Markov decision process. However, we could equally well take deci-
sions (a) when a customer arrives, or (b) when a customer departs. In
these cases the decision epoch intervals are random variables.

In case (a) if I" is the random interval between decision epochs we
have, independently of state and time

probability(C=v) = p(1 - p)*™', vy>1. (5.1

In case (b), independently of time, if the system is not empty (i.e.i > 1)
then

probability(T =vy)=q(1—-¢q)"', vy>1. (5.2)
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For an empty system (i.e. i=0) if p#gq
probability(l' = y) = pg((1 —¢)" ' = (1 - p) " H(p-q), ¥Yv=2.
(5.3)

If p=gq (5.3) becomes (y — 1)p>.
We make the following notes:

(i) The following is based upon White [58], Chapter 4.

(i) In White [58] ‘minimisation’ is used, but the translation from
‘minimisation’ to ‘maximisation’ is straightforward.

(iii) We will consider the infinite horizon stationary case only. Non-
stationary and finite horizon cases may be treated as extensions as
for Markov decision processes.

(iv) We will be a little less formal than we have been up until now in
proving certain results. The analyses given in earlier sections are
easily generalised, e.g. z-transforms, bound analysis, and so on.
Indeed all the earlier work is a special case of a semi-Markov deci-
sion process with

probability(' =) =1, if y=1, (5.49)
=0, Vy#I. (5.5)

(v) For the limiting average expected reward per unit time case we will
consider only the uni-chain case (see p. 45).

(vi) For the absorbing state case we will assume that, if non-
discounted, then condition (2.126) holds where ¢ now relates to the
rth decision epoch as distinct from the rth unit time interval. These
definitions are identical for a Markov decision process.

5.1.2 THE FRAMEWORK

Here X, (state), Y, (reward, or discounted reward), Z, (action) are
defined as for the Markov decision process (see p.25) noting, for
example, that Y, is now the reward, or discounted reward (discounted
back to the beginning of the rth decision epoch) in the interval between
the tth and (¢ + 1)th decision epochs.

The policy spaces are defined as for Markov decision processes (see
p. 27) noting that histories are still defined in terms of the new
{X:, Y, Z,) and make no reference to states and rewards arising at
times other than the decision epochs because we will be assuming that
the Markov property relates only to successive decision epochs.
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We need to generalise the transition probability form of (2.22). We
let I'; be the random integer number of time units between the fth and
(¢ + Dth decision epoch. Here I'; will be referred to as the ‘decision
interval’. Our Markov assumption is then, in the stationary case

prObability(X,H _/, P{ Y I H{ h, Z{ = k € K[(l))

= probability(X,+1 = j, i =v| X, =1,
Zi=ke K{(l)) (5 6)

= Pl 5.7

We assume that
1<y L<ow. (5.8)
If r%, is the reward in a decision interval, discounted to the beginning

of that interval, given /, j, v, k then let

rf=EY | Xi=i, Zi=k)= % phrly, viel, keK().

JELlI<y< L
(5.9)

We will not repeat the analysis of the Markov decision process
results. This is very similar and is easily constructed. We will concen-
trate on the basic equations, algorithms and some results without
proof.

5.2 INFINITE HORIZON EXPECTED TOTAL
DISCOUNTED REWARD (White [58], p. 15)

In this case the optimality equation (cf (2.66)) is
u=Fu (5.10)
where (cf. (2.55)-(2.57)) for u: I—- R

[Fu] (i) = maximum [r/‘+ 2 p”pﬁx,u(j)], viel (5.11)
L

ke K(i) JEINSy <

Fu)()=r}P+ X p"[Plul, Viel, (5.12)
1<y L

Fu = maximum [F%u) (5.13)

sea
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and
[PYly=p3", vijel (5.14)

Results 2.1 and 2.2, with our new interpretation of ¢, hold and we
may keep to Ty without loss. Similarly, as in Result 2.3 we may reduce
ITys to ITyp. Finally, we obtain Result 2.4 also, viz. our optimal value
function v is a solution to (5.10). This is explained on p. 51 of White
[58]. Result 2.5, viz. v is the unique solution to our optimality equation
(5.10), is easily established. Finally, Result 2.6, holds, viz. any policy
7 = (8)™ is optimal where 6 is a decision rule solution to our optimality
equation (5.10).

Thus we have the following result.

Result 5.1. The value function v of maximal expected total discounted
rewards is a unique solution to (5.10). Optimal stationary policies exist
and they all take the form = = (6)™, where 6 is any decision rule solution
to (5.10). O

Let us now look at algorithms.

These are analogous to those given in Chapter 3. We will not deal
with bounds or with action elimination. These may be found in White
[58], Chapter 9, Section 4. Procedures are very similar to those for the
Markov decision process case.

5.2.1 VALUE ITERATION (cf. (3.26) and (3.27) and White [58],
p. 70)

nzl tn= Filn_\, (5.15)

n=0 o = u, arbitrary, (5.16)

In White [58], p. 50 F is defined somewhat differently, to cater for
finite horizon equations. There, using ‘maximisation’ instead of
‘minimisation’ we have, with n being the number of time units
remaining

nzl Un=GUn-1,Un-2, .y .y Un—v), (5.17)

n<0 up, =0 (5.18)
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where G is defined by

G(un—l, Unp—24 .4 .y un—‘y)(i)

= maximum [r{‘ + Y p’pfhu,,_y(j)], viel (5.19)
keK(i) jeELIgy<
The function G is thus defined in White [58] on (Un—1, Un-2, -5 -5 Un-+)
and not just on u,-.
In (5.15) {in} is not the same as {u,} in (5.17). We may replace (5.18)
without loss for the infinite horizon case by

n<o0 u, =u, arbitrary. (5.20)

In (5.17) {u.) is consistent with {u,} as defined in (2.58) for Markov
decision processes with 7= G and, for Markov decision processes,
Un=un In (5.15), n has the interpretation of n decision epochs
remaining. In (5.17), n has the interpretation of n time units remaining.

Our use of F is consistent with the use in White (58], Chapter 6.

Analogously to Result 3.5 we have the following result which we will
not prove; o and 8 are as defined in (3.27) and (3.28) and, if X is the
random state at a decision epoch

p = maximum [E(p"| X =i)], (5.21)
1€l
p = minimum [E(p" | X =1i)]. (5.22)
- i€l
Also, as before
e(iy=1, Vviel (5.23)

Result 5.2.

i, + minimum [p"8,p"Ble < v
< U + maximum [p"«, p"a] e. (5.24)

O

As in Result 3.6, {i{i,} converges to v as n tends to infinity, with
respect to the norm || ||

We will give no more results. There will, for example, be results

analogous to Result 3.12 and so on, and these are similarly obtained.
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5.2.2 POLICY SPACE ITERATION (cf. (3.83)—(3.86) and White
[58], p. 51)

00

(i) Select an initial policy 7% = (6°)*.
(ii) Solve the equation

it =F7i° (5.25)

for ii°.
(iii) For a new policy 7' = (¢')* by finding

o' €arg maximum [F°i9). (5.26)
d€A

(iv) Replace ¢° in (i) by ¢', and repeat the procedure.

We have the following result analogous to Result 3.14.

Result 5.3 (White [58], pp. 52-53). The policy space method produces a
sequence {#"} which converges non-decreasing to v in a finite number of
iterations, with an optimal policy given by the terminating policy. O

Stopping rules may be considered using an analogous result to Result
3.12 with u = g".

5.3 INFINITE HORIZON AVERAGE EXPECTED
REWARD PER UNIT TIME (White [58], Chapter 5)

In this case the optimality equation may take one of two forms. The
first form is analogous to (3.103)—(3.106) as follows:

h = maximum [(r," + % phu(j) - u(i))

ke K JELISH <
/( 5 pﬁw)], viel, (5.27)
€el1<yg L

u(m)=20. (5.28)

The denominator in (5.27) is non-zero. This denominator is simply the
expected number of time units to the next decision epoch, given X =,
Z = k at the current decision epoch.
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The second form is a rearrangement of the first form as follows:

u(i) = maximum [r/‘ -h X phy
k€ Kii) iel1<y <L

v 3 Pt"j‘vu(j)], viel, (5.29)

Jjehl gy L
u(m)=0. (5.30)

Equations (5.27) and (5.29) are equivalent forms. They may be put in
operator forms

he = Hu (5.31)
or
u=H(h,u) (5.32)

with appropriate definitions of H, H.

Equation (5.32) is the more natural one on the basis of the following
argument. Let us follow (3.109) and assume that n is now the number
of time units over which we are optimising and u, is defined appro-
priately, with u,=0, although the latter is not necessary (see
(5.17)—(5.19)) and (see (3.109) and (3.110))

nz0 Up=ng+ W+ &, (5.33)
limit [e,] =0. (5.34)

Here g will be the optimal average expected reward per time unit.
Using (5.17) and (5.19) with p = 1 and substituting (5.33) we obtain

ng + w(i) + €,(i) = maximum [r,-" + > phn—v)g
k€Ki JelIS < L

+ w(j)+ en_y(j))ZI, viel (5.35)

Letting e,, .-, tend to zero as n tends to infinity and, cancelling ng on
the left-hand and right-hand sides of (5.35), we see that (w, g) satisfies
equation (5.32).

We will have the following result (cf. Result 2.10) which does not
require (5.33) to hold.
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Result 5.4 (White [58], Theorems 5.9, 5.10). Let é be any decision rule

solution to (5.27) and (5.28), or to (5.29) and (5.30), and let = = (8)”.

Then g" > g" for all 7¢Il and stationary policies exist which are

optimal for each state simultaneously. O
Let us now look briefly at algorithms.

5.3.1 VALUE ITERATION (cf. (3.106) and (3.107) and White
(58], p. 50)

We cannot use (5.15) as our iterative scheme because this would result
in maximising the expected reward between successive decision epochs
and not necessarily the average expected reward per unit time. The
scheme to use is as follows (see (5.17), (5.19), (5.20)):

I1> 1 un:—G(un-l,un—Z, -,.,un—'y), (5.36)

n<0 u,=u, arbitrary (5.37)

where G is given by (5.19) with p = 1. We will not analyse the behaviour
of this algorithm. Some results may be found in White [58), Chapter
5. Similar analyses to those given in pp. 76—81 are possible.

5.3.2 POLICY SPACE ITERATION (cf. (3.153)—(3.157) and
White [58], p. 59)

(i) Select an initial policy 7° = (¢°)*.
(ii) Solve the equations for (h°, u®)

hle=H"u® (5.38)
or
u® = 14" (h° u® (5.39)

(see (5.31) or (5.32) respectively with H® H°® being defined
analogously to H, H for 6 € A).
(iii) Find a new policy 7' = (¢')” by finding

o' € arg maximum [H°u® (5.40)
6€A
or
o' € arg maximum [H?®(h°, 1°)j. (5.41)

bEA
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(iv) Replace ¢ in (i) by o' and repeat the procedure.

Termination is as for (3.156) or (3.157) using H® or H® instead at T°.
We have the following result analogous to Result 3.19 where, for
6€eA

(Ply= 2 p¥P, vi jelL (5.42)

1€ygL

Result 5.5 (White [58], Theorems 5.3 and 5.4). If no transition prob-
ability matrix P? for § € A has any transient states, then the policy space
iteration method produces a sequence {#"} which converges increasing
to g in a finite number of iterations, and the terminating policy is
optimal, O

Where transient states arise, if we use the modified policy iteration
(see p. 87) the same results apply as in Result 3.20. As with Result 3.19,
the no-transient-states condition is not strictly necessary, providing
we use only terminating condition (3.156) with T° replaced by H*
or H®.

We will not analyse the behaviour of the policy space iteration
algorithm further, but a similar result to that of Result 3.21 is possible.

5.4 ABSORBING STATE PROBLEMS

We merely state that, for discounted problems, and for non-discounted
problems where the condition (2.126) holds, Result 5.1 and the value
iteration and policy space iteration Results 5.2 and 5.3 hold.

5.5 LINEAR PROGRAMMING

Linear programming approaches, both dual and primal, may be
developed in much the same way as for Markov decision processes (cf.
Chapter 4) and White [58], pp. 85-89 also gives linear programming
formulations.
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5.6 FINITE HORIZON PROBLEMS

Finite horizon formulations are possible following the lines of
pp. 33—39, with the linear programming approaches following the lines
of pp. 113114,

5.7 SOME ILLUSTRATIONS

(a) Inventory (cf. p. 54)

Suppose that we allow i to be negative and we use the rule: order stock
only when i < 0. Let ¢,(S) be the probability that the demand over «y
time units is S.

Suppose that as soon as i/ < 0 we put the stock level up to £ > 0, &
depending on /. Then k =iif i > 0. We will, for simplicity, assume that
the average stock level between decision epochs is

Wk +0) =ik, (5.43)

Then the semi-Markov analogue of equation (2.130) is as follows with
qo(0) =1, go(S) =0, S # 0. We include the case 7 > 0 if we happen to
begin our process when this is so. However, once i becomes negative
it is always negative at subsequent decision epochs.

i20 u@=_ X qy-1(S)q(s)
— S<is>i-S 1<y L

X {—IS+s—i)—taiy+p" 'u(i - S -s)}, (5.44)
i<0 u (i) = maximum [ g+-1(8)q(s)

k20 S<hks>k-S 1<y L

X {—c(k—f)—1(S+s—k)—gak7+p7“u(k—3—s)x]. (5.45)

(b) Queuing (cf. p. 55)

We will use case (a) of p. 116, viz. decisions are made when someone
arrives. Then (see (5.1))

probabilityT' =) = p(1 - p)*~', vy21. (5.46)
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We will use optimality equations (5.29) and (5.30). Equation (5.29)
then takes the form, where i, by definition, is the number in the system
at the time someone arrives, inclusive of the arrival, and k < m -1

u (i) = maximum [—c(i— k) + % , p(1 = p)Ylg¥(s)
Q '

0k <s<khklIgy

n
n

X {—1yQk+1-s)a+uk—s+1)}

B pa-prTy] 1<icm (5.47)
<yt

where g% (s) is the probability that, over v unit time units, s services

will be completed given k customers in the system.

We have used the average of initial system size k and the final system
size, represented by k — (s — 1), to approximate the waiting cost. The
term k — (s — 1) might equally well be represented by (k — s) if the last
completed service is not at the end of the 4th time unit, but we are
merely using an approximation.

(c) Process overhaul (White [57], pp. 100—103)
Let us consider a single process with the following features:

(i) The process is to be operated over an infinite time horizon.
(ii) If the process is operated for v time units the reward will be

r(a,b,v) (5.48)
where a, b are realisation of two random parameters 4, B with
probability(4 = a, B=b) = p(a, b). (5.49)

(iii) From time to time the process may be overhauled at a cost, which
we assume is included in the reward r(a, b, v).

(iv) When the process is overhauled the values of (a,b) are known
almost instantaneously. In effect, the process will run for a short
while and (a, b) then estimated.

(v) The problem, once (a, b) are known, is to decide at how many time
units later on the process should next be overhauled.

The state of the system immediately after an overhaul is i = (a, b) which
we assume takes a finite number of values. Let I be the state set.
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We will consider the limiting average expected reward per unit time
case only. The equation corresponding to (5.29) is as follows, with
I<y<L:

u(a, b) = maximum [r(a, b,v) — hy

1€y L

+ p(a"b')u(a’,b')], v (a,b)el. (5.50)

(a’.b)yel

If for (5.30) we put, instead of u(a,b) =0 for some (a,b)€ [

2 pla,bu(a,b)=0 (5.51)
(a, b)el
and set
p= ;Ip(a,b)u(a,b) (5.52)

then equation (5.50) transforms to

w= 2, p(a,b) maximum [r(a,b,v)— hy+4l. (5.53)

(a.byel I<ygL

Equivalently, (5.53) is

>, p(a,b) maximum [r(a,b,vy) - hy] =0. (5.54)
(a.byel 1<y L
Equation (5.50) may be solved using the policy space iteration
method of pp. 123—-124, However, it is easier to solve equation (5.54)
by varying (v, #) until equation (5.54) has been satisfied. If r(a, b, v)
has a suitable analytic form we could find, for each (a, b, h) triple, the
optimal 4 as a function of (a, b, k), and then analytically find the
optimal h(= g) value (e.g. see White [57] for the continuous (a, b)
case).
Once A has been found an optimal decision rule is given by
6(a, b) € arg maximum [r(a, b,v) — gv]. (5.59)

<y L

5.8 EXERCISES FOR CHAPTER 5§

1. In a semi-Markov decision process with two states and two actions
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in each state the transition probabilities and rewards are given as
follows:

State Action y=1 y=2 y=1 y=2
i k ph pi ri ri
1 1 0.2 03|03 0.2 9 319 3
1 2 0.6 0.1 ] 02 0.1 4 4 | 4 4
2 1 03 02|01 04 3 -7173 -7
2 2 04 0.11]03 0.2 1 -19 | 1 -19

(i) For the infinite horizon expected total discounted reward case
write down the optimality equations using the data of the
problem, but for a general discount factor p. Explain your
derivation with reference to the appropriate part of the text.

(ii) Determine, with due reference to the appropriate part of the
text, whether or not the policy = = (§)%, 6 = (2, 2) is optimal and
uniquely so for p =0.9.

2. For the infinite horizon average expected reward per unit time case
determine whether or not the policy = in Exercise 1 is optimal,
explaining your derivations with due reference to the appropriate
part of the text.

3. Prove that {(5.27),(5.28)} and {(5.29), (5.30)} will give exactly the
same {(u, h, 8)} solutions.

4. A machine may be functioning at performance levels 1, 2 or 3 or be
in a failed state. As soon as it is in a failed state this is known. The
machine is then restored to performance level 3 at a cost ¢(0), and
it has to be decided after how many time units it should next be
inspected. If a machine is not in a failed state its performance level
is only known on inspection at a cost a. Once an inspection has
taken place, and if the machine is not in a failed state, it has to be
decided when the next inspection should take place. A machine
operating at performance level / (which is assumed to be the same
through a time unit as it is at the beginning of that time unit)
produces an income r(/) in that time unit. If on inspection the
machine is found to be performing at level /(=1,2,3) at the
beginning of a time unit, it has a probability p(/, m,s) that its
performance level will be m at the end of the next s time units, with
p(l,m,s)=0if m >1 (i.e. its performance degrades by a minimal
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amount in each time unit). We allow the act of inspection to involve
changes in the machine, without specifying these, which will
influence the transition probabilities. m = 0 corresponds to a failed
state. Failures, when they occur, occur at the end of a time unit.
Formulate as semi-Markov decision process the problem of finding
a policy to maximise the infinite horizon average expected reward
per unit time.



CHAPTER 6

Partially observable and
adaptive Markov decision
processes

6.1 INTRODUCTORY REMARKS

In this chapter we will deal with stationary processes only. So far we
have assumed that

(i) at any decision epoch the primitive state i/ € / is known,;
(i) lpﬁ-], {r¥} are known.

In what follows we will deviate from these assumptions.

We will first of all deal with what is known as ‘partially observable
Markov decision processes’ in which {p%], {r¥} are known, but in
which, instead of the state i being known at a decision epoch, we have
some observation from which we can infer probabilities for the various
states in /. Thus we may not know whether a machine is working prop-
erly (state 1) or not (state 2) and we may only have external evidence
of the quality of its product. We then have to infer from this obser-
vation the probabilities of the machine being in either of its two states.

We will base our development on the paper by Smallwood and
Sondik [47].

We will then consider ‘adaptive Markov decision processes’ as they
are called, where the {p%], {r¥} depend upon some unknown vector
parameter #, but for which parameter we have an initial prior prob-
ability distribution. In this case the system may or may not be moving
between specified primitive states i€ I. Thus, in sequential sampling,
the quality p of a batch becomes the state i of the system, and this
remains essentially the same throughout for large batches and small
samples. In a queuing problem, whose primitive state / is the number
in the system, we may not know the arrival rate, but the primitive state
i/ changes and is known at each decision epoch.
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The partially observable and adaptive Markov decision processes
are, in essence, Bayesian decision processes but, because of their partic-
ular forms, are not referred to as such. For adaptive Markov decision
processes we will make use of White [57], Chapter 6, and we make a
brief reference to Martin [31].

In what follows all of the problems will take the form of standard
Markov decision processes, arrived at by redefining the state of the
system, in effect, to reflect the history of observations in different ways.
The new state sets will not necessarily be finite and hence this takes us
out of the realm, formally, of the class of problems which we have so
far studied. None the less with suitable housekeeping requirements
similar results are obtainable. We will not deal with the analysis leading
up to the equations which we will derive and will leave intuition to take
over the role of rigorous analysis.

6.2 PARTIALLY OBSERVABLE MARKOYV DECISION
PROCESSES

We make the same assumptions regarding the behaviour of our system
as for standard Markov decision processes (see Section 2.2). We will,
however, make the following additional assumptions:

(i) At any decision epoch the state i € / may not be known.

(ii) If the system is in state / € [ at any decision epoch, if action k€ K
(see (vi)) is taken and the transformed state is j € /, we also receive
some observation from a finite set D whose realisation will be
represented by d.

(iii) There is a probability g’ that if action k € K (see (vi)) has been
taken at the current decision epoch and the state at the next
decision epoch is j€ I, then the realised observation d € D will be
obtained.

(iv) There is a reward r&4 given (i, j, k, d), assumed to be received at
the beginning of the time unit. We let

Kk k k _k
ri= 2 Didlaria. (6.1)
jeldeD

(v) In order to model this problem our new state variable will be

/l.=(/l.1,/l.z,.../l.i,.,.,,u.m)GR'i' (62)
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with
2 mi=1 (6.3)
iel

where y; is the current probability that the system is in state i € /.

The new state space is M.
Initially we will have, for ¢t =1

p=p'. (6.4)

(vi) Because we do not, in general, know i € I we will assume that K (i)
is independent of i€ I, i.e.

K@i)=K, viel 6.5)

(vii) A general policy set IT can be defined analogously to that of the
Markov decision process case, where the history is now made up
of the initial x = ' plus all subsequent observations and actions.
However, for the purposes of the work in this chapter all we
require is the current p in (6.2).

We can restrict ourselves to deterministic Markov policies. A
deterministic Markov decision rule 6 is a function of u, and A will
be the set of all such decision rules.

If we take action k € K and at the next decision epoch observation
d € D is obtained then the new posterior probability vector is Q*%y,
where

= (2 mpf.-q.%)/( > wplali). viel (68
lel teljel

The operator Q*? is simply the operator transforming a prior prob-
ability vector u to a posterior probability vector given k € K, d € D. This
is simply the standard conditional probability result, the numerator in
(6.6) being the new probability of being in state i €  and receiving infor-
mation d € D, and the denominator in (6.6) being the probability of
receiving information € D, which is non-zero given that d€¢ D has
been received. If the denominator in (6.6) is zero then (6.6) is not
relevant.

With v,(n) now being defined in a manner analogous to (2.8) also
allowing a discount factor, we obtain formally the analogue of the opti-
mality equation (2.58), viz.

n>l1 Un= Mu,_, (6.7)
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where, for u: M— R

[M*‘u](u)=121mr?°‘>+p > D,up?,-‘“qj Ju(Qud ), (6.8)
€

leljelde
Mu = maximum [M%u], (6.9)
S€Aa
M={,LeR’f: Z;u=l]. (6.10)
tel

The infinite horizon discounted version of equation (6.7) will give the
following analogue of optimality equation (2.66):

u= Mu 6.11)

where M is as defined in (6.8) and (6.9). An average expected reward
per unit time version parallels equations (2.85) and (2.86). An
absorbing state version parallels equations (2.127) and (2.128).

Solving equation (6.7) and its counterparts can be very difficult. We
do, however, have one result which gives a piecewise linearity property
which is of some use for small 7 in equation (6.7) (see Smallwood and
Sondik [47]).

Result 6.1. In equation (6.7) if ug =0 then u, takes the form

nz20 Un(p) = maximum [o,spl (6.12)
- I <sg Cny

where {ans} € R™ and are given by the recurrence relation (6.15), the
members of K are numbered as b=1,2,.,., #K, and

Cin)=(#K)". (6.13)
Let n > 2 and

1<s<Cn) s=#K(a-1)+b,
0<a<g<Cin-1), 1<b<g #K. (6.14)

Then

n21l  ani=rl+p Y, plgiucn-1a» Vi€l, (6.15)
jel,deD

where {r}}, (P&}, {gla} are rewritten as (rf}, {p5}, lqk}.
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Proof. The result is trivially true for n=1 after setting, formally,
C0O)=1, 0pi=0, Vi€l

Suppose it is true with n — | replacing n in (6.12), (6.15) for some n.
Then substituting on the right-hand side (6.12) for n — 1 into equation
(6.7) we obtain, using b for 6(u), i for /in (6.8), and a for s in (6.12)

un(p) = maximum [Z wir?
1<bg #K 1€l

+0 Y wipYqla maximum [an—l.adeﬂ]] (6.16)
i€l jeldeD IgagCn-1)

= maximum [B5a(w)] (6.17)

Igbg #K1gas<Cn-1)

where
Bha(p) = ZI rlui
1€

b b
( Z CdePijan-n,ajm)
i€l jel

to N wPida - (6.18)
rebset ( )y qf"dpum)
ieljel
=% (rfee 3 Phafucnr o) (6.19)
1€l jel, deD
Thus if we put
Unsi=rl+p 2 PhqlaCn-1.q (6.20)
jeldeD
and use (6.14) we see that we have our requisite form. @)

In this formulation we have assumed that the observation is obtained
after the state at the next decision epoch has been realised. For some
problems the observation is obtained at the current decision epoch after
the current decision has been taken. For example, in the search problem
which we will discuss later (see p. 138), a location is searched and the
observation is obtained at that time and then, if the target is not
located, it may move to a new location. The only difference to the
earlier model is that, in (iii), p. 131, the new state j is replaced by the
current state i.
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The net effect is as follows:

(a) replace g% by gfs in the numerator of (6.6);

(b) replace g% by gl in the denominator of (6.6);

(c) replace ¢3f*’ by g’ in (6.8);

(d) replace g% by gl in (6.15);

(e) replace g% by g% in (6.16);

(f) replace ¢% by g% in numerator and denominator of (6.18);
(g) replace g% by g% in (6.19);

(h) replace g% by g% in (6.20).

Here g% in (iii) p. 131 is now interpreted as the probability that if the
system is in state i € I and decision k € K taken then observation d€ D
will be immediately received; r&q in (iv) p. 131 is also redefined, with
d € D as the immediate observation for current state i€ I, action k€ K
and transformed state j€ /.

6.2.1 SOME ILLUSTRATIONS

(a) Machine maintenance (Smallwood and Sondik [47])
We make the following assumptions:

(i) A machine has two identical components each of which may be in
a failed or in a non-failed state.

(ii) Each component has a probability of 0.1 of failing when it carries
out its operation on a unit of product, if it is in a non-failed state
prior to this, independently of the number of operations carried
out since its last non-failed state.

(iii) Each unit of product has to be operated on by both components.

(iv) A non-failed component does not produce a defective unit of
product. A failed component produces a defective unit of product
with probability 0.5.

(v) These are four possible actions which can be taken at each deci-
sion epoch immediately following the observation, if any, from
the result of the previous combined operations after one unit of
product has been operated on by the machine, viz.

Action Description
1 no physical action and no observation obtained;
2 examine the unit of product;
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(vi)

(vii)

3 inspect the machine and replace failed components if
any,
4 replace both components, with no inspection.

There are various costs and profits associated with the quality of
the product and the actions taken.

The net result of all the probabilities, costs and profits is given in
Table 6.1, where i = 1, 2, 3 corresponds to zero, one, or two failed
components respectively. Here 4 = 0 will correspond to a known
non-defective unit of product or to no examination of the unit of
product, and 4 =1 will correspond to a known defective unit
product. Although d = 0 means two different things, the meaning
of d is determined by k and thus {g%}, {r%} are well defined.
The problem is to find a unit product examination and component
inspection decision rule to maximise the expected total net profit
over a specified number n of units of product. Thus, time is
replaced by number of units of product. The theory is exactly the
same as that for time.

Table 6.1 Data for the maintenance problem*

Transition Observation  Expected
State Action probability probability reward
P:’? qla rk
J d
i k 1 2 3 0 1
1 1 0.81 0.18 0.01 1.00 0.00 0.9025
2 0.81 0.18 0.01 1.00 0.00 0.6525
3 1.00 0.00 0.00 1.00 0.00 —-0.5000
4 1.00 0.00 0.00 1.00 0.00 - 2.0000
2 1 0.00 0.90 0.10 1.00 0.00 0.4750
2 0.00 0.90 0.10 0.50 0.50 0.2250
3 1.00 0.00 0.00 1.00 0.00 -~ 1.5000
4 1.00 0.00 0.00 1.00 0.00 -~ 2.0000
3 1 0.00 0.00 1.00 1.00 0.00 0.2500
2 0.00 0.00 1.00 0.25 0.75 0.0000
3 1.00 0.00 0.00 1.00 0.00 —-2.5000
4 1.00 0.00 0.00 1.00 0.00 —~2.0000

* Table 6.1 and Figures 6.1 and 6.2 are reproduced from [47] Smallwood
and Sondik (1973), Operations Research, 21, by permission of the authors
and ORSA. © 1973 Operations Research Society of America. No further
reproduction permitted without the consent of the copyright owner.
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This problem falls into the class of problems in which the obser-
vation d is obtained after the current decision has been taken,
prior to the next decision, and thus we need the interpretation
given on p. 135. It is a finite horizon Markov decision process with
state set

M=(peRL: pi+p2+pa=1) (6.21)

where u; is the probability that the system is in state i/,
iefl,2,3} =1

We will not undertake all the calculations. For n =0, 1 we have the
following:

n=0  uo(p)=0, VpeM

—

u(p)=

k=1 0.90254, + 0.4750u2 + 0.2500u3
k=2 0.6525u1 + 0.2250u2 + 0.000043
k=3 —0.5000u; — 1.500u; — 2.5000u;3 |’
k=4 -2.000p, — 2.000u; — 2.000u;3

n=

maximum Vv ueM.

For all y € M the optimal decision rule is, for n =1

oi(p) =1

For n = 3, 4, Smallwood and Sondik [47] give the following triangular
coordinates representation of optimal decision rules {o3, 04} given in
Figures 6.1 and 6.2.

(1,00

(0,1,0) (0,0, 1)

Figure 6.1 Optimal decision rules for maintenance problem”*



138

PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

(1,0.0)

ga(u) =3

aa(p) =4

(0, 1,0) (0.0.1)

Figure 6.2 Optimal decision rules for maintenance problem*

(b) Search (Ross [40], pp. 67—68)

We make the following assumptions:

@
(ii)
(iii)
(iv)
)
(vi)

A target is in one of m locations i€ I={1,2,3,.,.,m}, with the
temporal location unknown to the searcher until its location is
determined.

The searcher chooses a location i€ I to search at a cost ¢;.

If the target is in location i € / there is a probability «; that it will
be found when that location is searched.

The search terminates when the target location has been deter-
mined (i.e. actually found by a search or is known to be in a
specific location).

If the target is in location /€ 7 but has not been located, it has a
probability p;; of moving to location j€ I.

The problem is to find a search policy which minimises the
expected total cost up to the time of locating the target.

This is an infinite horizon absorbing state Markov decision process with
the state set

M={ueRT: zu,:l,,;;o} (6.22)
i€l

where u is the current probability vector for the primitive states in /.
The absorbing states are {u'}, i€ I, where u;=1if i=j and p'=0 if
i#=j, foralli,jel Also K=1.
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In this case we need to use the g% formulation of p. 135, where g%
is the probability that if we search location k € I and the target is in
location i/ € I then the outcome will be d, where d = 0 corresponds to
not finding the target and d =1 corresponds to finding the target.

Thus

gh=1 ifi#zk, i kel,

=(1-ax) ifi=k, i kel, (6.23)
gh=1-gk, i, kel (6.24)
We also have rf = — ¢ for all i, k € I in order to be consistent with our

standard maximisation format.
Noting the comment (a) on {g%] (see p. 135) we have (see (6.6))

> wpi+ (1 — a)ukPri
(0% = e [Tw k

(I( Lizkjel

wprj + (1 — ak)px ;/ ij)
J

Z WPl — Qkpk Pki
= 1ot , Vi, kel (6.25)
(1 — okpr)
In the summation on the right-hand side of (6.8) for d =0, extended
to the absorbing state case, we have (modifying (6.8) in accordance
with (¢) on p. 135)

2 wplglo=(1 - axpx), V kel (6.26)

ltel el

Then (6.11) (for the absorbing state case) takes the form

/Z/ wPr — Qkpk Pk
€

u(u):ma)ii:r}um —ck + (1 — akpx)u 0= amn) ,
vV e M\{u'], (6.27)
uMy=0, viel, (6.28)
where
Pr = (Pir, P2y 5 - Phom). (6.29)

Equation (6.27) is more easily derived directly than by using (6.8).
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For the case of m =2, if we put u, = p, u2 =1 — p then equations
(6.27) and (6.28) take the following form, noting that p;; + pi2 = 1, for
alliel:

p£10,1} -
k=1 —c+(—-a1pu

(1 —ay) 1-p )
—_— +—_
X( PP a l )p21

u(p) = maximum (I -aip) ,
k=2: —c2+ (1 —a2(l — p)u
p (I—-e2)(1-p)
* ((1 —ad-p) P T 0 = p) "2')_
(6.30)
u(1) = u(0) = 0. (6.31)

In (iv) (p. 138) we have assumed that the process terminates when the
target is physically located by a search, or if u = u’ for some i € I. This
is a slight deviation from the actual problem of Ross [40], where the
process terminates only when an actual search finds the target. In this
case (6.27) applies for all u € M, and (6.28) is deleted. Similarly (6.30)
applies for all pe€ [0, 1], and (6.31) is deleted.

6.3 ADAPTIVE MARKOY DECISION PROCESSES (White
[5§7], Martin [31])

We make the following assumptions:

(i) At any decision epoch the primitive state /€ / is known.

(i) If we are in state i € / at any decision epoch and take action k € K (i)
the probability of moving to primitive state j € [ and receiving an
observation d€D is plya, where 0 is a fixed, but possibly
unknown, state of nature belonging to a finite set O.

(iii) There is an immediate reward rf,s whose expectation over j€ I,
deD, given i€ I, ke K(i), 8 €0, is written as rf.

In order to model this problem our new state will be

(iv/“)s ﬂ:(ﬂlvﬂZ!'sﬂo,-swﬂM)v (632)

where pg is the current probability that the state of nature is § € ©. We
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let M be the set of y in (6.32). Initially we will have a prior probability
vector for the states of nature, viz.

p=pl (6.33)
Following a similar reasoning to that of p. 132, if we take action

k € K(/) and move to primitive state j€ I from i€ I receiving obser-
vation d € D the transformed state takes the form

(J, Q) (6.34)
where
kijd . uopfoj'd
[QF¥u) g = 2 (6.35)
k
Mo Piojd
¢€0

The analogue of equation (6.7) for a finite number of decision epochs
nis
nzl Un = Nun_ (6.36)

where, for u: IXM— R

(N°U) (p) = 2 porfs™™ 40 3 pepldfau(j, Q21 W),
€0 ¢€0,jeldeD
(6.37)
Nu = ma>§imum [N°u] (6.38)
€A
where now A is defined on 7x M. Infinite horizon expected total
discounted reward and finite and infinite horizon absorbing state
formulations follow in a similar manner.

For some classes of problem it is not necessary to use the state form
(i, u) given by (6.32). This applies when u can be expressed as a function
of some parameter  which is transformed in a specific manner to a new
parameter S*Uy given i, j, d, k, and where us = f(0, ¢), 8 € ©. For this
to be possible, putting e = f(0, ¥), re = f(w, ¢¥) in (6.35) must reduce
to f(8, S¥“4y). In this case (i, n) is replaced by (i, ¢) and (6.36) still
holds where, in (6.37), Q*¢"*?¥9, is replaced by S¢»)Udy,

In effect, for the above approach to apply, each p must belong to a
parametric set of probability distributions which is closed under the
transformations brought about by 4, /, j, d. This approach is developed
by Martin [31], Chapter 3. The sequential sampling illustration
described in the next section falls into this category if we begin with a
specific form of prior distribution.
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Further information on this approach, and on ‘sufficient statistics’,
can be found in White [57].

6.3.1 SOME ILLUSTRATIONS

(a) Sequential sampling
We make the following assumptions:

(i) We have a large batch of items containing an unknown proportion
# of defective items.

(i) The possible # values form a set O.

(iii) At any decision epoch we can accept or reject the batch without
further sampling, with respective expected costs a(f), b(6) if € ©
is the level of the defectives proportion, or we may take a sample
of size s at a cost ¢(s) with 0 € s < s and then continue the
accept/reject/sample sequence in the light of the number of defec-
tive items found.

(iv) The problem is to find an optimal accept/reject/sample size policy
to minimise the expected total cost up to the ultimate accept/reject
decision.

In this case there is no primitive state set / and we just require
the set M. The observation received is the number of defective items
in a sample. Thus {p&a), (r] reduce to {pkal, (r&}, where
D=1{d:0< d< s}and K= {1, 2, 3.5} corresponds to accept, reject or
take a further sample of size s respectively. Also the number of levels
of ¢ is infinite but we may still apply our theory.

Then we have the following:

pist = (8! (d'(s — d)))09(1 -0)°"9, v0eO, deD, 0<d< s< 5,

(6.39)
pha=0, fork=1,2, v0eO, deD, (6.40)
ré=—-a@) fork=1, voeo, (6.41)

= —b®) fork=2, v0eO, (6.42)

—c(s) vk=3s 1<s<s. (6.43)
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Equation (6.36) then takes the form, with uo=0

n>l1

k=1: = 2, pea(d)

o€

k=2: =2 peb(¢)

. $€O
Un(p) = maximum k=3.5 —c(s)
+ o (s (d!(s — d)Ne? (1 — )~

0€e00<dgs

% un—l(QS'sdﬂ)

(6.44)
where, dropping the / and J in (6.35)

[QB'Sdﬂ]O: ueﬂd(l _B)S—d ,
(2 wesa - 0)~)

©€0

VdeD, peM, 0<s<5s.

(6.45)

This problem fits into the closed distribution form of the previous
section if pg takes a special form. Thus suppose that

o = f60,¥) = A0 (1 - 6)" (6.46)
with
¥ =(a, B). (6.47)
Then, from (6.45) we see that

S3Yy = (a+d,B+s—d). (6.48)

(b) Inventory

On p. 54 we discussed an inventory problem where g(s) was the
probability that the demand was s, 0 < s < 5. Suppose now that g(s)
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is replaced by g(s, ) where 6 € © is an unknown parameter. Then the
analogue of equation (2.130) is

u (i, x) = maximum
m2k2

- (C(k — i)

* 2 ku«»q(s,d>)l(s—k)

€6,5 >

rralk+ 5 wase)k-9))

0€0,0< s

©-q(s,.)
Z l“'tbq(sv d)))
PE

+p 2 peq(s, o)l k-,
0<s<hkoeO (

©-q(s,.)
2 uoq(s,d>))
¢ €O

Vi, p)eIXM (6.49)

where, in (6.49), n.q(s,.) is the vector whose # component is usg (s, 8),
e, 0K s<s.

+p 2 peq(s,d)uf 0,
s2k0€0 (

6.4 EXERCISES FOR CHAPTER 6

1. In an experiment there are two of states of nature 6 € {1,2]. If the
experiment is conducted there are two possible experimental results
d € {1,2}. The probabilities of obtaining d€ (1,2} given 6 € {1, 2]
are given in the following table.

State of nature 0
1 2

Experimental
outcome d

o
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You make a series of decisions. You can either terminate the
process by taking one of two actions k € {1, 2} or obtain a further
observation by carrying out the above experiment at a cost of 1 unit.
The losses associated with any terminal action are given in the
following table:

State of nature 0

1 2
1 0 20
Action k
2 20 O

(i) If pis the current probability of the state of nature being § =1,
formulate with careful explanation, as an adaptive Markov
decision process, the problem of finding a policy to minimise the
expected sum of experimental costs and losses up to and
including a terminal action, allowing an indefinite number of
experiments if desired, with terminal decisions being possible
after each experiment.

(ii) Solve the problem for all 0 € p < 1if you are allowed to exper-
iment at most once, by finding the optimal actions for each p.

Do both parts in minimisation form without converting to maxi-
misation form.

. In an experiment there are two states of nature € {1,2}. If the
experiment is conducted there are two possible experimental results
de€ {1,2}. The probabilities of obtaining de€ {1,2} given 8¢ {1, 2}
are given in the following table:

State of nature 0

1 2
1 0 2
Experimental
outcome d
2 1 4

You make a series of decisions. You can either terminate the
process by taking one of two actions, k€ {1, 2} or obtain a further
observation by carrying out the above experiment at a cost of 1 unit.
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The losses associated with any terminal action are given in the fol-
lowing table:

State of nature 0

1 2
1 8 0

Action k
2 0 8

(i) If pis the current probability of the state of nature being § = 1,
formulate as an adaptive Markov decision process the problem
of finding a policy to minimise the expected sum of experimental
costs and losses up to and including a terminal action, allowing
an indefinite number of experiments if desired, with terminal
actions being possible after each experiment,

(i) Solve the problem for all 0 €< p < 1 when you are allowed to
experiment at most once, by finding the optimal actions for each
p.

Do both parts in minimisation form without converting to maxi-
misation form.



CHAPTER 7

Further aspects of Markov
decision processes

In this chapter we will briefly cover some aspects of Markov decision
processes which supplement the earlier material. We will confine our-
selves largely to infinite horizon stationary discounted reward Markov
decision processes for ease of exposition, although we will occasionally
digress from this, but most of the aspects with which we will deal have
their analogues in the various other sorts of Markov decision processes
with which we have dealt. A survey of Markov decision processes is
given in White and White [56].

Our basic optimality equation when our criterion is that of expected
total discounted reward is

u=Tu (7.1)

(see (2.66) and (2.55)—(2.57)).

7.1 STRUCTURED POLICIES

Consider the inventory problem of p. 54,

It may be shown (see Bellman [4], p. 160 for the continuous demand
case) that if c(.) and /(.) are linear functions then, recognising its depen-
dence on the discount factor p, an optimal policy =, takes the form
7, = (8,) where

dp=maxl[i, k)], Vi€l (7.2)

for some k, which can be computed as a function of p. Thus, &, is a
critical stock level, and if / < k, we order a quantity &, — /, otherwise
ordering zero.
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Thus, the policy has a special structural form. In particular we see
that
" 202 8,(i") = 8,01). (7.3)
It may also be shown that
p' Zp—ky <k, (7.4)
The results in (7.3) and (7.4) give rise to the following:

(i) a relationship between the order > over [ and order > over
K = Ul( ! K(I),

(i1) arelationship between the order > over [0,1 ) and the order > over
K.

These are special cases of a more general isotonicity characteristic of
some Markov decision processes for which the general paradigm for the
result in (7.3) would take the following form, where a quasi-order is
any binary relation which is reflexive and transitive:

(i) a quasi-order =* over [ exists;
(i) a quasi-order over K exists;
(iii) an optimal policy = = (8)” exists for which

i"2¥i—=83") = 83). (7.5)

=
=

Here (2 ¥, =) correspond to (>, >) for (7.3) in the inventory problem.

Results of the kind given by (7.5) may be obtained in various ways.
For example the result in (7.2) is obtainable by a form of convexity
analysis. Other results may be obtained using lattice and super-
modularity properties (e.g. see White [54] and White [61], [66]). We
will not deal with these in general but consider the following example
(see White [66]).

Consider our inventory problem but with N commodities instead of
one commodity. Thus, our state is i€ Z%, the set of integer non-
negative vectors of dimension N, and k € Z} with

Ki)y=tk>=i), Vviel (7.6)
Fori,i'el,k,k' €K, let

k = vector minimum [k’, k] 7.7

k. = minimum [k, ko], I<agN, (7.8)
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k = vector maximum [k’, k], 7.9)
1.€.
ko = maximum [k., k], 1<a N (7.10)

with similar definitions for {/,i}.
Suppose that, using operator 7 in maximisation form with p fixed
which we suppress, we have for ¥ = v the solution to (7.1)

[TFv) () + [TE) (D) = [TF o] () + [T*0) (). (7.11)
Inequality (7.11) is a ‘supermodularity’ condition. Now let
i > (7.12)

Because i =i', i =i and because k € K(i'), k € K(i) we have k feasible
for i’, k feasible for / and from (7.11)

[TF01 ") = [T* 0l () 2 [T0]G) ~ [TA0] ). (7.13)

The right-hand side of (7.13) is non-negative if & is optimal for /. Then
we also have k optimal for i’.

Also k > k. Thus, if we set 6(i') = kK we have property (7.5) where
=*, = arethe same as 3>, i.e. an isotone optimal policy 7 = (§)* exists.
Conditions for property (7.13) to hold may be developed along the lines
of those given in White [66], although that paper specifically relates to
an extension of property (7.4).

These results may be used for action elimination purposes in a similar
manner to that specified in Chapter 3 where upper and lower bounds
on v were used. In the current context, if an optimal action k € K (/) is
known for state i¢ [ then, given the isotonicity condition (7.5), if
i 2% we may restrict 8(i') to 6(i") =6(/). In the case of parametric
isotonicity, such as that given in (7.4), if an optimal policy is known for
a given p (e.g. p =0) then if p’ > p we can restrict k,- to k,- < k..

Finally (see White [61]) isotonicity ideas can be extended to the value
iteration scheme (3.26) giving rise to the existence of optimal {g,] such
that if n’ > n then g,-(/) = 0,(i), ¥ i € I. This is again useful for action
elimination purposes coupled with action elimination scheme (3.192).

There is another form of structure which relates to the form of v
rather than to the form of an optimal policy. A simple case arises in
the inventory problem of Bellman [4] where for /< k, we have
v,(i) = v,(0) — yi. Another structural form is that of separability of
v. Mendelssohn [33], in a salmon-harvesting exercise, where
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i=x=(xy, X2, .,.,., Xp) With x, being the size of the fish population in
p

category «, shows that u(x)= ) vi(x;). This is generalised by
i=1

Lovejoy [29] for the expected total discounted reward case and by

White [69] for the average expected reward per unit time case. Clearly

the knowledge of such situations facilitates the computational

procedures.

7.2 APPROXIMATION MODELLING

The computation of a solution of equation (7.1) will usually be
extremely difficult if the state space [ is large, i.e. the state space [ has
a large number # [ of states in the standard finite form or has a large
dimension if the state space [ is a subset of R for some N, e.g. see
the partially observable Markov decision process case of Chapter 6 with
N = m. The natural procedure is to modify equation (7.1) to make it
more tractable.

For the standard Markov decision process with finite / one way is to
group states together and represent each group by a superstate in a new
state space, [ Let f=1{1,2,.,.,.,m} with generic member i and let k
be the generic action.

We need to devise appropriate rewards, {r‘] and transition prob-
abilities {p* } For example given 7€/ let i* € i be a special state and,
noting that i*=1 (1), let

K(D=K3@*=K(), Vi€l (7.14)
FE=rk v keK(D), (7.15)
pti= 2 ph, VkeK(), jel (7.16)

Equation (7.1) is then replaced by
i=Ti (7.17)

over the smaller state space [ where T is defined analogously to 7 in
(2.55)—(2.57). The solution to equation (7.17) may then be used to
construct a solution to equation (7.1). A natural way to do this is as
follows. Suppose an optimal decision rule &: 7 — K = U/ K(0) is
found by solving equation (7.17). Then a decision rule é for the original
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Markov decision process might be

8()=58(), viei, i€l (7.18)

Schweitzer et al. [44] use a somewhat more sophisticated extension
of (7.14)—(7.17) which allows an interlinking of the solution of
(7.14)—(7.17) for a given decision rule & and solutions to subproblems
generated when (7.1) is restricted to i € / with appropriate modifications
to cater for i¢ i for a given 7. The iterative procedure moves sequen-
tially between the solutions in the state space 7 and the solutions in the
state space / restricted to i for each /€l The procedure leads to a
sequence of functions from 7 to R which converge to the solution of
(7.1).

Mendelssohn [32] uses a primal—dual approach with a similar state
aggregation procedure and a corresponding convergence result is
established.

In each of these cases, however, it is either necessary to store com-
puted values for each state i€ /, or these values are computed as
required to avoid storing them. The subproblems are, however, some-
what smaller than the original problem.

State aggregation may be achieved in a somewhat different way to
that given by (7.14)—(7.17). Thus, suppose that /< R, with generic
member i = x=(xy, X2,.,.,., X»). Then I might be transformed to
I*< RV, with generic member x*=(xf,x7 ., ., ., x¥%) eg.
X=X+ X2, X3 = X34 Xa+ Xsy .y ., X2° = Xno1 + Xv_2 With appropri-
ately transformed rewards and transition probabilities and a rule for
disaggregation to convert a policy defined on I* to one defined on 1.
Terry et al. [49] apply this approach to the control of a hydrothermal
system although it is a one-pass application with no iterative
aggregation—disaggregation. Buzacott and Callahan [10] apply this
approach to a production scheduling problem.

An alternative procedure to aggregation—disaggregation is
decomposition—recomposition. In this case a multicomponent systent is
split into a smaller number of single or multiple-component systems
and appropriate Markov decision process models are solved for cach of
the smaller systems. In each of these smaller systems some allowance
is made for the effects of the remaining systems. Turgeon [52] applies
this approach to a multiple-reservoir multiple-river system. In one
approach each river is treated separately assuming operational rules for
all the other rivers. In a second approach each river is treated separately
with an aggregation of the remaining rivers. A final value aggregation
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approach is used to find solutions to the original problem. Both
approaches are used in a one-pass mode. A similar procedure is used
by Wijngaard [79] and White (64] for multiple-item inventory control
where, in the latter case, a Lagrangian relaxation method is given
together with error bounds. We will outline the approach of White
[64] for an inventory problem with a single resource constraint, in
maximisation form.

Suppose that there is a single resource constraint so that if {k,.} are
the new inventory levels after a vector purchase order is placed, for
some specified total stock constraint level & we have to observe the
following inequality:

N
> (ke —ia) < b, (7.19)
a=1
If we introduce inequality (7.19) via a Lagrange multiplier A € R, then
in {rX} form the new rf takes the form

N

rf) = 2 (ki = Ma) (7.20)
where {ri} are suitably defined for each commodity « as on p. 18.
The form (7.20) is separable and this allows us to treat each commodity
separately to give a value function set {v}}, 1 < « € N, as functions of
A. These may be used to find an actual decision rule whicii meets the
constraints.

For example we may set
N

vMiYy= 2 v, viel (7.21)

a=1

and then find a decision rule ¢* € A by solving

Tvr =T (7.22)
for ¢" where
[Tv*] (/) = maximum [r.k(0)+p > p{-‘,v*(j)]. (7.23)
ko2t €a N el
Z tk, i)<géh

For this problem a complete solution would require that A be made a
function of / and, in such a case, a function A(.) for the continuous
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demand case exists which will give a true optimal solution, but it is too
difficult to solve the problem this way. However, for any given A€ R,
bounds on the loss of optimality for the policy generated may be
computed.

An alternative approximation method which does not reduce the
number of states, but which reduces computations, is to use expected
state transitions (see Norman and White [36] and White [62]). In this
case for each /€ I and k € K (i) the new transition matrix is [pf] where

%=IHFMm=;w& (7.24)

=0 otherwise. (7.29)

In (7.24) it is possible that yk(i) ¢ I, and a nearest point j to x*(i) in /
may be taken. : _
Then in equation (7.17), replacing 4: = R by u: I- R, Ti is
replaced by Tu where
(Tu) (i) = maximum [r¥ + pu(u*@i))], Vi€l (7.26)
ke K
If ¢/ is the variance of j given (k, /) and if & is a decision rule solution
for the modified equation (7.17) it may be shown that, with = =(6)
Ilv—v"]} <y maximum [of] (7.27)
ie LkeKn
where v may be calculated. For the definition of {¢}} an appropriate
metric is needed for 7, e.g. || || in (7.27) when [ is a set of vectors.
Bitran and Yanasse [6] use an approach in which the random vari-
ables are replaced by their expectations, resulting in a slightly different
approach to that just described. Amstrom [1] also uses an expected
state transition approach for partially observable Markov decision
processes. The value iteration process (6.7) is replaced by

n>l in=Mi,_ (7.28)
where for u: M— R
Mu = maximum [#Mu], (7.29)
XY
(MPul (u) = 2 wir @+ pu(uP?™), v peM, (7.30)
¥

[PPW)y=pi®, Vv ueM, ijel. (7.31)
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Amstrom shows that, with 7y = 1o
nzl Un < Uy. (7.32)

Amstrom [1] also introduces a variant of the representation approach
with which we began, by restricting u to the case u=u', 1 i< m,
where

wi=1 if i=j,i, jel,
up=0, if i#ji, jel (7.33)

Equations (7.28)—(7.30) are replaced by

nzl G B, (7.34)
where, for u: {u'} = R
Mu = maximum [ﬁ!‘su], (7.35)
A€ A
(Aou] (') = rP ¥ + p[PP4 0. (7.36)
Also
n=1l 3 pitin(p') = un(p), ¥ u€M. (7.37)
- iel

Equations (7.32) and (7.37) may be used for bounding purposes and for
action elimination purposes.

Another way of modifying the state set /to make the problem more
tractable in terms of a new set / is given by White [68]. In this case
=i .,.,.,IN), where I, t 2 2, refers to information gained in the
(¢t — 2)th last time unit. As ¢ increases /; becomes less significant and it
is possible to replace i by i=(iy, iz, .y ., ., im) wWith some specified loss in
doing so which can be evaluated in terms of m. This is similar to, but
not identical with, the scheme given by (7.14)—(7.17).

Finally let us look at the functional approximation technique
introduced, in dynamic programming, by Bellman [4] (see, also White
[57]). This technique expresses the value function parametrically as a
member of a suitable class of functions, and then finds the parameters
which give the best fit in a specified sense within this class.

One functional approximation scheme to approximate the solution
to (7.1) is as follows. Let {v,}, a€ A be a specified collection of
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functions from 7 to R. The approximating function ¥ to v is then

U= Z tala (7.38)
acA
with u, € R, ¥ a€ A. The functional approximation problem might
then be as follows:

infimum (|| 5 - To||]. (7.39)
#ER-'l

If #1Iis very large then, to overcome the storage problem, (7.39) is
solved approximately by selecting an appropriate subset of / and
restricting || |} to this subset. If y is further restricted then ‘infimum’
in (7.39) may be replaced by ‘minimum’.

Ben-Ari and Gal [5] use the value iteration scheme (3.26) with (7.38)
replaced by

N
IJ,,(X) = fne + Zl UnoXa (7-40)

for solving a dairy herd policy problem, where x, is the number of the
herd in condition «. Their procedure computes the {una] given {pn-1.q)
in a special best-fit way, which involves selecting a special subset of 7
and computing f{u.a} in a special averaging procedure somewhat
different from solving (7.39) with ¢ replaced by &, given i, .

Deuermeyer and Whinston [16] also suggest the use of the value
iteration scheme. For any w: I— R the functional approximation
process is represented by an operator F on u, i.e.

u=Fu. (7.41)

The scheme (7.38) is replaced by

0= 2, pava (7.42)

a€ A

where {uv,} are spline functions and {u,} are determined by F.
The combined functional approximation value iteration scheme is
then

nzl U, = Hi,_y, (7.43)

n=0 Ho=u (7.44)
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where
H=TF (7.45)

and u is chosen arbitrarily within the set given on the right-hand side
of (7.42).

If the functional approximation operator F is chosen so that for all
relevant u; I — R

| Fu-ull <8 (7.46)
error bounds are given for
W itn — v (7.47)

in terms of G.

Schweitzer and Seidman [43] combine the functional approximation
form (7.38) with the superharmonic set S defined in section 7.4, where
v is shown to be the unique minimal element in S.

The functional approximation optimisation problem is, for A > 0

minimum [A7] (7.48)

;AER"

subject to (7.38) and 0 € S. The minimum exists in (7.48) and will give,
via (7.38), an approximating function for v. The number of constraints
generated by the restriction that §€S may be large. However, (7.48)
may be solved by solving its dual.

Schweitzer and Seidman [43] also suggest a policy space quadratic
approximation scheme. For any specific policy = = (¢')™ the functional
approximation optimisation problem is, for A >0

minimum [Ae'] (7.49)
LER® !

subject to i taking the form of the right-hand side of (7.38) and where
e'()y=([T"a—-alG)?, Vi€l (7.50)
Solving (7.49)—(7.50), (7.38) leads to
a=ua'. (7.51)
Then ¢' is replaced by

o2 €arg maximum [(7°%:']. (7.52)
bEA
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The procedure is repeated with ¢ replacing o', € replacing €' and
further iterations if required.

An alternative form of functional approximation to that of (7.38)
and its value iteration analogues arises when it is known that v takes
the form

vix) = maxirgum [aesx] (7.53)
5€
where a; € R™, x € R"™. This arises in partially observable Markov deci-
sion processes and, in this case, (7.53) is the infinite horizon analogue
of (6.12) with x instead of u. A similar situation arises in adaptive
Markov decision processes.
The great difficulty is that # C might be large. Thus, we may seek a
functional approximation of the kind
U(x) = maxir?um [Gesx] (7.54)
5€
where # Cis much smaller than # C. Both for the finite horizon version
of (7.1) and for (7.1) schemes of the form (7.54) are developed by
White [73], [74], Lovejoy [30] and others.

A general theory of approximation modelling error analysis is given

by Whitt [76], [77].

7.3 POST-OPTIMALITY, PARAMETRIC AND
SENSITIVITY ANALYSIS

In general the parameters
(rfy, (pf, 0} (7.55)

will be estimates of some unknown parameters and it will be necessary
to carry out some parametric, sensitivity or post-optimality analysis.
Let

(P 1FR), D) (7.56)

be the estimates and # = (§)* be an optimal decision rule for these esti-
mates. For any set of parameters {{p%}, {r¥}], o}, for policy # we may
obtain the value function of expected total discounted rewards (see
form (2.109)), using parametric suffixes {P,r, p}

vk, = (U —pP%7'rb, (7.57)
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If é is to be optimal for {P,r,p}, with U as the identity matrix then
(U-pP) ' > Th,[((U-pP)"'rf], VoeA. (7.58)

This is a necessary and sufficient condition for § to be optimal for
{P,r,p}.
Now
(U-pP% ' >0. (7.59)

Thus a sufficient condition for inequality (7.58) to hold is
rP> (U= pPHYr+ p(U—pPHP (U=pPH 7 'r', voeA. (7.60)

Inequalities (7.58) and (7.60) will give regions of {P,r, p} parameters
for which « will be optimal, and provide a basis for post-optimality
analysis.

If {P,r,p} can be parametrised in terms of some parameter 6 € O
then the region of © for which é is optimal may be found. For such
problems as inventory problems (e.g. see p. 143 where an adaptive
approach is used) there may be an unknown parameter 6, and, for post-
optimality purposes, one may wish to know whether a particular policy
is optimal within a given range of this parameter.

White and El-Deib [55] discuss the problem of finding solutions to

ug = Toug, feO (7.61)

where T, is the transformation operator with possible parameter set O,
under certain assumptions on 7y which guarantee that, if, for 8 € O, vy
solves (7.61), then vy is piecewise affine and convex on O. For the pur-
poses of post-optimality analysis this property assists the identification
of the 6 for which particular policies are optimal.

If the range is small then we may replace 6 by 6 + 960 (or {P,r,p} by
{P+ dP,F+ 0F, p + dp}) and one can derive linear inequalities in 36 (or
(P, 6%,9p)) for § to remain optimal. This will provide a basis for
sensitivity analysis.

Smallwood [46] shows how the discount factor range may be parti-
tioned according to which policies are optimal. The procedure operates
by looking at the roots of polynomials in p. White [70] also looks at
the way in which optimal solutions behave in terms of the discount
factor. Selecting a distinguished value of p the paper looks at the solu-

tions of
Um = Tll,,) (762)

for r€[0,1]. Several algorithms for finding approximately optimal
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solutions are given which use approximate solutions of (7.62) for a
given t-value to compute approximate solutions to (7.62) with ¢
increased to ¢ + 5 where % is small. Error bounds associated with the
procedures are also given. The latter two papers provide a basis for
parametric analysis.

In White [65] both uncertainties in the value of a fixed discount
factor and variabilities in the discount factor over time (see (2.6)) are
considered.

Hopp [22] considers what are referred to as ‘rolling horizons’ for
Markov decision processes in which the parameters {{r¥}, {p¥}, o} are
time dependent. For a specified time horizon limit #n, if the parameters
are known at the beginning of time unit ¢ for the whole of the time
interval {¢,¢+ 1, ., ., n} then the optimality equation is given by (2.59),
and for the given ¢ an optimal decision rule o,, may be determined. If
t is fixed, Hopp shows that there exists a value of n, say n(t), such that
om) is optimal for all time intervals {¢,¢t+1,.,.,n} with n > n(t),
whatever the parameters {{r¥(t")}, (pS(t")), (p(t"))} for t' = n(t).
Thus even though these parameters for ¢’ > n(¢) are unknown at the
beginning of time unit ¢, 0,4, Will still be an optimal decision rule for
time unit 7. At time ¢+ 1, o/ +1) 1S recomputed and the procedure
continues in this way providing, at any time unit ¢, the parameters are
known for the interval {f,¢+1,.,.,n( + 1)}.

Related work may be found in Morton [35] and Chand [11].

7.4 MULTIPLE-OBJECTIVE MARKOV DECISION
PROCESSES

For some problems we may have several sorts of reward, or cost, which
we may not be able to optimise simultaneously. For example, in the
inventory problem of p. 54 we have order costs, holding costs and
shortage costs. Sometimes it is not easy to determine, for example,
actual holding or shortage costs. We might then treat the problem as
one involving three objectives, viz. order quantities, holding quantities
and shortage quantities. Then minimising, for example, expected order
quantities will not in general lead to minimal expected shortage
quantities. The multiple-objective inventory problem is studied in
White [60].
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Let us turn now to the general multiple-objective problem and
replace the single objective rewards {rf} by {r/¥} with 1 </ < L where
{ relates to the /th objective. Let

AL ={\eRL N>0}. (7.63)
For Ne AL set

L
rEN) = 2 Nrik (7.64)
I=1

We may now replace equation (7.1) by
u="u (7.65)

where

[7hu] (i) = maximum [r/‘(x)+p > p:;-u(j)], viel (7.66)
ke K1) jel

We may now show, using a similar analysis to that of Result 4.1, that
if for each /€ I we consider the value functions of the L expected total
discounted rewards for a given policy, and define, for each / € I, a max-
imal element analogously to a minimal element given in p. 98, but for
the multiple-objective form, and if 6, is any decision rule solution to
(7.65), the policy m\ = (6x)” gives a maximal element within the set of
all such functions generated by policies in I1. A maximal element is
defined relative to the specified i€ I. If A > 0 then =), is a maximal
element for all i€ 1.

The A-procedure will not generate, via equation (7.65), the set of all
maximal elements even within Ilp € IT in general, i.e. for any given
state i/ € I there may be policies in I1p which lead to maximal elements,
relative to Ilp, which will not be found by using the A-procedure. The
reason is that they may be dominated by some randomised combination
of other policies in Ip.

If we allow randomised non-stationary Markov actions, i.e. the set
ITas of policies, then the hA-approach will lead to the set of maximal ele-
ments relative to IT, but not via equation (7.65) which allows no
randomised actions and leads to stationary policies. Returning to
definition (2.65) we define

v'(/) = supremum [v™ ()], viel, 1<I<L (7.67)
xell

where v'™ is defined analogously to definition (2.12), 1 </ < L where,
in definition (2.12), v/ is defined analogously to v on p. 26.
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We may now use Result 2.1 in a similar manner to the way we use
it for Result 2.2, together with an extension of multiple-objective linear
programming to multiple-objective infinite linear programming
(because we have an infinite number of equations and variables in equa-
tions (4.32)) to show that the set of policies within IT, which lead for
a specific / to a maximal element relative to [], is equivalent to the set
of policies within ITas which lead to a maximal element relative to ITay
(in the sense that they give the same set of maximal elements in their
respective sets) and that the policy subset of ITy which gives these
maximal elements is equal to, for a given i€ [/

7w €p: 05()) = v3(i), for some Ne AL and Vv 7elly  (7.68)

where
L
U{: Z )\IUIW, (7.69)
I=1

Finding all the maximisers over ITas (Which involves {xX(¢)}) of vi(i)
is not easy. Finding some of the maximisers by finding maximisers over
I1p using (7.65) and Result 2.6 extended to {v\} is easier, but it will not
give the whole set of maximal elements in general.

There is an easier way to find equivalent maximal element sets rela-
tive to I1. This comes from a result of Hartley [20]. This says that the
equivalent set of policies which lead to the maximal element set relative
to IT may be obtained by restriction to IT5, where I} is the set of ran-
domised policies of I1p. Thus if

Mp={r}, 1<s<s (7.70)

then

np= {(al, e, L e T, ) ) as=1,a > 0} (7.71)
s=1
where the part in parentheses means: select pure policy =° with prob-
ability o, 1< s< s, initially and continue to use this policy
indefinitely. In this case using multiple-objective linear programming
the equivalent policy subset of IT which generates, for any specific / € I,
the maximal element set relative to IT is

m €Ilp: vF(i) = vi(i) for some Ne AL and v rellp. (7.72)

The set given by (7.69) and (7.72) are in specific state inequality form.
This reflects the fact that in general a policy which leads to a maximal
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element for one state does not necessarily lead to a maximal element for
other states. However (see White [58], Exercise 8, Chapter 8), for uni-
chain no-transient-state situations, any = policy satisfying inequality
(7.72) for some i € I and some X € A% will also satisfy inequality (7.72)
for the same X\ and for all /€ I. Thus the set given by inequality (7.72)
can be written in function {¢'"} form in this case, i.e.

7 €IMp: \o" > \v” for some e AL and v 7ellp. (7.73)
In (7.73)
1r=(v|1r’ UZW, .,.,.,ULW)E RLX"I (7.74)

and > is the vector order over R™ (see (4.3)). Finding the policy set
specified by inequality (7.72) is equivalent to solving the following
problem with {v™'} written as {v"}:

maximise [Zl aS@ )\/v"(i))] (7.75)

subject to
z‘l w=1, (7.76)
as > 0, 1<s<s. (7.77)

Among these feasible policy solutions will be the policy solutions to
equation (7.65).

For a given A the problem (7.75)—(7.77) may be solved by the column
generation method of Dantzig and Wolfe [12] bearing in mind the
fact that {#°} are not known explicitly and have to be generated as
required until an optimal solution is found. Some form of parametric
programming as \ is varied is also possible.

An alternative approach to finding all of I1p which lead to maximal
elements relative to Ilp, is to use an extended maximal element form
of equation (7.1). In effect equation (7.1) is replaced by (for a specific
iel)

E=EE (7.78)

where E is the maximal element value function set and E is a maximal
element operator replacing the usual scalar operator 7. This is detailed
in White [59].
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The average expected reward per unit time case may be solved in a
similar manner. Equation (7.67) is replaced by

g'()) = supremum [g"™()], viel, 1<I<L. (7.79)
xell
Equation (7.69) is replaced by (with e A%)

L
a= 121 ng'” (7.80)
with g"e R™, 1 I L, well.

Restricting ourselves to the uni-chain case then maximising [g)(i)]
for any i over Ilp will give a maximal element, in terms of
g=(g', g% ...,..gh), for all i. To obtain all maximal elements the
maximisation must be carried out over Il or alternatively over ITp.
Equation (7.75) is replaced by

maximise [i as<i )\/g")] (7.81)
s=1 I=1

o

where g” is the /th objective function gain for policy «°.

7.5 UTILITY, PROBABILISTIC CONSTRAINTS AND
MEAN-VARIANCE CRITERIA

The discounted random reward for a given policy = (as an extension of
(2.6)) for the infinite horizon stationary problem is

=]

R =3 p' 'Y/ (7.82)
t=1
As a housekeeping requirement we will assume that = is measurable so
that R™ is a proper random variable.

So far we have concentrated on the expected value of R". Such a
criterion may be quite inadequate to describe a decision-maker’s prefer-
ences. In general we would wish to consider some utility function of
(Y7, Y3,.,Y7, ., ....}. One possible utility function may be simply a
function W of R™ so that our problem would be, instead of the form
(2.65)

v(i) = supremum [v" (/)] (7.83)
rell
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where
vT(i) = E(W(R™) | X, =1i). (7.84)

In general form (7.84) does not enable us to set up an equation
similar to equation (7.1) because at any point in time the appropriate
action to take may depend on the contribution to R™ already achieved
at the time of that action. We therefore add in an extra state variable,
viz. r: the cumulative total discounted reward to date. With a new state
definition (/, r) the analogous equation to equation (7.1) is

=1 u,(i, r) = maximum [Z pf}u,+1(j,r+p"lr,§-],
ke K() jer
v (i,r)e IXx R (7.85)
where
limit {4 ~ w1 =o0. (7.86)

The function W is defined on R, but can also be considered to be a
function on I x R whose value is independent of i€ I.

Some housekeeping axioms are needed and this result uses results of
Fainberg [17], [18] and of Kreps [26], both of which are used in White
[63]. Then v(i) is given by u (i, 0).

An alternative formulation is to find (in maximisation form)

suprer{rllum [probability(R™ > ro)] (7.87)
x €
with some prespecified value of ry. These ideas are introduced by Sobel
[48] and discussed in Bouakis [9] and White [75] using minimisation
forms. With suitable housekeeping requirements they lead to the
equation

u(i, r) = maximum LZ/ plu(j, (r— r:;-)/p)], vV (i,r)eIxX R

ke KD
(7.88)
with

v(i, r) = supremum
xell

[probability that the total discounted reward over an infinite
horizon, beginning in state i/, is at least r] (7.89)

as the unique solution to (7.88)



UTILITY, CONSTRAINTS AND MEAN-VARIANCE CRITERIA 165

Alternatively we may wish to find, using definition (2.13)

v(i) = supremum [v"(J)] (7.90)
xell
subject to
probability(R" > ro | X, =i) > v (7.9

where {ro, vy} are prespecified in (7.91).

This may be put in infinite linear programming form and optimal
policies in ITyp (see p. 27) found which will guarantee optimality over
I1. We may equally well work within IT} (see p. 161) and develop a
corresponding formulation to that of problem (7.75)—(7.77) in «, the
solution of which is facilitated by the column generation method of
Dantzig and Wolfe [12]. In the above, IT and all the related policy sets
are defined with respect to the state set I x R.

It is possible to formulate problems in terms of mean-variance
analysis.

In White [63] it is shown that we may, within ¢-approximations,
restrict ourselves to Iy or to ITxp (defined analogously to IT5), and
again defined with respect to the state set /X R. In this case the
additional variable r is the level of the cumulative total discounted
reward to date at the current time unit ¢, measured as from time unit
r=1 and discounted to the beginning of time unit r=1.

If {#°), 1 < s < o, are the policies in ITxp and if, beginning in state
(i, 0), we wish to minimise the variance of R™ subject to its expectation
being at least equal to 8, and if {v/, V} are the means and variances
of {R™) measured from, and discounted to, the beginning of time
unit = 1, given the state (i, r) at the beginning of time unit ¢ then our
problem may be cast as follows, in maximisation form:

=) 2
maximise [Z —as(V33,0) + v1(,00%) + (Z asvi (i, 0)) ] (7.92)
« s=1

s=1

subject to

i asvi(i,0) = 6, (7.93)

i as=1, (7.94)

as = 0, ] < s< o0, (7.9%)
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If the inequality in (7.93) is required to be an equality the problem
reduces to

maximise[— > asMi(, O)] (7.96)
s=1
subject to
2. asvi(i,0) =8, (7.97)
s=1
> as=1, (7.98)
s=1
as 2 0, l<s< (7.99)

where M?°(i,r) is the second moment of R™ about the origin for
policy = = =°, measured from the beginning of the time unit 7 = 1, given
the state (i, r) at the beginning time unit ¢. Following the lines of Sobel
48], and discussed in White [63], it is possible to establish the
following recurrence relations for {M?*}, {v/} from which {V;} are
also derivable:

§

121 v, )= piviaG,r+e ',
- jel
v(ir)elxR, 1g<s<oo, (7.100)
,2,-;(1-’ r)y= Z] Pzi"Mzzfl(ja"*’p'-lfzi"),
J€
v(i,r)el xR, 1<s<o (7.101)
where
pi=pl.r)=r, v j)eIxR, 1<s<wo, (7.102)
' = (81,02, .,.,67,.,.,.), (7.103)

limit [v/G,r)] =r, VY ({U,r)eIXR, 1<s<o, (7.104)

{ *o0

limit (M@, r)] =r®, v (,r)elxR, 1<s<o. (7.105)

These results are in White [63], Corollary 4.2. The problem given in
(7.92)—(7.95) is a semi-infinite linear programme which may be solved
using the column generation method of Dantzig and Wolfe [12], so
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that {v}, M#*} need only be calculated as they are required. At most
two policies in the set {x°] will feature in an optimal vertex solution.

Filar et al. [19] discuss a slightly different mean-variance analysis
where the variance is the variance in any time unit about the average
expected reward per unit time in the long run, and under the assump-
tion that r&=rk, vi,jel, ke K(@i). Using the linear programming
formulation (4.64)—(4.68) the problem takes the maximisation form,
assuming a uni-chain situation and with A€ R

2
maximise[ D X.kr.k—)\< ) Xik<"ik* ) le"j') )]

1€ Lke K(1) 1€ I ke K(i) g€ lleN(y)
(7.106)

subject to (4.65)—(4.68). White [71] provides computational procedures
for solving this problem.
A survey of related formulations may be found in White [67].

7.6 MARKOV GAMES

In the general framework in Chapter 2, on which subsequent material
is based, it is assumed that there is a single decision-maker with a speci-
fied objective to be optimised.

In this section we briefly outline the extension of these ideas to the
case when there are two decision-makers taking simultaneous actions at
each of a sequence of time units. Much of the framework of Chapter
2 applies. If IT', IT? are the policy spaces of players 1 and 2 respectively,
the analogues of vn(i), well in (xiv) of Chapter 2 are, restricting
ourselves to the stationary case, v ?(/): the expected total discounted
reward over the next n time units for player g if X =1, and if players
1 and 2 play policies =, 7 respectively, with weIl', 7€Il1% g=1,2.

The following is based on van der Wal [53]. The objective is to
obtain analogous results to those of standard two-person game theory.
In order to obtain these we may, without loss, restrict ourselves to
{IThs, I137}. As in standard game theory, we must allow randomised
actions, and cannot necessarily restrict ourselves to {ITkp, IT3;p] the
Markov deterministic policies.

Let K'(i), K*(i) be the feasible action spaces for players 1 and 2
respectively, and K'*(i), K**(i) be the corresponding randomised
action spaces for i€ I.
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For zero-sum games we have
n>l Il = — 2, (7.107)

As with standard game theory let us suppose that we seek supremum
x€lll,

infimum solutions. Define, analogously to (2.8)
reltdy

O supremum infimum [v}"'()], Vi€l (7.108)
x€llly rendy
vi(i) = supremum infimum [VA™2G)], Vi€l (7.109)
relli, xellly
Then
viiy= —vil), viel (7.110)

The analogue of Result 2.3 is that v, v3 are, respectively, unique
solutions of the equations

n>l un =T 'un-1, (7.111)
ul=Tuk_, (7.112)
where, for u: I = R
[T'u] (i) = maximum minimum [r, +p 2, P u(j)] Vi€l
keK'w) re K™ jel
(7.113)
[7%u] (i) = maximum minimum [—r,-"’+p > p,’j-’u(j)]. viel
lek? (1) keK' (1) Jel
(7.114)

The quantity 7 is the immediate expected return to player 1 if the state
is i€l and actions k € K'*(i), /€ K¥*(i) are taken, and p{ is the
probability that if we are in state i € I and actions k € K'*(i), /€ K**(i)
are taken we move to a new state j€ /.

We may use (7.111) to find policies as follows:

There exists an optimal policy =, for player 1, i.e. for which

vl > pl v reT12. (7.115)

For each € > 0, using (7.111), there exists an e-optimal strategy 7, for
player 2, i.e. for which

vit > 02 —ce, V welll (7.116)
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In (7.115), (7.116) equation (7.111) is used to find {ma, 7.}. Note that
(7.116) is equivalent to

vi' S vg+ee, ¥ well! (7.117)
and that (7.115) and (7.117) combined imply that
va <V S og + ee. (7.118)

For the infinite horizon problem the analogues of (2.12) are

V93 = limit [vEF9()], viel, well', rell?, g=1,2.

7"«

(7.119)
The analogues of (2.13) are then
v'(/) = supremum infimum [v™'(i)], Vi€l, (7.120)
rell rell?
v%(i) = supremum infimum [v™2(i)], Vi€l (7.121)
rell? rell
We have
v'= -0 (7.122)
The analogues of (2.66) are
u="T'u, (7.123)
u=Tu (7.124)

and v', v? are, respectively, unique solutions of (7.123) and (7.124).
The schemes (7.111) or (7.112) may be used to solve (7.123) or (7.124)
to a requisite degree of approximation.

The policy solutions for the finite horizon case and for the infinite
horizon case are obtained by solving (7.111) or (7.112), (7.123) or
(7.124) respectively. In the latter case 7 € IT}ss, 7€ IT3ss where IT4ss is
the set of Markov stationary policies, g =1, 2.

To solve (7.108), for example, u,(/) can be computed by linear
programming procedures for each i € I once u,_, has been determined,
after noting that in (7.113), for a given k € K'*(/), the minimum over
K?**(i) is attainable in K2(i).
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The linear programme takes the form, Vi€ [
n>li un(i) = maximum [z] (7.125)

subject to

< Y rFxu+o Y pHun(xi, v I€K(i), (7.126)

keK() JELKEK()
Z Xik = 1, (7.]27)

k€ K(i)
Xik 20, V keK() (7.128)

where x;x is the probability of taking action & € K(i) given state /€ I.

The solution for any specific n — 1 may be used to facilitate the
derivation of a solution for n, particularly as the sequence {u,}
converges. A solution to, for example, (7.123) is not in general possible
via linear programming. Kallenberg [24] shows, however, how a linear
programming approach is possible if {p}'] are independent of / or
independent of k.

Further material on Markov games is to be found in van der Wal
[53] and in Kallenberg [24].



CHAPTER 8

Some Markov decision process
problems, formulations and
optimality equations

8.1 SOME ILLUSTRATIONS

8.1.1 ILLUSTRATION 1: OVERHAUL AND REPLACEMENT

Problem statement

An airline classifies the condition of its planes into three categories, viz.
excellent, good and poor. The annual running costs for each category
are $0.25 x 105, $10° and $2 x 10°® respectively. At the beginning of
each year the airline has to decide whether or not to overhaul each
plane individually. With no overhaul a plane in excellent condition has
probabilities of 0.75 and 0.25 of its condition being excellent or good,
respectively, at the beginning of the next year. A plane in good condi-
tion has probabilities of 0.67 and 0.33 of its condition being good or
poor, respectively, at the beginning of the next year. A plane in poor
condition will remain in a poor condition at the beginning of the next
year. An overhaul costs $2 x 10® and takes no significant time to do.
It restores a plane in any condition to an excellent condition with
probability 0.75, and leaves it in its current condition with probability
0.25. The airline also has an option of scrapping a plane and replacing
it with a new one at a cost of $5x 10®. Such a new plane will be in
excellent condition initially. There is an annual discount factor of
p=0.5.

We derive the optimality equation for the problem of maximising the
negative of the infinite horizon expected total discounted cost with, as
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in the text, all costs incurred in a given year assigned to the beginning
of that year.

Formulation
States i=1: excellent condition;
i=2: good condition;
i=3: poor condition.
Actions k=1: do nothing;
k =2: overhaul;
k =3: replace.

Optimality equation (see (2.66))

[k =1: —0.25 % 10% + 0.5(0.75u(1) + 0.25u(2))
u(1) = maximum | k =2: —2x 10%+ u(1) *
| k=3 —5x10%+ u(l) *

[k =1: —10%+0.5(0.67u(2) + 0.33u(3))
w(2) = maximum| k=2: —2x 10%+ 0.75u(1) + 0.25u(2) | *,
Lk=3:—5x106+u(1) *

[k =1: =2 x10°+0.5u(3)
u(3) = maximum| & =2: —2x 10+ 0.75u(1) + 0.25u(3) | *.
| k=3 —5x10% + u(l) *

We have deviated slightly from equation (2.66). In the places marked
by * the expressions reflect the immediate conditions after overhaul or
purchase, as the case may be, and not the conditions at the beginning
of the next year. Thus, no discount factor appears on the right-hand
side of the * components.

8.1.2 ILLUSTRATION 2: CROSSING A ROAD

Problem statement

A man is trying to cross a road. Cars pass in such a manner that the
time ¢ in seconds between successive cars, combining both directions
into one car stream for this purpose, is independently and identically
distributed according to a uniform distribution over the interval
0 <t £ 10. He can see only one car at a time. He wants to cross the
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road within the next 16 seconds, and before two more cars have passed
him. He takes, effectively, no time to cross the road. He wishes to maxi-
mise the expected length of time he has to cross, between commencing
to cross and a car passing him. We derive the optimality equation for
this problem.

Formulation
States t: the time that the next car will take to pass him,
010
s: the time he has left to cross, 0 << s < 16.
Decision n=1: the first car has just passed;
epochs n=2: no car has passed.
Actions k=1: cross now;
k =2: wait for next car to pass.

Optimality equation (see (2.58))
n=1 k =1 because he must cross now.

u(t,sy=t, vo0<r<10, 0<s<16.

Define
u(t,s)= -0, if s<O.
n=2
k=1:1 0 <10,
uz(t, §) = maximum 10

k=2:§ 0.1ui(y,s—1)dy| 0<s<16.
0

8.1.3 ILLUSTRATION 3: OYSTER FARMING (Kushner [27])

Problem statement

A pearl-containing oyster is either diseased or not diseased. At each of
a succession of unit time intervals it may be checked to see if it is dis-
eased or not diseased at a cost $c. If the oyster is diseased it has value
0 and is disposed of. If it is not diseased it has a value g(¢), where ¢
is the age of the oyster. It costs $a per unit time to maintain an oyster.
If the oyster is not diseased the probability that it will remain in a
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non-diseased state for the next unit time interval is p. We derive the
optimality equation for maximising the net expected revenue from an
oyster.

For the first decision it is known whether or not the oyster is diseased.

Formulation

States t: age of oyster when checked, ¢ > 0;
s=1: if the oyster is not diseased;
s=2: if the oyster is diseased.
Absorbing states: {(¢,2)}, v ¢>=0.

Actions k=1: sell;

k=(2,v): do not sell, and inspect after  time units later.

Optimality equation (see (2.128), (5.10)—(5.14))
u(t, 1) = maximum

k=1: g(t)

XNk =@,y): max [~ya—c+pu@+y, 1)+ —pu+y,2)] |
vzl

viz=0,

u(,2)=0, vi>=0.

8.1.4 ILLUSTRATION 4: BURGLING (Ross [40])

Problem statement

At the beginning of each night a burgler has to decide whether to retire
from burgling or, if not, how many burglaries to attempt in that night.
Each successful burglary has a value of $100. He can do a maximum
of two burglaries in one night. Each burglary has a probability of 0.75
of being successful. The first time he is caught he loses all his gains for
that night and is put on probation indefinitely. If he is caught a second
time, at any time, he goes to jail and retires from his profession. He
values this circumstance as equivalent to a loss of $500.

We derive the optimality equation for maximising his expected net
profit.
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Formulation

States he has not been caught to date;

he has been caught once;

he has been jailed and has retired.

State 3 is an absorbing state.

retire;

plan to carry out one burglary in the given night;

plan to carry out two burglaries in a given night.

I

!

I
W —

i
i
i

Actions

I
L DN —

k
k
k

Optimality equation (see equations (2.127) and (2.128))

k=1:0
u(l) =maximum| Kk =2: 75 + 0.75u(1) + 0.25u(2) ,
Lk =3:112.5+0.5875u(1) + 0.4125u(2)
[ k=1:0
u(2) =maximum| kK =2: =50+ 0.75u(2) + 0.25u(3) ,
Lk =3: —106.25 + 0.5875u(2) + 0.4125u(3)

u(3)=0.

8.1.5 ILLUSTRATION 5: SEARCH

Problem statement

A set of locations I= {1, 2,.,.m} are, in this order, equally spaced in
a line. A target is in one of these locations and always remains there.
The prior probability of it being in location i is u;, ¥ i€ I. It is required
to find a policy of search to minimise the expected distance travelled in
locating the target where, at any time, any location may be searched at
zero cost, and the target will be found if it is in that location,

We derive the appropriate optimality equation which we cast in
maximisation form.

Formulation

States RER™, u>=0, Z/ wi=1;
J€

w; is the current probability of the target being in location j,
vV jeI,
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i the location just searched.
Actions k: the next location to be searched.
(i, ) is an absorbing state if y;=1 for some j€ I.

Optimality equation (see equations (2.127) and (2.128))
wiAl, v jel
ig {1, mj

k=i+1: -1 +(1_ﬂi+l)u(i+1!ﬂ(i+l)):l
k=i—1: =1+ —pm-uli—1,uG - 1))

Viel, peM,

u(i,p) = maximum[

where
pinr(+1)=0, U+ D=/l -—pis1), VJjZi+],
ﬂi—l(i—l)zos /‘Lj(i_l):ﬂj/(l_ﬂi—l)s V./¢I_lv
1 u(l,p)= -1+ —pu2)u2,un(2)),

m uimop)= -1+ —pm-1)u(m— 1, u(m— 1)),
;=1 for some j u(i,uy=0 ifuj=1 for some j, Vi€l

-~
I

|

-~
il

We need only search adjacent locations.

8.1.6 ILLUSTRATION 6: SHUTTLE OPERATIONS (Deb [13])

Problem statement

A shuttle operates between two terminals. In each time unit a passenger
arrives just after the beginning of the time unit with probability p at
terminal 1. Similarly a passenger arrives with probability ¢ at terminal
2. An operator of a shuttle of infinite capacity decides, at the beginning
of each time unit, whether or not to transport the passengers at its cur-
rent terminal to the other terminal. It takes s units of time to complete
a journey. It is required to find a shuttle-dispatching policy to minimise
the infinite horizon average expected waiting time per unit time at the
terminals for the passengers.
We derive the optimality equation in maximisation form.

Formulation

States X: number of passengers at terminal 1;
y: number of passengers at terminal 2;
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Actions

if the shuttle is at terminal 1;
if the shuttle is at terminal 2.
transport passengers to the other terminal;

>~ xaaq
o
el S

do nothing

Optimality equation (see (5.29) and (5.30))

u(x, y, 1) = maximum

k=1:
X
k=2
u(x,y,2)=
k=1:
X
k=2:
8.1.7

s! ]
—sy—(p+q)s(s+ 1)[]2—hs+ SZS TR
_L a _ s—a_ b _ s—b
xb!(s—b)!p (1-p)“q°(0 —q) "ula,y+b,2)
~(x+y+p+q)-h
+ 2 p-p)' "0 -q) Pu(x+a,y+b,1)
beionl
maximum
s! ]
—sx—(p+q)s(s+1)[2 - hs+ sia:s G
0OShgs
s! _ 5= a b _ s—b
“pis—by ‘a-p) (1-9)* "u(x+a,b,1)
—(x+y+p+q)—nh
+ > p-p) g -q) Pu(x+a,y+b,2)
a€ {0,1)
be10,1)

ILLUSTRATION 7: CRICKET (Thomas [50])

Problem statement

A well-known cricketer carries a programmed Markov decision process
with him at all times when batting. He may receive any one of three
types of delivery for the next ball, viz. a bumper (B), a yorker (Y), or
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ordinary (O). He also knows that the probabilities of a delivery being
in each class depends on his immediately preceding score off the
previous ball, where he may have scored 0, 2 or 4 runs. The conditional
probabilities of each delivery are given in Table 8.1.

He has only three types of play which he may make to the next
delivery, viz. hook (H), drive (D) or forward defensive (F). For each
delivery and each play the scores obtained are given in Table 8.2 where
T means that his batting innings is terminated. This is assumed to take
place only where indicated.

He has to decide which sort of play (H, D, F) to make, before he
knows the type of delivery (B, Y, O) which he will receive. He wants to
find a policy to maximise his expected total score until his batting
terminates.

We will derive the optimality equation.

Formulation

States 0 runs scored off previous delivery;

1=1:
i=2: 2 runs scored off previous delivery;

Table 8.1 Cricketing probabilities

Next
Score off delivery
previous ball B Y O

0 0.00 0.50 0.50
2 0.25 0.25 0.50
4 0.75 0.25 0.00

Table 8.2 Cricketing scores

Delivery
Play B Y O

H 4 T
D Ty 4
F 0 2

SO
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i=3: 4 runs scored off previous delivery;
i=4: out off previous delivery.

State { = 4 is an absorbing state.
We assume that we begin the process after one delivery has been
made.

il

Actions

x X x
I
W N —

T

Optimality equation (see (2.127) and (2.128))

[ k=1:0+0.5u(1) +0.5u(4)
u(l)=maximum| k=2: 3 +0.5u(2) +0.54(3) {,
Lk:3: 1 +0.54()+0.5u(2)

[k =1:1+0.5u(1) + 0.25u(3) + 0.25u(4)
u(2) = maximum| k=2; 2 +0.5u(2) + 0.25u(3) + 0.25u(4) |,
|k =3:0.5+0.75u(1) + 0.25u(2)

il

:340.75u(3) + 0.25u(4)
:1+0.25u(3) +0.75u4) |,
:0.54+0.75u(1) + 0.25u(4)

1 (3) = maximum

il
W N -

k
Lk
u@4)=0.

8.1.8 ILLUSTRATION 8: CAPACITY PLANNING (Thomas
(51])

Problem statement

A country has to decide how many nuclear power stations to build in
each five-year planning time unit. The cost of building a power station
is $20 x 10% and it costs $5 x 10® to maintain a condition capable of
operation in each five-year time unit. The environmental lobby has
enabled a bill to be passed saying that there can be no more than three
power stations in total being built and/or capable of operation in any
five-year time unit. The output from one power station is required to
supply power requirements and, without this, it will cost $50 x 10 in
each five-year time unit to provide alternative supplies. It takes five
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years to build a power station. If it is capable of operation at the begin-
ning of a five-year time unit it will be capable of operation throughout
this time unit, but it will only be capable of operation through the
second five-year time unit with probability 0.5. It is required to find a
policy to minimise the infinite horizon expected total discounted cost
where the discount factor for a five-year time unit is p = 0.5.

If a power station becomes incapable of operation it remains
incapable indefinitely and is not counted in the power station tallies.

Each power station in an operationally fit condition, whether being
used or not, will incur the $5x 10 cost of keeping it capable of
operation in each five-year time unit.

We derive the optimality equation in maximisation form.

Formulation

States j=1: no power stations capable of operation;

i=2: 1 power station capable of operation;

i=3: 2 power stations capable of operation;

i=4: 3 power stations capable of operation.
Actions k€ {0,1,2,3}: the number of power stations to build.

Optimality equation (see (2.66))

[ k=0: —50+0.5u(])
k=1: =70+ 0.5u(2)
k=2: —90+0.5u(3) |’

| k=3: —110+0.54(3)

[ k=0: —5+0.25u(1) + 0.25u(2)
u(2)=maximum| k=1: —25+0.75u(2) + 0.75u(3) |,
| k=2: —45+0.25u(3) + 0.25u(4)

[k = 0: —10+0.125u(])+0.25u(2)+0.]25u(3)]
[k=1: =30+ 0.125u(2) + 0.25u(3) + 0.125u4)]’

u(4)=15+0.125(1) + 0.375u(2) + 0.275u(3) + 0.125u(4).

u(1) = maximum

#(3) = maximum

8.2 EXERCISES FOR CHAPTER 8

1. A boxer has to plan his fight programme one year in advance. He
can have up to three fights in any one year. If he sustains an injury
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in any fight he must wait until next year for a further fight. As soon
as he accumulates two injuries in total he must retire from fighting.
If he sustains no injuries in a given year he must complete his
programme of fights planned for that year. The probability of an
injury in any single fight is 1/4 if he has accumulated no injuries
prior to this, and 1/2 if he has accumulated one injury prior to this.
His earnings for a fight have an expected value of $5000. If he retires
through injury he values this at an equivalent loss of $20 000. He
may, if he wishes, retire at the beginning of any year, in which case
he values this at $0.

With careful explanation derive the optimality equation for
maximising his expected net income up to his eventual retirement.

2. In a certain queuing situation we have a single server and two
different arrival streams of customers. When customers arrive they
arrive at the end of a time unit. When a customer finishes his service
this takes place at the end of a time unit. For customers of type 1
there is a probability p, that a single customer will arrive in any
given time unit and, if a customer of type | is being served, there
is a probability g, that his service will be completed in the current
time unit. The corresponding probabilities for customers of type 2
are pa, g2, respectively. At the beginning of each time unit it has to
be decided which type of customer will be served using a pre-emptive
rule, i.e. the current customer being served may be put back into the
waiting queue even if his service has not been completed. If any
customer arrives at the end of a time unit after any services have
been completed, and finds m or more customers in total in the
system, he goes elsewhere and does not join the system.

It is required to find a service policy to minimise the infinite
horizon average expected waiting time of customers per unit
time. Derive the optimality equation for this problem, using the
minimisation form rather than converting to the maximisation
form.

3. Consider the following single commodity inventory problem:

(i) The probability that the demand in any unit time is s is equal
to ¢g(s) and the demand is identically and independently
distributed in each time unit, with 1 < s < s.

(ii) An order for more stock can only be placed when a shortage is
incurred, and then the shortage is immediately satisfied and an
additional quantity ordered which is immediately supplied.
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(iii) If yisthe shortage plusthe extra quantity ordered there is a cost
c(y) incurred and y < L.

(iv) In addition, for a shortage y there is a cost /(¥) incurred.

(v) There is stockholding cost equal to « per unit of stock held for
one unit of time, and you may assume that the average stock
level between decision epochs is 1/2 x the stock level imme-
diately following the order decision made at any decision
epoch.

(vi) The stock level is never allowed to rise above a level L (see (iii)).

It is required to find an ordering policy to minimise the infinite
horizon average cost per unit time. Derive the optimality equation
for this problem using the minimisation format.

Explain why, if ¢ is a linear function, an optimal policy exists
where the total quantity ordered as soon as a shortage occurs is
independent of the shortage quantity.

4. Consider the following tax problem (Landsberger and Meilijson [28]).
Each year you have to decide whether or not to declare a particular
part of your income to the Inland Revenue. If you do declare you
pay $90 in tax. If you do not declare and the Inland Revenue audits
your submission you pay $200. The Inland Revenue splits the
taxpayers into three groups, viz. those whom they did not audit in
the previous year, those whom they did audit in the previous year
and were found to have declared correctly, and those whom they did
audit in the previous year and were found to have declared incor-
rectly. The Inland Revenue adopts a policy of inspecting each of
these groups with probabilities 0.5, 0.3 and 0.7, respectively, and
these probabilities are known to you. You wish to find a declaration/
no declaration policy to minimise your infinite horizon expected
total discounted payments to the Inland Revenue with a discount
factor p = 0.9. Derive the optimality equation in minimisation form.

5. Consider the following problem which is an extension of Exercise 4.
You can declare the $90 or not. If you are audited and found to have
defaulted you still pay $200. However, the probability of auditing
depends on whether your history leads to you being classified as a
reliable or unreliable individual in your tax matters. You do not
know how you are classified, but you have your own subjective
probabilities. Let p be your probability that you are classified as
reliable. The Inland Revenue will audit you with probability 0.3 if
they see you as reliable and with probability 0.7 otherwise. Your
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subjective probability p of being classified as reliable will change in
the following manner, depending on whether or not you submit
correctly and whether or not you are audited.

Audited Not audited

Correct (1+p))2 Q+4p)|s
submission
Incorrect pl2 (1+4p)/s5
submission

You wish to minimise your infinite horizon expected total dis-
counted payments when the discount factor is p = 0.9. Derive the
optimality equation in minimisation form.



References

10.

11.

12.

13.

14.

. K. J. Amstrom (1965). Optimal control of Markov processes with

incomplete state information, Journal of Mathematical Analysis
and Applications, 10, 174-205.

. M. S. Bartlett (1956). An Introduction to Stochastic Processes,

Cambridge University Press, London.

M. J. Beckmann (1968). Dynamic Programming of Economic
Decisions, Springer-Verlag, Berlin.

R. Bellman (1957). Dynamic Programming, Princeton University
Press, Princeton, New Jersey.

. Y. Ben-Ari and S. Gal (1986). Optimal replacement policy for

multicomponent systems: an application to a dairy herd, European
Journal of Operational Research, 23, 213-221.

G. R. Bitran and H. H. Yanasse (1984). Deterministic approxima-
tions to stochastic production problems, Operations Research, 32,
999-1018.

D. Blackwell (1962). Discrete dynamic programming, Annals of
Mathematical Statistics, 33, 719-726.

. T. J. PA. Bromwich (1926). An [ntroduction to the Theory of

Infinite Series, Macmillan, London.

M. Bouakis (1986). The target level criterion in Markov decision
processes, Francis Marion College, Florence, South Carolina.
Short paper based on unpublished PhD thesis.

J. A. Buzacott and J. R. Callahan (1973). The pit charging
problem in steel production, Management Science, 20, 665-674.
S. Chand (1983). Rolling horizon procedures for the facilities in
series inventory model with nested schedules, Management
Science, 29, 237-249.

G. B. Dantzig and P. Wolfe (1961). The decomposition algorithm
for linear programming, Econometrica, 29, 767-778.

R. K. Deb (1978). Optimal despatching of a finite capacity shuttle,
Management Science, 24, 1362—1372.

E. V. Denardo (1970). Computing a bias-optimal policy in a discrete
time Markov decision problem, Operations Research, 18, 279-289.



REFERENCES 185

15

16.

17.

18.

19.

20.

21.

22,

23,

24,

25.

26.

27.

28.

29,

C. Derman (1970). Finite State Markov Decision Processes,
Academic Press, New York.

B. L. Deuermeyer and A. B. Whinston (1981). On the convergence
of polynomial approximation in dynamic programming, Depart-
ment of Industrial Engineering, University of Texas, and Graduate
School of Management, Purdue University. Working Paper.

E. A. Fainberg (1982). Non-randomised Markov and semi-Markov
strategies in dynamic programming, Theory and Applied
Probability, 27, 116—126.

E. A. Fainberg (1982). Controlled Markov processes with arbitrary
numerical criteria, Theory and Applied Probability, 27, 486—-503,
J. Filar, L. C. M. Kallenberg and H. M. Lee (1989). Variance-
penalised Markov decision processes, Mathematics of Operations
Research, 14, 147-161.

R. Hartley (1979). Finite, discounted, vector Markov decision
processes, Department of Decision Theory, University of
Manchester. Working paper.

N. Hastings and J. Mello (1973). Tests for suboptimal actions in
discounted Markov programming, Management Science, 19,
1019-1022,

W. J. Hopp (1989). Identifying forecast horizons in non-
homogeneous Markov decision procedures, Operations Research,
37, 339-343.

R. A. Howard (1960). Dynamic Programming and Markov
Processes, Wiley, London.

L. C. M. Kallenberg (1983). Linear Programming and Finite
Markovian Control Problems, Mathematical Centre Tracts, 148,
Mathematisch Centrum, Amsterdam.

J. G. Kemeny and J. L. Snell (1960). Finite Markov Chains, Van
Nostrand, New York.

D. M. Kreps (1977). Decision problems with expected utility
criteria, 1, Upper and lower convergent utility, Mathematics of
Operations Research, 2, 45-53.

H. Kushner (1971). [Introduction to Stochastic Control, Holt,
Rinehart and Winston, New York.

M. Landsberger and 1. Meilijson (1982). Incentive generating state
dependent penalty system—the case of tax evasion, Journal of
Public Economics, 19, 333-352.

W. S. Lovejoy (1986). Policy bounds for Markov decision
processes, Operations Research, 34, 630—637.



186 REFERENCES

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43,

44,

W. S. Lovejoy (1988). Computationally feasible bounds for
partially observed Markov decision processes, Research Paper No.
1024, Graduate School of Business, Stanford University.

J. J. Martin (1967). Bayesian Decision Problems and Markov
Chains, Wiley, London.

R. Mendelssohn (1982). An iterative aggregation procedure for
Markov decision processes, Operations Research, 30, 62-73.

R. Mendelssohn (1980). Managing stochastic multispecies models,
Mathematical Biosciences, 49, 249-261.

H. Mine and S. Osaki (1970). Markovian Decision Processes,
Elsevier, New York.

T. E. Morton (1979). Infinite horizon dynamic programming
models—a planning horizon formulation, Operations Research,
27, 730-742.

J. M. Norman and D. J. White (1968). A method for approximate
solutions to stochastic dynamic programming problems using
expectations, Operations Research, 16, 296—306.

E. L. Porteus (1971). Some bounds for discounted sequential
decision processes, Management Science, 18, 7—11.

A. R. Odani (1969). On finding the maximal gain for Markov
decision processes, Operations Research, 17, 857—-860.

M. Puterman (1978). Theory of policy iteration, in Dynamic
Programming and Its Applications, pp. 91-130, ed. M. Puterman,
Academic Press, New York.

S. M. Ross (1983). Introduction to Stochastic Dynamic Program-
ming, Academic Press, New York.

W. T. Scherer and D. J. White (1991). The Convergence of Value
Iteration in Discounted Markov Decision Processes, working
paper, Universities of Virginia and Manchester.

P. J. Schweitzer and A. Federgruen (1977). The asymptotic
behaviour of value iteration in Markov decision problems,
Mathematics of Operations Research, 2, 360—381.

P. J. Schweitzer and A. Seidman (1983). Generalised polynomial
approximations in Markov decision processes, Working Paper No.
QM8326, The Graduate School of Management, The University of
Rochester.

P. J. Schweitzer, M. L. Puterman and K. W. Kindle (1985).
Iterative aggregation—disaggregation procedures for discounted
semi-Markov reward processes, Operations Research, 33,
589-605.



REFERENCES 187

45

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.
60.

J. F. Shapiro (1968). Turnpike planning horizons for a Markovian
decision model, Management Science, 14, 292-306.

R. D. Smallwood (1966). Optimum policy regions for Markov
processes with discounting, Operations Research, 14, 658—669.
R. D. Smallwood and E. J. Sondik (1973). The optimal control of
partially observable Markov processes over a finite horizon,
Operations Research, 21, 1071-1088.

M. J. Sobel (1982). The variance of discounted Markov decision
processes, Journal of Applied Probability, 19, 774—802.

L. A. Terry, M. V. F. Pereira, T. A. A. Neto, L. C. F. A. Silva
and P. R. H. Sales (1986). Coordinating the energy generation of
the Brazilian national hydrothermal electrical generating system,
Interfaces, 16, 16—-38.

L. C. Thomas (1978). Student exercise, Department of Decision
Theory, University of Manchester.

L. C. Thomas (1978). Student exercise, Department of Decision
Theory, University of Manchester.

A. Turgeon (1980). Optimal operation of multireservoir power
systems with stochastic inflow, Water Resources Research, 16,
275-283.

J. van der Wal (1981). Stochastic Dynamic Programming, Mathe-
matical Centre Tracts, 139, Mathematisch Centrum, Amsterdam.
C. C. White (1980). The optimality of isotone strategies in Markov
decision processes with utility criterion, in Recent Developments in
Markov Decision Processes, pp. 261-276, eds. R. Hartley, L. C.
Thomas, and D. L. White, Academic Press, London.

C. C. White and H. El-Deib (1986). Parameter imprecision in finite
state, finite action dynamic programs, Operations Research, 34,
120-129.

C. C. White and D. J. White (1989). Markov decision processes,
invited review, European Journal of Operational Research, 39,
1-16.

D. J. White (1969). Dynamic Programming, Holden-Day, San
Francisco.

D. J. White (1978). Finite Dynamic Programming, Wiley,
Chichester.

D. J. White (1982). Optimality and Elfficiency, Wiley, Chichester.
D. J. White (1982). A multi-objective version of Bellman’s inven-
tory problem, Journal of Mathematical Analysis and Applications,
87, 219-227.



188 REFERENCES

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

D. J. White (1984). Isotone policies for the value iteration method
for Markov decision processes, OR Spektrum, 6, 223-227.

D. J. White (1985). Approximating Markov decision processes
using expected state transitions, Journal of Mathematical Analysis
and Applications, 107, 167—-181.

D. J. White (1987). Utility, probabilistic constraints, mean and
variance of discounted rewards in Markov decision processes, OR
Spektrum, 9, 13-22.

D. J. White (1987). Decomposition in multi-item inventory control,
Journal of Optimisation Theory and Applications, 54, 383—-401.
D. J. White (1987). Infinite horizon Markov decision processes
with unknown or variable discount factors, European Journal of
Operational Research, 28, 96—100.

D. J. White (1988). Discount-isotone policies for Markov decision
processes, OR Spektrum, 10, 13-22.

D. J. White (1988). Mean, variance and probabilistic criteria
in finite Markov decision processes: A review, Journal of
Optimisation Theory and Applications, 56, 1-29.

D. J. White (1989). Approximating the Markov property in
Markov decision processes, Information and Decision Tech-
nologies, 15, 147—-162.

D. J. White (1989). Separable value functions for infinite horizon
average reward Markov decision processes, Journal of Mathe-
matical Analysis and Applications, 144, 450—465.

D. J. White (1989). Solving infinite horizon discounted Markov
decision process problems for a range of discount factors, Journal
of Mathematical Analysis and Applications, 14, 303-317.

D. J. White (1992). Computational procedures for variance-
penalised Markov decision processes, OR Spektrum, 14, 79-73.
D. J. White (1991). Markov decision processes: discounted
expected reward or average expected reward? (working paper, to
appear in Journal of Mathematical Analysis and Applications).
D. J. White (1992). Piecewise linear approximations for partially
observable Markov decision processes, Journal of Information
and Optimisation Sciences, 13, 1-14.

D. J. White (1991). A superharmonic approach to partially
observable Markov decision processes, University of Manchester.
Working paper.

D. J. White (1991). Minimising a threshold probability in dis-
counted Markov decision processes (working paper, to appear in
Journal of Mathematical Analysis and Applications).



REFERENCES 189

76

77.

78.

79.

. W. Whitt (1978). Approximations for dynamic programs, I,
Mathematics of Operations Research, 3, 231-243,

W. Whitt (1979). Approximations of dynamic programs, II,
Mathematics of Operations Research, 4, 179—185.

D. V. Widder (1946). The Laplace Transform, Princeton
University Press, Princeton, New Jersey.

J. Wijngaard (1979). Decomposition for dynamic programming in
production and inventory control, Engineering and Process
Economics, 4, 385—388.



Solutions to Exercises

CHAPTER 1
1. ]
[
[ -5)°
. [1-08z, -0.2¢]
U=Pz=|" 077 1-032)
_ -1 _ [1 —0.32 , O.ZZ- B 2
VR OB i l_o.sz_/(l 1.1z +0.12%)
_[1-03z, o.zz‘( o )
| 07z, 1-08z]\T-z T-0.1z

[0.7+0.3(1-2) , 0.2-0.2(1 - 2) i1
10.7-0.7(1 -2) , 0.2+ 0.8(1 —2)] (1 -2)

[ 2-3(1-0.12) , —2+2(1—0.1z)] !
~7+7(1-0.12) , 7-8(1-0.1z)] 0 -0.12)

(after some manipulation)

aja -} J+aja-oay F 7.

9 9 9

Then
f(z)=(z/(1—z)2)[§ ][_‘5‘]

+(z/(1 - 2)1 —0.1z))[_§ —é][_g]

9

a2 ? ____ 8 2
=(z/(1-2) )[2]+((1_z) (1—0.1z)>[—7]
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Hence

. From Exercise 1 we have

2

(U—Pz)"=(1/(1—z))[§ 2]+(1/(1—0.1z))[_§ Y.

9 5

~
| S

Hence substituting 0.9z for z(p = 0.9) we have

7

(U-0.9Pz)"" = (11 - o.9z))[ij §] +(1/(1 - o.o9z))[_§

5 5

Hence

f@) = (Z/(l -2)(1 - 092))[3] + (z/(l -2)(1 - 0092))[_3]

Now

2 __10 10
(1-2)(1-0.9z) (1-z) (1-0.92)°

100 100
2z LOU

-0 -00%) (-2 (1-00%)

With some manipulation we obtain

f@=aja -ty i+ ara-osm| 3]

+(1/Q —0.09z))[

Hence

22 a[-20 o =20
Un = [12 é?] +(0.9) [_20] +(0.09) [ %

|

9

200
9i
~00 |*

91
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3. Non-discounted case. We need to add P”[l(l)] to the v, form of

Exercise 1 where, from Exercise 1, P" is the coefficient of z” in
(U- Pz)~". Thus

e[
o 0

2 92 _2
:n[ ] ¥ H +(o.1)"[ ]
2 5 5
Discounted case. We need to add (0.9)"P”[1(1)] to the v, form of
Exercise 2. Thus

_[22 ¥ J[~20 o[-
v,,—[lz g?]+(o.9) [_20]+(o.09) _

[[}] + 00|

2 5 J[-12 -3
=[12 g;]+(o.9) [_12]+(o.09) - :;]

91

2 -
+ (0.09)"[ ]
-3

Dl 1 DIt
F-JERV-JN |

. One possibility is as follows:

1 0 0 1
P=10 0 1|, r=12
010 3

Then

P'= Pif tis odd,
P'=Uif tis even.

Then, using (1.5), if n is even

= ((U+ P)+(P+ P2)+ +(P"‘2_+_ Pn—l))r

1 1 Nk 1 0
=2+3+(”2)5=n;+o,
3 2 5 s 0

if nis odd
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Un=(U+(P+ P2)+ +(P"_2+ Pn—l))r
2

! -1
= 2+(n2>5=n
3

(ST STZ I
+
|

Thus

w is not well defined, and w + e, does not converge, but oscillates
between

0 0
0| and -1
0 !

. (@) Average expected reward. From (1.25) we have, setting A= g,
u+ge=r+ Pu, u2)=0.
Thus

u(l)+ g=4+0.8u(l),
g=-5+0.7u(l).

So 0.9u(1)=9, i.e. u(1)=10, g=2. Note that u differs from the
true bias function by a constant function (w(2) — u(2))e.
(b) Expected discounted reward. From (1.35) we have, for u=uv,

v=r+pPv ie. v=U-pP) 'r
_[ 028 -018]7'[ 4]_[0.73 0.18 4
[-0.63  0.17] [-5] [0.63 0.28 -5

(0.28x0.73 — 0.18 x 0.63)

_[2.02 _[22.2
- »1.12]/0'91 h [12.3}'

. (a) The function v, is the expected total reward function when we
have a final pay-off function equal to u. Let us use vy instead of v,
to avoid confusion with the case when v =0 (so v, = v3). Then
from (1.20) we have, for vp=u

n>1 vn=r+ Pvy_,,
n=0 Ve = u.
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Then
vi' =r+ Pu=u+ g (using (1.25) with h = g).
Assume that
vi=u+ sg, 0<sgn—1.
Then

vh=r+ Pvi_1=r+ Plu+(n-1)g)
=r+Pu+(n-1)g=u+ g+ (n-1)g (using (1.25))
=u+ng. ’

(b) From (1.26) we have

vin=v4+ P'u
=vd+ Pu+ Equ.

Hence
vgzvi‘,—ﬁ:u—E,,u
=(U-Pu+ng—- Eu
=ng + w’ + &,
where
wl=(U- P, e,=— Equ.
Then

limit [e,] = 0.

n —+ oo

The matrix P has identical rows, each equal to the steady-state
probability vector.

n-1
( > P’/n> =P+ F,
=0
where F, tends to the zero matrix as n tends to infinity. Then

PP* = (Z P’/n) ~ PF,
=1

n-1
- ( ) p’)n — PF,+ (P"— U)n
/=

0

= P*+ (U~ P)Fn +(P" - U)|n.
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Now let n tend to o to obtain the requisite result. The same analysis
applies for P*P.

CHAPTER 2

1. E(C()=aE(C(a)) + (1 —a)EC(D)),
V(C(c)) = E(C*(c)) — E*(C(c))
=aE(C*(a)) + (1 - @) E(C*(b))
: —(@E(C(a)) + (1 - Q) E(C(b)))*
=f(a)’ say.

The function fis concave on [0, 1]. Hence f takes its minimal value
at « =0 or a =1 (not necessarily uniquely). Hence

S(a) 2 minimum [f(1), f(0)]
= minimum [V(C(a)), V(C(b))], V a€[0,1].

n

-5 (1 o0)v.

(b)

> (ﬁ p(s))(p(r)Y,)

t=1 \s=1

>

= (H p(S))

where Y, =p(1)Y; and p(0) = 1.
3. (a) The state of the system, X}, at the beginning of time unit ¢ may
take the form

Xl: (SI)DI)DZ) "y oy -Dl~|)

where S, is the stock level at the beginning of time unit r and D,
is the demand in time unit ¥. Then

probability
Xee1=(e+1, 51, 82, - ,Slle—(ll,Sl,SZ, v Si—1)s Ze = ky)
= probability (S;+, =17, .1,
D1:51|X1=(i1, S1y 852y -5 St—1), Zi = ki)
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2 4

2 P‘“)(}J. q(su, o)
2 -1

(Z, p@ I atsua)

= (0 otherwise.

if fr+) = maximum [i;, k(] — s,

Thus the state i is replaced by (i, si,s2,.,.,5-1) whose
dimension increases with ¢.

(b) Alternatively, the state X, may take the form
X: = (S, ®,(1), $,(2)) where S, is as in (a), and ®,(«) is the
probability, at the beginning of time unit ¢, that the parameter
takes a value «. Then

probability(X;+1 = (ir+1, x1(t + 1), x2(1 + 1))
| Xi= (ir, x1(0), x2(1)), Z¢ = k¢)
= probability(D, = maximum [i;, k] — ir+,

[P (1) = x1(2), 8:(2) = x2(1)) (A}
if
Xall + 1) = Xo(t)g(maximum [ir, ki) — drv1, 1) =12
o - 2 ’ - 3 &y
2. Xo(f)g(maximum [i;, k] — ir+1, o)
a=1
=0 otherwise. (B)
The expression for (A) is the denominator in (B).
4,
n=0
vo(1) = vo(2) = vo(3) = 0.
n=1

ni(l) = maximum[:zéz 3] =4, 6:(1)=1or 2,

k=1:9

v1(2) = max1mum[k -2 10

]: 10,  8:(2) =2,

v (3) = maximum[: : ; ﬂ =4, 6,(3) = 1.
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n=2

v (l)—maximum-k= 1:44+0x0+3x10+3x4=8.5
B k=2:4+0x0+2X10+31Xx4=9.25
=9.25,86(1) = 2,
v (2)—maximum-k= 1:9+%5X4+0x10+7%x4=12.0
2ner= k=2:10+1x4+0x10+1x4=13.0
=13.0,86(2) = 2,
v (3)—maximum-k= 1:4+1x4+1x10+0%x4=28.5
2= k=2:3+2Xx4+2ix10+0x4=8.25
=8.5,86(3)=1,
i
1 2 3
0 | w 0 0 0
b8 — — —
1 | » 4 10
67 lor2 2 1
2 | » 9.25 13.00 8.5
86 2 2 1
3 | vs | 1206 1675  11.88
Os 2 2 1
n
4 | vy | 1474 19.00 1422
b4 2 2 1
5 | vs | 1646 2093  16.12
83 2 2 1
6 | ve | 17.89 2226  17.46
62 2 2 1
7 | v, | 18.89 2331  18.51
81 2 2 1
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Note that n(maximum)=7, and r=1 corresponds to n=7 in
accordance with our convention.
S. Results 2.4 and 2.5 show that v is the unique solution to u = Tu, i.e.

u(1) = maximum :4+}“(2)+§“(3)]’

1
=2:4+3u)+3u3)

u(2) = maximum D9+ pu() + l°(,u(3)]’

1
=2: 10+ v(1) +1v(3)

u(3) = maximum

=1: 4+2‘u(l)+;u(2)J
[k=2:3+3u(l)+3u2)]

Result 2.6 shows that if & is a decision rule solution to the above then
the policy = = (8)” is optimal among all policies. Finally let 7= ()
be any other optimal stationary deterministic Markov policy. Then
its associated reward value function v™ = v satisfies

T°u=u= Tu.

Thus o is also a decision rule solution to u = Tu. Hence if we
evaluate v”™ for = as specified (using v™ = T°v™) we need only show
that 6 is the only decision rule solution to u = Tu. To obtain v™ we
solve

u()=4+3u)+iu3),
u2)=10+iu()+'u(3),
u@B)=4+u(l)+.uQ2)

giving
v = u = (22.00, 26.40, 21.60).

1t is easily established that v = v™ satisfies ¥ = Tu and that the only
decision rule optimum is &.

6. From Result 2.10, if we can show that & is a decision rule solution
to u+ he=Tu, u(m)=0 then m =(6)~ will be an optimal policy.
The equations take the form

_q. \ :
u(ly+ h= maximum[k_ 14 +5u@)+ _;u(3)]’

k=24+lu@)+3iu@3)

1. R
u2)+h= maximum[k_ 159+ u() +3u(3) ],

k=2 10+3u(l)+u(3)
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— . Z 1
u@3) + h= maximum[k =1:4+3u(l) +} u(z)]’

k=2: 3+ u)+u(2)
u(3)=0.
For policy = = (6)™ we solve the equations

u(h)Y+h=4+1u@)+3u3),

u@)+h=10+3u(l)+3u3),

uB)+h=4+2u(l)+1u(),
u(3)=0.

Thus

wi)=u()=5%, w@Q=u@=3 w3 =u@=0

g =he="S5e.

It is easily seen that these satisfy the optimality equation.
. With 0y = u, where u solves (2.85) and (2.86), we have

Assume that
Us=0; forl<<s<gn-1.
Then
Or=T%7% = T%n-
=T%u+(n—-1)he)=Tu+(n—1)he
=Tu+(n—1)he=u+ nhe = ip.
Alternatively we have
o= TPu =0T
Assume that
by = (T%)*u = 07, 1<s<n—1.
Then
Un=Thn-1 = T(T*" 'u.
Now

TT u = T?u,
T°Tu=T(u+ he) = T°u + he
=Tu+he=u+2he=10v,=T"u.
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Thus T and T° commute. Hence

On=T(T)" 'u=(T)" ' Tu=(T*"'TPu=(T*)"u=0

8. Define v, to be the maximal expected total discounted reward value

function for the next n time units from the beginning of time unit
t. As with the earlier reasoning we may keep within Ilyp without
loss. Then vy, satisfies

t=21l,n>1

Un(i) = mixkn(u:m[r, (1) + p(1) Z p,,(t)u,H n— |(j)] vViel,
€ K, (i J€

[21,71:0 u10=0.

Some conditions need to be placed on {r¥(¢)}, {p(¢)} to ensure that
limit [vi) = v, exists (e.g. |rf()| S M< oo, ¥ i€l, keK(i),

n—twx

t>1,and 0 < p, <p <1 for some p). Then v, satisfies

u,(i) = maximum [r, () +p(0) Z p,,(t)u1+|(1)] viel,t>1.

ke K. (i) Je€la

CHAPTER 3

1.

r=10,

I~

= 3. We require that

Result 3.4. 3/0.25 < v(i) £ 10/0.25 i.e. 12<v(i) <40, 1 <7< 3.
This is satisfied since v = (22.00, 26.40, 21.60).

Result 3.5. o =26.40, 8 = 21.60.
Un (i) +21.60p" < v(i) < un(i) + 26.40p".

It

un(1) +21.60p" < 22.00 < un(1) + 26.40p",
un(2) +21.60p" < 26.40 < un(2) + 26.40p",
un(3) +21.60p" < 21.60 < un(3) +26.40p".

fl
o

...
Il
w

These should be checked for 1< n <7 against the answer to
Exercise 4 of Chapter 2.
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Result 3.7. The sequence {un} is non-decreasing. This must hold
since with u =0 and rf >0, v i, k, we must have

0< T70.
Result 3.8.
n (o[ = p))an=Un (o/(1 =p))Bn=Ln
1 30.00 12.00
2 16.75 9.00
3 11.25 8.43
4 8.04 7.02
) 5.79 5.16
6 4.29 3.99
7 3.15 3.00.

Check that for 1 < n <7

un(1) + L, <22.00 < un(l) + U,
Un(2) + Ln £25.40 < up(2) + Un,
Un(3) + L, < 21.60 < un(3) + Un.

il

i
o

...
]
w

Result 3.10.

v+ (p/(1 = p))(Bn—an)e <V S0

We have

> ——
Il

o1=(,2,1), o

on=102,2,1), Vn

Policy 7= (8)®, where 6 =(2,2,1), is optimal. Since a, > 8 the

above inequality is automatically true ¥ n > 2 and for n=1 when

o1=(2,2,1). We need to check the policy 7 = (o1)® for n=1.
We have

v =4+ ix v @)+ xv™(3),
v"Q) =10+ x v (1) + i xv™(3),
V@3) =4+ X un (1) + 1 x UT().
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Thus v™ = (204, 252, 20¢). Thus we need to check that, for n=1

1 22.00 - 18 < 20.80 < 22.00,
26.40 — 18 < 25.60 < 26.40,
21.60 — 18 < 20.80 < 21.60.

i

\n'\ )

.
)

Result 3.11. We have

n Un Bn

I 1000 4.00
2 525 3.00
3 375 28l
4 268 234
5 193 L72
6 143 133
7 1.05 1.00.

We need to check that 8,/Br-1 2 0.75 2 anfan- for n 2 2.

Result 3.12. This is the same as the (modified) Result 3.10.
2. We first of all establish (3.195) following the analysis of Result 3.8.
Here i,= T%,_, with 6,(/)€ Ra(i), Vie I, v=Tv= T%, with

6 € arg maximum [7T%v]. Note that &(/)€ R.(i), Vi€l Then
bed

U —lin < T — T%in_, since 8(i) € Ra(i), Vi€ L
The analysis follows on as for Result 3.8 to give, analogously to
(3.54)

v—tn < (U=pP%) 'pP(lin — tin-1).

This gives the right-hand side of (3.195). The left-hand side follows
in a similar manner since 6, € A.

n=0

For the example we have iy =0, R (i) = K(@i), i=1,2.

n=1

Thus &, =4, —3), & =6, 8 = —3. Then
n=2

h(2)=-3+54=51, w(2)=-3-27=-30.
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Then

[T'3:](1) =6 + 0.9(0.5 X 60 + 0.5 x 51) = 56.00,

(T2u2] (1) =4+ 0.90.8 X (—21) + 0.2 X (— 30))

-16.52,

[T%id:] (1) =4 + 0.9(0.8 X 60 + 0.5 x 51) = 56.40,

(T'u2) (1) =6+ 0.9(0.5 X (—21) + 0.5 x (- 30))
= —16.94.

I

il

Thus R>(1) = K(1).
i=2 [T'7;](2) = —3+0.9(0.4 x 60 + 0.6 x 51) = 41.55,
[T2u21(2) = —5+0.9(0.7 X (—21) + 0.3 x (- 30))
= —21.33,
[T222](2)= —5+0.9(0.7x 60 + 0.3 x 51) = 46.75,
[T'u2](2) = =3 +0.9(0.4 x (—21) + 0.6 X (—30))
= —26.76.

Thus R2(2) = K(2).
br=u, G =178, B2=0.97.
n=13
a3(1)=7.78 + 16.02 =23.80,  u3(1)=7.78 +8.73 =16.51,
#32)= -2.03+16.02=13.97,  u(2)= —2.03+8.73 =6.70.
Then

i=1  [T'a3](1)=6+0.9(0.5 x 23.80 + 0.5 x 13.97) = 23.00,
[T?u3] (1) =4+ 0.9(0.8 X 16.51 + 0.2 X 6.70) = 17.09,
(T3] (1) =4 + 0.9(0.8 x 23.80 + 0.2 X 13.97) = 23.65,
[T'u3] (1) = 6 +0.9(0.5 X 16.51 + 0.5 X 6.70) = 16.05.

Hence R3(1) = K(1).

i=2 (T'@:])(2) = —3 +0.9(0.4 x 23.80 + 0.6 x 13.97) = 13.11,
(T*u3]1(2)= - 5+0.90.7 X 16.51 + 0.3 X 6.70) = 7.21,
[T?73](2) = —5+0.9(0.7 x 23.80 + 0.3 x 13.97) = 13.77,
[T'u3]1(2)= —3+0.9(0.4 X 16.51 + 0.6 X 6.70) = 6.56.

Hence R3(2) = K(2).
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ﬁ3= Us, &3 = 1.46, 63 =1.38.
n=4

us(1)=9.24 + 13.14 = 22.38, us(1) =9.24 + 12.42 = 21.66,
4(2)= —0.65+13.14 = 12.49, Us(2)= -0.65+12.42=11.77.

Then

i= [T'7:1(1) =6 +0.9(0.5 X 22.38 + 0.5 x 12.49) = 21.70,
(T?us] (1) = 4+ 0.9(0.8 X 21.66 + 0.2 x 11.77) = 21.72.

Hence eliminate action 1.

i=2  [T'ds](2)= —3+0.900.4 x 22.38 + 0.6 x 12.49) = 11.80,
[T2us](2) = ~ 5 +0.9(0.7 X 21.66 + 0.3 x 11.77) = 11.82.

Hence eliminate action 1. Thus Rs(1) = Rs(2) = {2} and 6 = (2,2) is
optimal.
3. ln T"ﬁn-ly Up-y = Tﬁ""ﬁn—z,

fin — fn-1= Tln_1 — T% ‘lin_,

(i) € arg maximum [[T%d,-1] ()],
k€ Ra(i)

Gn_1(i) € arg maximum [[T*d,-2](0)].
k€R, (D)

Thus 6,(i) € Ra(i) S Ru- (i) and since 7% 'fi,_» < Tiin-» we have
lp—lp-1 € TU"ﬁn—l - To"ﬁn—Z
=pP¥(lin-1 — ln-2).
Hence for n > 2, &n < p&n-1 < ---p" 'a,.
However, for the 3, result we would require that 6,-,(i) € R,(i)
in order to be able to deduce that T, = T°" 'ii,-,, and hence in

order to deduce iy — tin—1 = pP% '(tin-1 — ln-2) and Bn > pfn-1.
However, Gn-1(/) might be eliminated from R,_,(/) and not be in
R, (i).

4. Let N(i) be the non-optimal actions for state i. Let kK € N(/). Then
for the function win (3.109) in particular, we have for some g € K (i)

(T9w] (i) > [T*w] (i).

This comes essentially from Result 2.10 since, if 6 solves (2.85) and
8(i) = ¢q, then so does 7 solve (2.85) where 7(j)=6(J), ¥ j # i, and
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7(i) = k if the above inequality does not hold. Then
[T%n-11() = [T un-11G) = ([TUn-1] (D) = [T7W] (i)
+([T'W () — [T*w] (i)
+ ([T*W] (i) = [T un-11 ()
= A+ B+ C, say.
Let [79w] (i) — [T*w] (i) = €(i) > 0. Then B = (i).

The quantity A is equal to (n— 1)g + pfe,-1, where pf is the
transition probability vector for action ¢ and initial state i.

C=—-(n—1g—-pkea_..
So
A+B+C=¢e(i)+(pf - pFren:.

Since {e,} tends to zero as n tends to infinity we have A + B+ C > 0

if n is large enough. Hence [79n_1] () > [T*un-1] (i) if n is large

enough, i.e. k is not optimal for the nth iteration if n > no(i) for

some no(i). If no = maximum [ny(i/)] we obtain the desired result.
i€l

. Let I=(1,2}), K(1)={1,2}, ri=0, ri=1, KQ)= {1}, ri=1,
pla=ph =1, ply=1. Then the optimality equations are

_ . k=1:0+u(2
u(l)+ h= max1mum[k: 214 u(Z)J’
u@)+h=1+u().
So w(2) = u(2) =0 (by convention)

g=h=1,
w(l)=u(1)=0,
r=()*, 8(1)=2, 8(2)=1 is optimal.

However, consider the policy 7 = (§) where §(1) = 1, §(2) = 1. This
gives the same gain g"= 1. However, with w as above

(Twl (1) =1 [T'w(1)=0
although
[Twl Q) =1= [T'W] ).

The reason why this can happen is that / = 1 is a transient state, for
the optimal policy 7 (in particular), with a zero steady state (or
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limiting average) probability and it does not matter which action is
taken in this state for gain optimality.

6. Let I=1{1,2,3}, K()={1,2}, KQ)={1}, K3)=1{1}, pla=1,
pii=pi3=0, pii=1, phi=ph=0, plh=1, pl=p=0,

pis=1, phi=pi=0, ria=1, rly=14, rla= -1 riz=1, p=},

uo = 0. Then

nzl un(2)= =31 - p")[(1 - p), on(2)=1,

U3 =11 -pM[(A=p), w3 =1.

n=1  w)=[Tul()=1, a(l)=1,

n22 e = [Tuper] (1) = maximum| =32 ¢ 2n 1 O]
R [k =1: 1—(0/2)(1—p"")/(1—p)]

MR k=2 1+ (21 - 0" /(1 - p)

R [k=1: ((2-3p)+p")/2(1 ~ p)
_max1mum_k:2: (- p™)2(1 - p) J
R [k=1: (1+p™)[2(1 - p)
= max1mum-k= 2 (1 - p"y2(1 _p)].

Thus

on=1{(1,1,1) uniquely, v n>1.
However, solving (3.1) we have
v(2)=u@)=—3i(1 -p),
v(3)=u@)=i(1-p),

when p =1,

fl

v(l)=u(l)= maximum[k= 1: 2-3p)/2(1 —p)] )

k=2:1/2(1 - p)

and 6 =(1,1,1) or (2,1, 1) are equally optimal.
7. We first of all find v™ by solving

v"(1) =90 + 0.450™(1) + 0.4507(2),
v™(2) =60 + 0.63v7(1) + 0.27v"(3),
v"(3) =90+ 0.27v"(1) + 0.63v™(3).



CHAPTER 3 207

This gives
v™(1) = 803,
v"(2) = 782,
v™(3) = 800.
[T'v™] (1) = 803, [T?v™] (1) = 822, (1.1
[T'v™] (2) = 807, [T?v"] (2) = 782, (1.2)
[T'v™] 3) = 800, [T?v"] (3) = 85S. (1.3)

Thus v” satisfies w = Tu. Thus 7 is optimal among all the stationary
deterministic Markov policies since the policy solutions to u = Tu
give exactly the set of such optimal policies. Any stationary deter-
ministic Markov policy 7= (¢)” # 7 will give, from (1.1) to (1.3),
[T°Dv™] (i) > v™(i) for some i and cannot be optimal.

. If {6, w", g7} satisfy the optimality equation then == (6)" is
optimal. The {rf} tabulations are as follows:

i k rk
1 1 15
2 16
2 1 9.75
2 9.5

Solving for {w", g"} with w"(2) =0, we need to solve
g +wi(1)=16 +0.8w"(1),
g7=9.5+0.5w"(1).
Thus
gr =144, w (1) =92, w"(2)=0.
[T w™ (i)
i=lk=1 15+0.5%x9=19%,
k=2 16 + 0.8 x 92 =233,
93+ 0.25x92=12]1,
k=2 91+0.5x9=14%.
Hence 6 is optimal.

Il
‘N
>

Il

|
|
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9. n=1
Ri())=1{1,2}, 1<ig3,
i (1) =90, a(l)y=1,
1, (2) = 60, a1(2)=2,
h3)=9%, H@)=1,
(o/(1 = p))a = 810, (o[ (1 = p))B1 = 540,
i = (90, 60, 90), a=(1,2,1.
n=2

Thus we have

£2=MA|+54OG<U<171+810€=1?2,
uz = (630, 600, 630), i> = (900, 870, 900).

i=1

[Tii2] (1) = minimum[go +0.45 X 900 + 0.45 x 870 = 889 ]

100 + 0.45 x 900 + 0.45 x 900 = 910
= 889,

[T'u2] (1) = 90 + 0.45 X 630 + 0.45 X 600 = 644,

[T?u2] (1) = 100 + 0.45 X 630 + 45 x 630 = 667,

[T'u2] (1) < [Ti2] (1), [T?u2] (1) < [T@2](1).

Hence no elimination for i =1, i.e. R(1)= K(1).

i=2

[Tiz2} (2) = minimum[go +0.63 x 900 + 0.27 x 870 = 889]

60 + 0.63 x 900 + 0.27 x 900 = 870

= 870,
[T'12] (2) = 90 + 0.63 X 630 + 0.27 X 600 = 650,
[T2u2] (2) = 60 + 0.63 X 630 + 0.27 X 630 = 628,

(T'u2] 2) < [Ti2] 2), [T*u2] 2) < [T22](2).

Hence no elimination for i =2, i.e. R,(2) = K(2).

i=3

90 + 0.27 x 900 + 0.63 x 870 = 880
140 + 0.27 x 900 + 0.63 x 900 = 960

[Tuz} (3) = minimum[

= 880,
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[T'42](3) = 90 + 0.27 X 630 + 0.63 X 600 = 638,
[T2u,] (3) = 140 + 0.27 X 630 + 0.63 X 630 = 707,
[T'w2]1(3) < [Tii] (3), [T*u21(3) < [Tii2] 3).

Hence no elimination for i=3, i.e. R>(3)=K(3). Hence i, = u,,

n=1,2.
CHAPTER 4
1. (i) LPI
minimise [Au(1) + Aau(2) + Au(3)]
subject to
u(l) =4+ 5u@)+;u3),
u(l) =2 4+3u@)+;3u(3),
uR) 29+ %u(l)+ Hu3),
u2) 2 10+ u(1) +5u(3),
u) 2 4+3u(l)+5u(2),
u@B@) 23 +iu)+ ).
(ii) DLPI
maximise [4x]+4x3+9x}+ 10x3 + 4x} + 3x3]
subject to

ey

(2
(3)
4
(%)
(6)
)

®)

9
(10)
(11)
(12)
(13)

(iii) LPI Use Result 4.3. The decision rule given corresponds to
equalities in (3), (5), (6). So we choose, as basic variables,
{u(1), u(2), u(3)} and the slack variables {s!}, s1, s3} in (2), 4), (7).
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Putting in all the slack variables {s¥} and solving we obtain

u(1)=22.00+ 115} + s3+ s},
u(2)=26.40 + isi+ 1453+ 1¢sl,
u(3)=21.60+¢si+ H4s3+ 11si.

We do not need to find expressions for the other basic variables
si, 53, s3 since the coefficients of s?, s}, s} in the above are all posi-
tive, showing that {u(1), u(2), u(3)} are simultaneously optimal. The
objective function value is

22.007 + 26.40X; + 21.60A3.

With \; being the probability of initially being in state i, v i € I, this
is the expected total discounted reward for the policy = = (6)™ and
for the specified {A\;}.

DLP! Use Result 4.4, The decision rule given corresponds to
x}>0, x3>0, x}> 0, x¥=0 for all other (i, k). Thus {x}, x3, x})
are the basic variables. Solving (9)-(11) we obtain

2 1 1 2
XT=2M+8N+ 8N —xi -5, x2 —}x3,

2 1 1 2
X2=)\|+%g)\2+{g)\3—]'oX|—%X2+%(‘)X3,
1 1 1 2
X3=)\|+:g)\2+%g)\3+,‘%X|+:—:5X2—:§(])X3.

The objective function value becomes
22\ + 26.40\; + 21.60N; — 2 x| — I x3 — 5, x3.

Since the coefficients of x|, x}, x} are negative, & is an optimal
decision rule.

2. (a) Inventory (see (4.26)—(4.28)). Here xf is the infinite horizon
discounted probability of having stock level i and topping it up to
k if we begin with prior state probabilities {A\;}. We can set A\; =1,
N =0, j#i, if we begin in state /.

DLPI

maximise [ > r,-"x,-"]
(1]

1 Sismigs<ksm
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where

rk=— (c(k -+ Sg}k q(s)l(s— k) + %a(k + s;- q(s)(k — s)))

subject to
1<igm xf-p )y gtk —i)xf =N,
- isksm 0K jS<mjiskgm
. k k
i=0 2 Xo—p 2 q(s)x; = Mo,
E—— o<k m ogj<mj<kgmszk

xk>o, 0<i<m, i<k<m.

(b) Queuing (see (4.64)—(4.68)). Here x/ is the infinite horizon
limiting average probability of there being i people in the system and
(i — k) of these sent elsewhere for service. We will assume that the
transition probability structure is uni-chain.

DLP2
maximise[— > (c(i — k) + wk)x,-"]
0<i<mO<k<i
subject to
I1<i<m
> xt-pl-q) X xj'-(-pg X x*
0g<k< i-lgjgsm i+lgjgm

-(pg+(1-p)1-q) 2 x;=0,

icjgm

i=0 x-(l-p)g % x/-(1-p-q) 3 x/=0,

1<jsm 0</j<m
Il=m
xm=p(l-q) X x/"'-=(-p)1-qxn=0,
0<km m-1<fj<m
m i
> oxk=1,
i=1 k=0
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(c) Defective product (see (4.87) and (4.88), (4.90)). Here x/ is the
probability of having a deficit / and producing & at any time up to
the termination of the process. We let i < m, k < m.

DLP3
maximise[ - (a+ bk)x,-"]
O0gcigmig<ksm
subject to
i#0 xk - plk,j—i)xf =N\,
iskgm isjsmjsksm
xk>0, 0<igm, i<k<m.
CHAPTER 5

1. (i) Refer to (5.10)—(5.14). The equations for general p are as
follows:

u(i) = maximum

o [k=1:6+(0.20+ 0.3p)u(l) + (0.3p + O.sz)u(Z)]
k=2:4+(0.6p+0.20)u(l) + (0.1p + 0.10)u ()|’
u(2) = maximum
» [k =1: =3+(0.3p+0.10)ul) + (0.2p + 0.4p2)u(2)]
k=2: =5+ (0.4p+0.3p>)u(1)+ (0.1p + 0.2 u(2)|"
(ii) The equations for p = 0.9 are as follows:

u(l) = maximum[k =1: 6+ 0.423u(1) + 0.439u(2)J’

k=2:4+0.702u(1) + 0.171u(2)

u2) = m_aximum[k =1: =3 +0.351u(l) + 0.508u(2)}

k=2: —5+0.603u(l) +0.252u(2)
For = =(8)%, 8 = (2, 2) we solve the following equations:

v"(1) = 4 + 0.7020"(1) + 0.17107(2),
v"(2) = — 5 + 0.603v7(1) + 0.25207(2)
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to give
v =(17.9,7.9).
We now check for optimality by using Result 5.1 with u = v”

k=1:6+0.423x17.9+0.439x7.9
k=2:17.9

-~

maximum[ ] =17.9,

i

. k=1 -34+0.351x17.9+0.508 x7.9] _
2 max1mum[k= 2. 7.9 ] =7.9.

Thus = is optimal. It is also uniquely optimal since 6 =(2,2) is
uniquely optimal in the above.

. We will use optimality equations (5.29) and (5.30). Equations (5.27)
and (5.28) may equally well be used. The equations take the
following form:

u(1) = maximum [I/i 6 —1.5h+0.5u(1) + O.Su(Z)J’

1:
2:4-1.3h+0.8u(l) +0.2u(2)

o [k=1: =3 - 1.5k +0.4u(1) + 0.6u(2)
u@) ma’“m“m[k=2: —5—1.5h+0.7u(1)+0.3u(2)]’

u2)=0.
For the policy = we need to solve the equations

w (1) =4—-1.3g"+ 0.8w"(1),
0=—5-1.5g"+0.7w"(1).

Thus
wr (1) =10.3, w'(2)=0, T =1.48.

We now use Result 5.4 with u = w™, h = h".

. . k=1:6-15%x148+0.5x10.3] _

i=1 maxxmum[kzz: 10.3 J_10.3,
i=2 maximum k=1: ~-3-1.5%x1.48+0.4%x10.3 -0
— k=2:0 )

Thus = is optimal.
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3. Let (u, A, 8) be any solution to (5.27) and (5.28). Then for each i€ [

(r,-k + X phu()- u(i))
JeL1 <y L

h> vkeK(@) (1)

3
k
( pifv')’)
Jell<yg L

and
ré+ oz phu(y) — u()
h___ jelLl <y < (2)
pﬁ’v"/)

(jfl,lg‘)SL

for some k € K(i). From (1) by rearranging the terms, we obtain for
alliel

u(f)>r,-*—h( 5 pﬁw)+ S phu(), ¥ keK@)

Jellgy <L jellg<y<s L
3)
with equality in (3) for some k € K (/) coming from (2). Thus

u (i) = maximum
keK)

x[rt=n( D pba)+ S phut| viel @
jelllg€9<gL jell<ygL
Equation (4) is the same as (5.29). Thus together with u(m) =0 in
(5.28), (u, h,8) solves (5.29) and (5.30). The converse analysis also
applies.
4. The states of the system are /=0 (failure) 1,2,3 (performance
levels). We will use optimality equations (5.29) and (5.30).

=0

0<j<22<¢€

2

u(0) = maximun [r(3) + B PGy DG - )
— a(pG,1,k) + p(, 2, k)

- h( S pG.0,7)y +k(pG,1,k) + (3,2, k)))

l<y<gk

+ (. 3 pe.o0, 7))u<0) +pG, 1 ku(l) + p(3,2, k)u(Z)].
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3Izizl

u(f) = maximum [r(i)+ 2 pU, j,y—Dr{j)
k21

0</j<i-12€y <

=

- a(p(ly lik)+ p(l’ZY k))

- h( % pG,0, 7y +k(pli1,K)+ pli 2,k)))

1<y g

+ ( > ) p, 0,7))11(0) + p@, 1, kKu(l) + p(i,2,k)u(2)}.

1€y <

CHAPTER 6

1. (i) This is similar to the sequential sampling example of the text.
The infinite horizon equation is ¥ = Nu with N given by (6.37)
and (6.38). As with the sequential sampling problem, the states
are the vectors u of probabilities over O = {I1, 2}.

We have only two primitive states # = 1 or 2. Thus ux can be
replaced by the scalar p in the equations, dropping the {/, j} in
the various terms.

pka=0 ifke(l,2), v6eO, deD,
ph=%, ph=% pi=1,  ph=}
Q¥ uli=p/2-p),  [Q%%li=2p/(1 +p).

Then the infinite horizon optimality equation is retained in
minimisation form

k=1:20(1 - p)

k=2:20p

k=3:14+(2-p)3u(p/2-p)) |’
+ (1 + p)3)u2p/(1 + p))

vogsp<l

u(p) = minimum

The unique solution to this equation gives the value function v.
(ii) Let v,(p) be the minimal expected sum of experimentation costs

and losses if we allow at most n experiments. Then v, is a unique

solution to the following optimality equation for n =0, 1:

k=1:20(1 - p)

< < 1.
k=2:20p » ¥Oo0sp<l

up(p) = minimum[
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We have

k=2 if p<y,
21

k=1 if pzi.
k=1:20(1 - p)
k=2:20p

ti(p)=minimum| 3. 11 (@ - p)fIuolp| 2 - p))

+((1 + p)[3)uo(2p/ (1 + p))

= minimum
k=1:20(1 - p)
k=2:20p

. ) » 401 - p) _20p
x | k=3:1+(2 p)/3)mm‘m“m[ 2-p) ’(2—p)]

. 20(1-p) _40p
+((1+p)/3)mlmm“m[ (1+p) ’(1+P)}

43 — 40p

= minimum[ZO(l - p),20p, minimum[ 3

3+20p
3

+ minimum[—20 —330p , mTpH

= minimum [20 - 20p, 20p,

63— 60p 23 43 3 +60p
3 333 )

vogp<gl.

The optimal decision rule for n = 1 is given by k=3,0< p < 1.
2. (i) This is similar to Exercise 1. We have
phi=0 ifke{l,2), v6eO, deD,
ph=0, ph=1, ph=% ph=}
(Q%ul =0,  [Q%u]i=3p/(1+2p).
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The infinite horizon optimality equation is, retained in minimi-
sation form

k=1:8

. k=2:8(1 - p)
u(p) = minimum k=3:1+2(1 - pu() s
+((1+2p)/3)u3p/(1 + 2p))

Clearly u(0) = 0 and this simplifies the equation.
(i)

uo(p) =minimum(8p,8(1 — p)l, vOg p<gl.

We have

un(p)= minimum[fip, (1~ p), 1+ (1 +2p)/ 3 ff;p)}

= minimum[8p, 8(1 - p), 1 +((1 + 2p)/3)minimum

x[ 24p 8(1—p):|
1+2p°(1+2p)

= minimum [8p, 8(1 — p), 1 + minimum [8p, 8(1 — p)/3]]
= minimum[8p, 8(1 — p), 1 + 8p, (11 - 8p)/3]
=3 minimum [24p, 24(1 ~ p),3 + 24p, 11 — 8p].

The optimal decision rules for n = 1 are given by
k=1 ifo0
k=3 if!l
k=2 if!

AN A
N N //\

- 3

p
p
p

o

Optional k values occur at p= 14,13,
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1. States (at the beginning of a year)
i=1: no accumulated injuries;
{=2: one accumulated injury;
i=3: two accumulated injuries;
i =3 is an absorbing state.
Actions k€ {0, 1, 2,3}, with k fights planned in the year, and A =0
is retirement.

Optimality equation

000 +3x 5000+ 2 u(l)+{,u(2)],
000 + 3 x 5000 + /, x 5000
+§4"(1)+ 4"(2)

k=0:0

k=1:5000+2u(l) + lu(2)
u(l) = maximum| k=2: 5

k=35

0:
1: 5000 + tu(2) + iu(3)

2: 5000+ x 5000+ Lu(2)+2u3)i,
3: 5000 +; x 5000 + } x 5000
+8u(2)+8u(3)

k
k=
u(2) = maximum| k =
k=

u(3) = — 20 000.

2. States

f1: the number of type 1 customers in the system;

i»: the number of type 2 customers in the system.

Actions

k =1: begin service on type 1 customer or continue service if
current customer being served is type 1;

k =2: begin service on type 2 customer or continue service if
current customer being served is type 2.

Optimality equation

Whatever policy is adopted there is always a positive probability
that the system will eventually become empty. Clearly we will always
serve if the system is not empty. Hence the problem is uni-chain.
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i|=0,i2>0
u, i)Y+ h=b+ pp(1 —@pu(lia + 1)
+ p2(1 = @2)(1 = p1)u(0,i2 + 1)
+(D2q2 + (1 = p2)(1 — @2 ) pru(l, i2)
+(P2q2 + (1 = p2)(1 — @2))(1 = p)u(0, i2),

i|:i2:0
u(0,0) + A= pipau(l, 1) + pr(1 = p2)u(1,0) + p2(1 — p1)u(0, 1)
+ (1 = p1)(1 — p2)u(0,0).

For i; + i, > m we have no equations. Also for the transformed
states on the right-hand side of the equation, set u(i;, i) =0 when
I +i>m.

h+ih<m
n>06>0

ll(il,iz) +h

(k=1 i+ i+ pi(1 — gU)patalin + 1,62+ 1)

+ (=g = pu(iy + 1,12)

+(pgr + (1 = p)(1 = q))paulir, iz + 1)
+(prgr + (1 = p)(1 = g )1 = p2)uliy, i2)

= mmmum k=2:h+b+p(l—-g@)puli+1,H+1) ?
+ p2(1 —g2)(1 — pluli, iz + 1)
+(P2q2 + (1 = p2)(1 — @2))pru(ir + 1,42)
+(P2q2+ (1 — p2)(1 — @2))(1 — plulir, iz) i
H>0,b=0

ll(il,O) + h= il + pl(l — ql)pzu(il + 1, 1)
+ (1 —g)(1 = pui, + 1,0)
+ (g1 + (1= p)(1 = g1 ))paulir, 1)
+ (g + (1= p)(1 = g1))(1 — p2)u(ir, 0).

3. States i: the stock level prior to a decision, allowing i < 0 for a
shortage situation
Actions
k: the new level to which the stock level is raised at a decision
epoch.
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Optimality equation

Let g,(S) be the probability that the total demand is equal to S over
v time units.

Lziz20 ul)= Lzls Sch—n(S)q(S)(l(S+S~i)

€1 € S22
+iaiy—hy+u(i—S-ys)),
-5<i<0
u (/) = minimum [ > g-1(S)q(s)(c(k — i)
S

k20 ISy Lk>Ss2k-
+1(S+s—k)+Laky—hy+utk—S—s))|.

For i <0, when ¢ is linear the right-hand side of the optimality
equation is of the form

—ci+ G(k).
Thus, to minimise this is equivalent to minimising G(k) indepen-
dently of /.
4. States

i=1: not audited in the previous year;

I=2: audited in the previous year and declaration correct;
i=3: audited in the previous year and declaration incorrect.
Actions

k=1: declare;

k=2: do not declare.

Optimality equation

k=1:90+0.90.5u(1) + 0.5u(2))

ul) = m‘"‘m“m[k =2: (0.5 X 200 + 0.5 x 0) + 0.9(0.5u (1) + 0.54(3))

L [k= 1: 90 + 0.45u(1) + 0.45u(2) }
= minimum ,

k=2:100+0.45u(1) + 0.45u(3)
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4(2) = minimum| % = 1+ 90+ 0.900.7u(1) + 0.3u(2)) ]
[k =2: (0.3 X200 + 0.7 x 0) + 0.9(0.7u(1) + 0.2u(3))

L [k =1: 90+0.63u(1)+0.27u(2)}
= minimum/ ,

Lk =2: 60 +0.63u(l) +0.27u(3)

1(3) = minimum WI: : 90 +0.9(0.3u(1) + 0.7u(2)) }

1
2: (0.7x200+ 0.3 x0)+0.900.3u(1) +0.7u(3))

= minimum

[k =1: 90 +0.27u(1) + 0.63u(2)
|k =2: 140 + 0.27u(1) + 0.63u(2)]

5. States
p. the subjective probability of being classified as being reliable.

Actions
k=1: declare;
k=2: do not declare,

Optimality equation

u(p) = minimum

[ =190+ 0.9(p(0.3u(1 : p) + 0.7u(1 + 4?1’))

- p)(o.?u(1 ;p) +0-3“(1 - 4%)))

x | k=2:200(px 0.3 +(1-p)x0.7) + 0.9(p(0.3u(p/2)

1+4p
5

I + 0.3u(1 +54p)))

+ 0.7u( )) +(1 - p)(0.7u(p/2)
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= minimum

k=1: 90+(0.63 — 0.36,9)14(1 ;p) +(0.27 + 0.36p)u(1 +54p)

k=2:140- 80p + (0.63 - 0.36p)u(p/2) + (0.27 + 0.36p)u(l ha 4p)

5
vOogsp<l.



Index

Absorbing state, 15, 31, 53, 89,
110, 124, 138

Action, 34, 117

Action space, 25

Adaptive, 130, 131, 140,157

Aggregation, 151

Algorithm, 59, 87

Approximation, 150, 154, 156, 157

Asymptotic, 6, 14, 17, 44

Average expected reward per unit
time, 44, 49, 76, 104, 112, 121,
133

Average probability, 9, 106, 108

Bayesian, 130

Bias, 7, 11, 46, 52, 105
Block simplex, 111
Bound, 64, 117
Burgling, 174

Capacity planning, 179

Cesaro, 9, 49

Chronological, 1, 25, 26, 40
Column generation, 162, 165, 166
Complementary slackness, 109
Constraint, 163

Convex, 148, 158

Cost, 25

Cricket, 177

Crossing a road, 172

Dairy herd, 155

Decision epoch, 117

Decision interval, 118

Decision rule, 1, 17, 26, 27, 132
Decomposition, 151

Defective production, 55, 115
Deterministic, 27, 132

Discount, 12, 26, 28, 41, 44, 111,
117, 159
Dominate, 98

Elimination of actions, 90, 149

Ergodic, 7, 45

Expected reward between decision
epochs, 123

Expected state, 153

Expected total discounted reward,
12, 14, 26, 40, 49, 59, 99, 118,
147

Expected total reward, 1, 4, §

Expected total reward to
absorption, 17, 90

Feasible ideal solution, 100
Fixed point, 41

Gain, 7, 11, 76

History, 25, 131, 132

Horizon, 1, 25, 26, 31, 33, 40, 41,
53, 59, 62, 76, 90, 93, 99, 104,
113, 118, 121, 125, 133, 159

Identity matrix, 3, 45

Inventory, 15, 17, 33, 54, 57, 115,
125, 143, 147, 148, 149, 152,
158, 159, 181

Isotonicity, 148, 149

Lagrange, 152

Lattice, 148

Least element, 100, 105

Linear programme, 98, 100, 101,
105, 110, 124, 161, 165, 166,
167, 169, 170



224 INDEX

Loss of optimality, 87 Replacement, 171
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